Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the development of low dielectric permittivity materials having an ultra-low sintering temperature, testing their dielectric properties at terahertz frequencies suitable for 6G communication systems and implementation of the fabricated materials in ultra-low temperature cofired ceramics (ULTCC) were the main goals of the research. Lithium tungstate Li2WO4 was synthesized by a solid-state reaction and used for the preparation of green tapes and test structures with cofired internal conductive layers, which are destined for substrates of microwave and submillimeter wave circuits. Sintering behavior, thermal effects, and mass changes of the green tapes during heating were studied using a hot-stage microscope, differential thermal analysis, and thermogravimetry. A single-phase composition was revealed for being undoped and doped with AlF3–CaB4O7 ceramics. The impact of frequency, temperature, the addition of AlF3–CaB4O7 and CuBi2O4 dopants, and sintering temperature was the subject of in-depth characterization of dielectric properties in a terahertz region. A glass-free composition, ultra-low sintering temperature of 590–630 ℃, low roughness of the green tapes, dense microstructure, compatibility with Ag conductors, low and stable dielectric permittivity of 5.0–5.8 in a broad range of 0.2–2 THz, and low dielectric loss of 0.008–0.01 at 1 THz are the main advantages of the developed ULTCC substrates.
2088
Views
374
Downloads
10
Crossref
9
Web of Science
9
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.