894
Views
177
Downloads
0
Crossref
0
WoS
0
Scopus
0
CSCD
The unique columnar structure endows thermal barrier coatings (TBCs) prepared by plasma spray-physical vapor deposition (PS-PVD) with high thermal insulation and long lifetime. However, the coating delamination failure resulting from an intra-column fracture (within a column rather than between columns) is a bottleneck in the solid dust particle impact environment for aero-engine. To clarify the intra-column fracture mechanism, a basic layer deposition model is developed to explore a heterogeneous weak-to-strong layered structure formed by a local transient in-situ deposit temperature. During the PS-PVD, an in-situ deposit surface is continuously updated due to constantly being covered by vapor condensation, showing a transient temperature, which means that the in-situ deposit surface temperature rises sharply in short period of 0.2 s of depositing a thin layer during a single pass. Meanwhile, the increasing temperature of the in-situ deposit surface results in an experimentally observed heterogeneous weak-to-strong structure, showing a continuous transition from a porous weak structure at the bottom region to a dense strong structure at the top region. This structure easily makes the intra-column fracture at the porous weak region. The results shed light on improving TBC lifetime by restraining the intra-column fracture.
The unique columnar structure endows thermal barrier coatings (TBCs) prepared by plasma spray-physical vapor deposition (PS-PVD) with high thermal insulation and long lifetime. However, the coating delamination failure resulting from an intra-column fracture (within a column rather than between columns) is a bottleneck in the solid dust particle impact environment for aero-engine. To clarify the intra-column fracture mechanism, a basic layer deposition model is developed to explore a heterogeneous weak-to-strong layered structure formed by a local transient in-situ deposit temperature. During the PS-PVD, an in-situ deposit surface is continuously updated due to constantly being covered by vapor condensation, showing a transient temperature, which means that the in-situ deposit surface temperature rises sharply in short period of 0.2 s of depositing a thin layer during a single pass. Meanwhile, the increasing temperature of the in-situ deposit surface results in an experimentally observed heterogeneous weak-to-strong structure, showing a continuous transition from a porous weak structure at the bottom region to a dense strong structure at the top region. This structure easily makes the intra-column fracture at the porous weak region. The results shed light on improving TBC lifetime by restraining the intra-column fracture.
This project was supported by the National Natural Science Foundation of China (No. 51901175), the China Postdoctoral Science Foundation Funded Project (No. 2020T130499), and the National Program for Support of Top-notch Young Professionals.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.