Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
So far, the communication standard development requires specific parameters to achieve the requests of the desired application, most frequently, the connection speed rate. On the other hand, the term Beyond the Fifth Generation (B5G) symbolizes certain specifications required to succeed the future-proof of the Fifth Generation (5G), i.e., the predicted high-level parameters, such as ultra-reliable low-latency communications, massive machine-type communications, and improved mobile broadband, which are essential for the expected high-level future applications; consequently, 5G wireless (cellular) networks must be reconsidered precisely and in-depth to cope with the applications’ required high-level standard parameters in B5G. Therefore, it is crucial to develop novel wireless access configurations and technologies that utilize additional spectrum. However, this alone is not sufficient for now. Incorporating technologies such as software-defined networking, cloud computing, machine learning, 3D networking, and network function virtualization into B5G networks is imperative due to raised concerns regarding decentralization, transparency, interoperability, privacy, and security. This page provides a comprehensive overview of B5G’s design, functionality, and security, as well as its relationship to cloud computing. Furthermore, the proposed study examines the techniques employed for data transmission in B5G applications, such as Vehicle-to-Vehicle (V2V), Device-to-Device (D2D), and Machine to Machine (M2M) transmissions. Lastly, the proposed study focuses on essential technology based software services, such as healthcare, smart grid, tourism, and agricultural services. These services use the advantages of B5G communication networks and cloud computing. So, the proposed work collects all the necessary information for researches and developers in one article, supported by the most up-to-date references.
H. H. Attar, A. A. A. Solyman, M. R. Khosravi, L. Qi, M. Alhihi, and P. Tavallali, Bit and packet error rate evaluations for half-cycle stage cooperation on 6G wireless networks, Physical Communication, vol. 44, p. 101249, 2021.
A. Morgado, K. M. S. Huq, S. Mumtaz, and J. Rodriguez, A survey of 5G technologies: Regulatory, standardization and industrial perspectives, Digit. Commun. Netw., vol. 4, no. 2, pp. 87–97, 2018.
A. A. A. Solyman and K. Yahya, Evolution of wireless communication networks: From 1G to 6G and future perspective, Int. J. Electr. Comput. Eng, vol. 12, no. 4, p. 3943, 2022.
D. Ivanova, E. Markova, D. Moltchanov, R. Pirmagomedov, Y. Koucheryavy, and K. Samouylov, Performance of priority-based traffic coexistence strategies in 5G mmWave industrial deployments, IEEE Access, vol. 10, pp. 9241–9256, 2022.
Y. Yang and K. Hua, Emerging technologies for 5G-enabled vehicular networks, IEEE Access, vol. 7, pp. 181117–181141, 2019.
D. Feng, L. Lu, Y. W. Yi, G. Y. Li, S. Li, and G. Feng, Device-to-device communications in cellular networks, IEEE Commun. Mag., vol. 52, no. 4, pp. 49–55, 2014.
R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions, IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 196–248, 2020.
H. H. Attar, A. A. A. Solyman, A. F. Mohamed, M. R. Khosravi, V. G. Menon, A. K. Bashir, and P. Tavallali, Efficient equalisers for OFDM and DFrFT-OCDM multicarrier systems in mobile E-health video broadcasting with machine learning perspectives, Phys. Commun., vol. 42, p. 101173, 2020.
A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, 5G evolution: A view on 5G cellular technology beyond 3GPP release 15, IEEE Access, vol. 7, pp. 127639–127651, 2019.
M. Harounabadi, D. M. Soleymani, S. Bhadauria, M. Leyh, and E. Roth-Mandutz, V2X in 3GPP standardization: NR sidelink in release-16 and beyond, IEEE Commun. Stand. Mag., vol. 5, no. 1, pp. 12–21, 2021.
E. Liu, E. Effiok, and J. Hitchcock, Survey on health care applications in 5G networks, IET Commun., vol. 14, no. 7, pp. 1073–1080, 2020.
E. Ali, M. Ismail, R. Nordin, and N. F. Abdulah, Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research, Front. Inf. Technol. Electron. Eng., vol. 18, no. 6, pp. 753–772, 2017.
A. A. A. Solyman and A. E. Ismail, Potential key challenges for terahertz communication systems, International Journal of Electrical & Computer Engineering, vol. 11, no. 4, pp. 3403–3409, 2021.
A. A. A. Solyman and K. Yahya, Key performance requirement of future next wireless networks (6G), Bull. Electr. Eng. Inform., vol. 10, no. 6, pp. 3249–3255, 2021.
S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, Network function virtualization in 5G, IEEE Commun. Mag., vol. 54, no. 4, pp. 84–91, 2016.
K. Alghamdi and R. Braun, Software defined network (SDN) and OpenFlow protocol in 5G network, Communications and Network, vol. 12, no. 1, pp. 28–40, 2020.
M. K. Tefera, Z. Jin, and S. Zhang, A review of fundamental optimization approaches and the role of AI enabling technologies in physical layer security, Sensors, vol. 22, no. 9, p. 3589, 2022.
Y. Zou, J. Zhu, X. Wang, and L. Hanzo, A survey on wireless security: Technical challenges, recent advances, and future trends, Proc. IEEE, vol. 104, no. 9, pp. 1727–1765, 2016.
Y. Li, Y. Yu, W. Susilo, Z. Hong, and M. Guizani, Security and privacy for edge intelligence in 5G and beyond networks: Challenges and solutions, IEEE Wirel. Commun., vol. 28, no. 2, pp. 63–69, 2021.
N. Zhang, N. Cheng, N. Lu, X. Zhang, J. W. Mark, and X. Shen, Partner selection and incentive mechanism for physical layer security, IEEE Trans. Wirel. Commun., vol. 14, no. 8, pp. 4265–4276, 2015.
M. E. Morocho-Cayamcela, H. Lee, and W. Lim, Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions, IEEE Access, vol. 7, pp. 137184–137206, 2019.
B. M. ElHalawany, A. A. A. El-Banna, and K. Wu, Physical-layer security and privacy for vehicle-to-everything, IEEE Commun. Mag., vol. 57, no. 10, pp. 84–90, 2019.
C. H. Hsiao, F. Y. Lin, E. S. Fang, Y. F. Chen, Y. F. Wen, Y. Huang, Y. C. Su, Y. S. Wu, and H. Y. Kuo, Optimization-based resource management algorithms with considerations of client satisfaction and high availability in elastic 5G network slices, Sensors, vol. 21, no. 5, p. 1882, 2021.
D. Gupta, S. Rani, S. H. Ahmed, S. Verma, M. F. Ijaz, and J. Shafi, Edge caching based on collaborative filtering for heterogeneous ICN-IoT applications, Sensors, vol. 21, no. 16, p. 5491, 2021.
D. G. Riviello, F. Di Stasio, and R. Tuninato, Performance analysis of multi-user MIMO schemes under realistic 3GPP 3-D channel model for 5G mmWave cellular networks, Electronics, vol. 11, no. 3, p. 330, 2022.
A. Hoglund, D. P. Van, T. Tirronen, O. Liberg, Y. Sui, and E. A. Yavuz, 3GPP release 15 early data transmission, IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 90–96, 2018.
M. Mahbub, Unmanned aerial vehicle-collaborative 5G: A cooperative technology for enhancement of 5G NR, Int. J. Inf. Technol., vol. 13, no. 2, pp. 793–799, 2021.
M. S. Alam, G. K. Kurt, H. Yanikomeroglu, P. Zhu, and N. D. Đào, High altitude platform station based super macro base station constellations, IEEE Commun. Mag., vol. 59, no. 1, pp. 103–109, 2021.
S. A. H. Mohsan, M. A. Khan, M. H. Alsharif, P. Uthansakul, and A. A. A. Solyman, Intelligent reflecting surfaces assisted UAV communications for massive networks: Current trends, challenges, and research directions, Sensors, vol. 22, no. 14, p. 5278, 2022.
Z. Na, Y. Wang, M. Xiong, X. Liu, and J. Xia, Modeling and throughput analysis of an ADO-OFDM based relay-assisted VLC system for 5G networks, IEEE Access, vol. 6, pp. 17586–17594, 2018.
A. N. Uwaechia and N. M. Mahyuddin, A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges, IEEE Access, vol. 8, pp. 62367–62414, 2020.
N. Khalid and O. B. Akan, Experimental throughput analysis of low-THz MIMO communication channel in 5G wireless networks, IEEE Wirel. Commun. Lett., vol. 5, no. 6, pp. 616–619, 2016.
N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. T. Sukhavasi, C. Patel, and S. Geirhofer, Network densification: The dominant theme for wireless evolution into 5G, IEEE Commun. Mag., vol. 52, no. 2, pp. 82–89, 2014.
S. V. Balkus, H. Wang, B. D. Cornet, C. Mahabal, H. Ngo, and H. Fang, A survey of collaborative machine learning using 5G vehicular communications, IEEE Commun. Surv. Tutor., vol. 24, no. 2, pp. 1280–1303, 2022.
R. Molina-Masegosa and J. Gozalvez, LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications, IEEE Veh. Technol. Mag., vol. 12, no. 4, pp. 30–39, 2017.
S. A. Ali Shah, E. Ahmed, M. Imran, and S. Zeadally, 5G for vehicular communications, IEEE Commun. Mag., vol. 56, no. 1, pp. 111–117, 2018.
Y. Tang, S. Dananjayan, C. Hou, Q. Guo, S. Luo, and Y. He, A survey on the 5G network and its impact on agriculture: Challenges and opportunities, Comput. Electron. Agric., vol. 180, p. 105895, 2021.
M. H. Adnan and Z. A. Zukarnain, Device-to-device communication in 5G environment: Issues, solutions, and challenges, Symmetry, vol. 12, no. 11, p. 1762, 2020.
A. Celik, J. Tetzner, K. Sinha, and J. Matta, 5G device-to-device communication security and multipath routing solutions, Appl. Netw. Sci., vol. 4, no. 1, p. 102, 2019.
P. Gandotra and R. K. Jha, Device-to-device communication in cellular networks: A survey, J. Netw. Comput. Appl., vol. 71, pp. 99–117, 2016.
A. Asadi, Q. Wang, and V. Mancuso, A survey on device-to-device communication in cellular networks, IEEE Commun. Surv. Tutor., vol. 16, no. 4, pp. 1801–1819, 2014.
M. M. Elsayed, K. M. Hosny, M. M. Fouda, and M. M. Khashaba, Vehicles communications handover in 5G: A survey, ICT Express, vol. 9, no. 3, pp. 366–378, 2023.
H. H. Attar, A. A. A. Solyman, A. Alrosan, C. Chakraborty, and M. R. Khosravi, Deterministic cooperative hybrid ring-mesh network coding for big data transmission over lossy channels in 5G networks, EURASIP J. Wirel. Commun. Netw., vol. 2021, p. 159, 2021.
P. N. Srinivasu, M. F. Ijaz, J. Shafi, M. Woźniak, and R. Sujatha, 6G driven fast computational networking framework for healthcare applications, IEEE Access, vol. 10, pp. 94235–94248, 2022.
N. Saxena, A. Roy, and H. Kim, Efficient 5G small cell planning with eMBMS for optimal demand response in smart grids, IEEE Trans. Ind. Inform., vol. 13, no. 3, pp. 1471–1481, 2017.
Y. Yan, Y. Qian, H. Sharif, and D. Tipper, A survey on smart grid communication infrastructures: Motivations, requirements and challenges, IEEE Commun. Surv. Tutor., vol. 15, no. 1, pp. 5–20, 2013.
R. Peng, Y. Lou, M. Kadoch, and M. Cheriet, A human-guided machine learning approach for 5G smart tourism IoT, Electronics, vol. 9, no. 6, p. 947, 2020.
B. C. Kavitha, R. Vallikannu, and K. S. Sankaran, Delay-aware concurrent data management method for IoT collaborative mobile edge computing environment, Microprocess. Microsyst., vol. 74, p. 103021, 2020.
A. P. Antony, K. Leith, C. Jolley, J. Lu, and D. J. Sweeney, A review of practice and implementation of the Internet of Things (IoT) for smallholder agriculture, Sustainability, vol. 12, no. 9, p. 3750, 2020.
M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. M. Aggoune, Internet-of-things (IoT)-based smart agriculture: Toward making the fields talk, IEEE Access, vol. 7, pp. 129551–129583, 2019.
M. Caria, G. Sara, G. Todde, M. Polese, and A. Pazzona, Exploring smart glasses for augmented reality: A valuable and integrative tool in precision livestock farming, Animals, vol. 9, no. 11, p. 903, 2019.
D. Ball, P. Ross, A. English, P. Milani, D. Richards, A. Bate, B. Upcroft, G. Wyeth, and P. Corke, Farm workers of the future: Vision-based robotics for broad-acre agriculture, IEEE Robot. Automat. Mag., vol. 24, no. 3, pp. 97–107, 2017.
R. J. Essiambre and R. W. Tkach, Capacity trends and limits of optical communication networks, Proceedings of the IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.
D. Semrau, T. Xu, N. A. Shevchenko, M. Paskov, A. Alvarado, R. I. Killey, and P. Bayvel, Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping, Opt. Lett., vol. 42, no. 1, pp. 121–124, 2017.
T. Xu, N. A. Shevchenko, D. Lavery, D. Semrau, G. Liga, A. Alvarado, R. I. Killey, and P. Bayvel, Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems, Opt. Express, vol. 25, no. 4, pp. 3311–3326, 2017.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
Comments on this article