AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Prenatal multiple micronutrient-fortified balanced energy-protein supplementation and newborn telomere length and mitochondrial DNA content: a randomized controlled efficacy trial in rural Burkina Faso

Giles T. Hanley-Cooka,1( )Yuri Bastos-Moreiraa,b,1( )Dries S. MartenscTrenton Dailey-ChwalibógaLaeticia Celine Toea,dBrenda de KokaLionel OIivier Ouédraogoa,eAlemayehu ArgawaKokeb Tesfamariama,bPatrick KolsterenaLieven Huybregtsa,fTim S. Nawrotc,gSarah De Saegerb,hMarthe De BoevrebCarl Lachata( )
Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
Center of Excellence in Mycotoxicology and Public Health, MYTOXSOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
Centre for Environmental Sciences, Hasselt University, Diepenbeek 3590, Belgium
Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, 01 BP 545 Burkina Faso
Centre Muraz, Bobo-Dioulasso, 01 BP 390 Burkina Faso
Nutrition, Diets, and Health Unit, Department of Food and Nutrition Policy, International Food Policy Research Institute (IFPRI), Washington DC 20005, USA
Department of Public Health & Primary Care, University of Leuven, Leuven 3000, Belgium
Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa

1 These authors contributed equally to the work.

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Background

Evidence regarding the effectiveness of prenatal nutritional supplements has mainly considered anthropometric pregnancy outcomes. The effect on markers of health and disease, such as offspring telomere length (TL) and mitochondrial DNA content (mtDNAc) is unknown.

Objectives

We assessed the efficacy of maternal multiple micronutrient (MMN)-fortified balanced-energy protein (BEP) and iron-folic acid (IFA) supplementation on newborn TL as a secondary outcome and mtDNAc as a non-declared outcome.

Design

We conducted a randomized controlled trial in rural Burkina Faso, among pregnant females (15-40 years old) enrolled at < 21 weeks of gestation. Mothers received either MMN-fortified BEP and IFA (intervention) or IFA only (control) throughout pregnancy. Whole arterial blood samples were collected from the umbilical cord of 104 control and 90 intervention group infants, respectively. Average relative TL and mtDNAc were measured using quantitative polymerase chain reaction. Linear regression models were fitted to assess TL and mtDNAc differences across trial arms.

Results

We found that a combined daily MMN-fortified BEP supplement and IFA tablet did not affect newborn TL [β =-0.010 (95% CI:-0.057, 0.036); P = 0.662] or mtDNAc [β = 0.065 (95% CI:-0.203, 0.073); P = 0.354], as compared to an IFA tablet alone. These findings were confirmed (P > 0.05) by adjusting the regression models for potential prognostic factors of study outcomes at enrollment. Exploratory analyses indicated higher, but non-significantly different mtDNAc among children born either small-for-gestational age, low birthweight, or preterm.

Conclusion

Newborns from mothers who received daily nutritional supplements across gestation did not have different relative TL or mtDNAc.

Electronic Supplementary Material

Download File(s)
fshw-14-4-9250304_ESM.docx (274.9 KB)

References

[1]

E.C. Keats, J.K. Das, R.A Salam, et al., Effective interventions to address maternal and child malnutrition: an update of the evidence, The Lancet Child & Adolescent Health 5 (2021) 367-384. https://doi.org/10.1016/S2352-4642(20)30274-1.

[2]

S. Entringer, K. de Punder, C. Buss, et al., The fetal programming of telomere biology hypothesis: an update, Philos. Trans. R. Soc. B 373 (2018) 20170151. http://dx.doi.org/10.1098/rstb.2017.0151.

[3]

C. Gemma, S. Sookoian, J. Alvariñas, et al., Mitochondrial DNA depletion in small- and large-for-gestational-age newborns, Obesity 14 (2006) 2193-2199. https://doi.org/10.1038/oby.2006.257.

[4]

L.C. Schulz, The Dutch hunger winter and the developmental origins of health and disease, PNAS 107 (2010) 16757-16758. https://doi.org/10.1073/pnas.101291110.

[5]

P.D. Gluckman, M.A. Hanson, T.A. Buklijas, Conceptual framework for the developmental origins of health and disease, J. Dev. Orig. Health Dis. 1 (2010) 6-18. https://doi.org/10.1017/S2040174409990171.

[6]

A.M. Prentice, B.J. Hennig, A.J. Fulford, Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release? Int. J. Obes. 32 (2008) 1607-1610. https://doi.org/10.1038/ijo.2008.147.

[7]

J.R, Speakman, Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the “drifty gene” hypothesis, Int. J. Obes. 32 (2008) 1611-1617. https://doi.org/10.1038/ijo.2008.161.

[8]

K.M, Godfrey, K.A Lillycrop, G.C. Burdge, et al., Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease, Pediatr. Res. 61 (2007) 31-36. https://doi.org/10.1203/pdr.0b013e318045bedb.

[9]

E.H., Blackburn, E.S. Epel, J. Lin, Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection, Science 350 (2015) 1193-1198. https://doi.org/10.1126/science.aab3389.

[10]

C. Wang, T.S Nawrot, C. Stukken, et al., Different epigenetic signatures of newborn telomere length and telomere attrition rate in early life, Aging 13 (2021) 14630-14650. https://doi.org/10.18632/aging.203117.

[11]

D.S Martens, C. Van Der Stukken, C. Derom, et al., Newborn telomere length predicts later life telomere length: tracking telomere length from birth to child- and adulthood, EBioMedicine 63 (2021) 103164. https://doi.org/10.1016/j.ebiom.2020.103164.

[12]

Q.Wang, Y. Zhan, N.L, Pedersen, et al., Telomere length and all-cause mortality: a meta-analysis, Ageing Res. Rev. 48 (2018) 11-20. https://doi.org/10.1016/j.arr.2018.09.002.

[13]

P.C Haycock, E.E Heydon, S. Kaptoge, et al., Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis, BMJ 349 (2014) g4227. https://doi.org/10.1136/bmj.g4227.

[14]

J. Zhao, K. Miao, H. Wang, Association between telomere length and type 2 diabetes mellitus: a meta-analysis, PLoS One 8 (2013) 1-7. https://doi.org/10.1371/journal.pone.0079993.

[15]

A.J. Roger, S.A. Muñoz-Gómez, R. Kamikawa, The Origin and diversification of mitochondria, Current Biology 27 (2017) 1177-1192. https://doi.org/10.1016/j.cub.2017.09.015.

[16]

H.C. Lee, Y.H. Wei, Mitochondrial role in life and death of the cell, J. Biomed. Sci. 7 (2000) 2-15. https://doi.org/10.1159/000025424.

[17]

W.C. Copeland, M.J. Longley, Mitochondrial genome maintenance in health and disease, DNA Repair 19 (2014) 190-198. https://doi.org/10.1016/j.dnarep.2014.03.010.

[18]

L. Priliani, C.A Febinia, B. Kamal, et al., Increased mitochondrial DNA copy number in maternal peripheral blood is associated with low birth weight in Lombok, Indonesia, Placenta 70 (2018) 1-3. https://doi.org/10.1016/j.placenta.2018.08.001.

[19]

D. Lattuada, F. Colleoni, A. Martinelli, et al., Higher mitochondrial DNA content in human IUGR placenta, Placenta 29 (2008) 1029-1033. https://doi.org/10.1016/j.placenta.2008.09.012.

[20]

K. Gibson, J.L. Halliday, D.M. Kirby, et al., Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses, Pediatrics 122 (2008) 1003-1008. https://doi.org/10.1542/peds.2007-3502.

[21]

M. Kohda, Y. Tokuzawa, Y. Kishita, et al., A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies, PLoS Genet 12 (2006) 1-31. https://doi.org/10.1371/journal.pgen.1005679

[22]

N.M. Druzhyna, G.L. Wilson, S.P. LeDoux, Mitochondrial DNA repair in aging and disease, Mech. Ageing Dev. 129 (2008) 383-390. https://doi.org/10.1016/j.mad.2008.03.002.

[23]

B.M. Oaks, S. Adu-Afarwuah, S. Kumordzie, et al., Impact of a nutritional supplement during gestation and early childhood on child salivary cortisol, hair cortisol, and telomere length at 4–6 years of age: a follow-up of a randomized controlled trial, Stress 23 (2020) 597-606. https://doi.org/10.1080/10253890.2020.1728528.

[24]

A. Lin, B.F Arnold, A.N Mertens, et al., Effects of water, sanitation, handwashing, and nutritional interventions on telomere length among children in a cluster-randomized controlled trial in rural Bangladesh, Elife 6 (2017) 1-9. https://doi.org/10.7554/eLife.29365.

[25]

V.H.L. See, E. Mas, S. Burrows, et al., Prenatal omega-3 fatty acid supplementation does not affect offspring telomere length and F2-isoprostanes at 12 years: a double blind, randomized controlled trial, Prostaglandins Leukot Essent Fatty Acids 112 (2016) 50-55. https://doi.org/10.1016/j.plefa.2016.08.006.

[26]

S. García-Calzón, M.A Martínez-González, C. Razquin, et al., Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study, Clin. Nutr. 35 (2016) 1399-1405. https://doi.org/10.1016/j.clnu.2016.03.013.

[27]

S.J. Ward, A.M. Hill, J.D. Buckley, et al., Minimal changes in telomere length after a 12-week dietary intervention with almonds in mid-age to older, overweight and obese Australians: results of a randomised clinical trial, British J. Nutr. 127 (2022) 872-884. https://doi.org/10.1017/S0007114521001549.

[28]

D. Tsoukalas, P. Fragkiadaki, A.O Docea, et al., Association of nutraceutical supplements with longer telomere length, Int. J. Mol. Med. 44 (2019) 218-226. https://doi.org/10.3892/ijmm.2019.4191

[29]

P. Lidwina, P.E. L, R. Restuadi, et al., Maternal multiple micronutrient supplementation stabilizes mitochondrial DNA copy number in pregnant women in Lombok, Indonesia, J. Nutr. 149 (2019) 1309-1316. https://doi.org/10.1093/jn/nxz064.

[30]

K. Vanslambrouck, B. De Kok, L.C. Toe, et al., Effect of balanced energy-protein supplementation during pregnancy and lactation on birth outcomes and infant growth in rural Burkina Faso: study protocol for a randomised controlled trial, BMJ Open 11(2021) 1-10. https://doi.org/10.1136/bmjopen-2020-038393.

[31]

B. de Kok, L.C Toe, G. Hanley-Cook, et al., Prenatal fortified balanced energy-protein supplementation and birth outcomes in rural Burkina Faso: a randomised controlled efficacy trial, PLoS Med. 19 (2022) 1-20. https://doi.org/10.1371/journal.pmed.1004002.

[32]

K.F. Schulz, D.G. Altman, D. Moher, CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials, BMJ 340 (2010) 1-9. https://doi.org/10.1136/bmj.c332.

[33]

S.A Bustin, V. Benes, J.A Garson, et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem. 55 (2009) 611-622. https://doi.org/10.1373/clinchem.2008.112797.

[34]

D. Roberfroid, L. Huybregts, H. Lanou et al., Effects of maternal multiple micronutrient supplementation on fetal growth: a double-blind randomized controlled trial in rural Burkina Faso, Am. J. Clin. Nutr. 88 (2008) 1330-1340. https://doi.org/10.3945/ajcn.2008.26296.

[35]

L. Huybregts, D. Roberfroid, H. Lanou, et al., Prenatal food supplementation fortified with multiple micronutrients increases birth length: a randomized controlled trial in rural Burkina Faso. Am. J. Clin. Nutr. 90 (2009) 1593-1600. https://doi.org/10.3945/ajcn.2009.28253.

[36]

G. Hanley-Cook, A. Argaw, B. de Kok, et al., Seasonality and day-to-day variability of dietary diversity: longitudinal study of pregnant women enrolled in a randomized controlled efficacy trial in rural Burkina Faso, J. Nutr. 152 (2022) 2145-2154. https://doi.org/10.1093/jn/nxac104.

[37]

L. Huybregts, D. Roberfroid, P. Kolsteren, et al., Dietary behaviour, food and nutrient intake of pregnant women in a rural community in Burkina Faso, Matern. Child Nutr. 5 (2009) 211-222. https://doi.org/10.1111/j.1740-8709.2008.00180.x.

[38]

B. de Kok, A. Argaw, G. Hanley-Cook et al., Fortified balanced energy-protein supplements increase nutrient adequacy without displacing food intake in pregnant women in Rural Burkina Faso, J. Nutr. 151 (2021) 3831-3840. https://doi.org/10.1093/jn/nxab289.

[39]

B. de Kok, A. Argaw, G. Hanley-Cook, et al., Fortified balanced energy-protein supplements increase nutrient adequacy without displacing food intake in pregnant women in Rural Burkina Faso, J. Nutr. 151 (2021) 3831-3840. https://doi.org/10.1093/jn/nxab289.

[40]

J. Villar, L.C. Ismail, C.G. Victora, et al., International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project, The Lancet 384 (2014) 857-868. https://doi.org/10.1016/S0140-6736(14)60932-6.

[41]

D. Fergusson, S.D. Aaron, G. Guyatt, et al., Post-randomisation exclusions: the intention to treat principle and excluding patients from analysis, BMJ 325 (2002) 652-654. https://doi.org/10.1136/bmj.325.7365.652.

[42]
Bill & Melinda Gates Foundation, Framework and specifications for the nutritional composition of a food supplement for pregnant and lactating women (PLW) in undernourished and low income settings, Gates Open Research 2017.
[43]

L. Jones, B. de Kok, K. Moore, et al., Acceptability of 12 fortified balanced energy protein supplements - insights from Burkina Faso, Matern. Child Nutr. 17 (2021) 1-11. https://doi.org/10.1111/mcn.13067.

[44]

B. de Kok, K. Moore, L. Jones, et al., Home consumption of two fortified balanced energy protein supplements by pregnant women in Burkina Faso, Matern. Child Nutr. 17 (2021) 1-13. https://doi.org/10.1111/mcn.13134.

[45]
Food and Nutrition Board, Institute of Medicine, National Academies. Dietary Reference Intakes (DRIs): Estimated Average Requirements. 2011.
[46]

L.H. Allen, A.L. Carriquiry, S.P. Murphy, Perspective: proposed harmonized nutrient reference values for populations, Adv. Nutr. 11 (2020) 469-483. https://doi.org/10.1093/advances/nmz096.

[47]

WHO Multicentre Growth Reference Study Group, M. De Onis. Reliability of anthropometric measurements in the WHO Multicentre Growth Reference Study, Acta Paediatr. 95 (2006) 38-46. https://doi.org/10.1111/j.1651-2227.2006.tb02374.x.

[48]

Y. Bastos-Moreira, L. Ouédraogo, M. De Boevre, et al., A multi-omics and human biomonitoring approach to assessing the effectiveness of fortified balanced energy-protein supplementation on maternal and newborn health in Burkina Faso: a study protocol, Nutrients 15 (2023) 1-20. https://doi.org/10.3390/nu15184056.

[49]

J.J. Valadez, L.D. Brown, W.V. Vargas, et al, Using lot quality assurance sampling to assess measurements for growth monitoring in a developing country’s primary health care system, Int. J. Epidemiol. 25 (1996) 381-387. https://doi.org/10.1093/ije/25.2.381.

[50]

D.S. Martens, M. Plusquin, W. Gyselaers, Maternal pre-pregnancy body mass index and newborn telomere length, BMC Med. 14 (2016) 148. https://doi.org/10.1186/s12916-016-0689-0.

[51]

R.M. Cawthon. Telomere length measurement by a novel monochrome multiplex quantitative PCR method, Nucleic Acids Res. 37 (2009) 107. https://doi.org/10.1093/nar/gkn1027.

[52]

B.G. Janssen, E. Munters, N. Pieters, et al., Placental mitochondrial DNA content and particulate air pollution during in utero life, Environ. Health Perspect. 120 (2012) 1346-1352. http://dx.doi.org/10.1289/ehp.1104458

[53]

R.M. Cawthon, Telomere measurement by quantitative PCR, Nucleic Acids Res. 30 (2002) 1-6. https://doi.org/10.1093/nar/30.10.e47.

[54]

D.S. Martens, B.G. Janssen, E.M. Bijnens, et al., Association of parental socioeconomic status and newborn telomere length, JAMA Netw Open 3 (2020) 1-13. https://doi.org/10.1001/jamanetworkopen.2020.4057.

[55]

J. Hellemans, G. Mortier, A. De Paepe, et al., qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, Genome Biol. 8 (2008) 1-14. https://doi.org/10.1186/gb-2007-8-2-r19.

[56]
Study Design & Analysis - Telomere Research Network [Internet]. [cited 2023 Jul 8]. Available from: https://trn.tulane.edu/resources/study-design-analysis/
[57]

G.T. Hanley-Cook, L.C Toe, K. Tesfamariam, et al., Fortified balanced energy-protein supplementation, maternal anemia, and gestational weight gain: a randomized controlled efficacy trial among pregnant women in rural Burkina Faso, J. Nutr. 52 (2022) 2277-2286. https://doi.org/10.1093/jn/nxac171.

[58]

B.M, Unryn, L.S. Cook, K.T. Riabowol, Paternal age is positively linked to telomere length of children, Aging Cell 4 (2005) 97-101. https://doi.org/10.1111/j.1474-9728.2005.00144.x.

[59]

J. Katz, P. Christian, F. Dominici, Treatment effects of maternal micronutrient supplementation vary by percentiles of the birth weight distribution in rural Nepal, J. Nutr. 136 (2006) 1389-1394. https://doi.org/10.1093/jn/136.5.1389

[60]

D. Roberfroid, L. Huybregts, H. Lanou, et al., Effects of maternal multiple micronutrient supplementation on fetal growth: a double-blind randomized controlled trial in rural Burkina Faso, Am. J. Clin. Nutr. 88 (2008) 1330-1340. https://doi.org/10.3945/ajcn.2008.26296.

[61]

S. Entringer, E. S. Epel, J. Lin, et al., Maternal folate concentration in early pregnancy and newborn telomere length, Ann. Nutr. Metab. 66 (2015) 202-208. https://doi.org/10.1159/000381925.

[62]

B. Shane, E.L. Stokstad, Vitamin B12-folate interrelationships, Annu. Rev. Nutr. 5 (1985) 115-141. https://doi.org/10.1146/annurev.nu.05.070185.000555.

[63]

J.H. Kim, G.J. Kim, D. Lee, et al., Higher maternal vitamin D concentrations are associated with longer leukocyte telomeres in newborns, Matern. Child Nutr. 14 (2018) 1-8. https://doi.org/10.1111/mcn.12475.

[64]

M. Ullah, Z. Sun, J.M. Hare, Klotho deficiency accelerates stem cells aging by impairing telomerase activity, Journals of Gerontology - Series A Biological Sciences and Medical Sciences 74 (2019) 1396-1407. https://doi.org/10.1093/gerona/gly261.

[65]

A. O’Donovan, M.S, Pantell, E. Puterman, et al., Cumulative inflammatory load is associated with short leukocyte telomere length in the health, aging and body composition study, PLoS One 6 (2011) 1-7. https://doi.org/10.1371/journal.pone.0019687.

[66]

Q. Xu, C.G. Parks, L.A. Deroo, et al., Multivitamin use and telomere length in women 1-3, Am. J. Clin. Nutr. 89 (2009) 1857-1863. https://doi.org/10.3945/ajcn.2008.26986.

[67]

H.M. Salihu, K.K. Adegoke, L.M. King, et al., Effects of maternal carbohydrate and fat intake on fetal telomere length, South Med. J. 111 (2018) 591-596. https://doi.org/10.14423/SMJ.0000000000000871.

[68]

S.L. Steele, A.Y.Y Hsieh, I. Gadawski, et al., Daily oral supplementation with 60 mg of elemental iron for 12 weeks alters blood mitochondrial DNA content, but not leukocyte telomere length in Cambodian women, Nutrients 6 (2021) 1877. https://doi.org/10.3390/nu13061877.

[69]

X. Yang, R. Zhang, K. Nakahira, et al., Mitochondrial DNA mutation, diseases, and nutrient-regulated mitophagy, Annu. Rev Nutr. 39 (2019) 201-226. https://doi.org/10.1146/annurev-nutr-082018-124643.

[70]

S. Parikh, R. Saneto, M.J. Falk, et al. A modern approach to the treatment of mitochondrial disease, Curr. Treat Options Neurol. 11 (2009) 414-430. https://doi.org/10.1007/s11940-009-0046-0.

[71]

K. Palikaras and N. Tavernarakis, Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis, Exp. Gerontol. 56 (2014) 182-188. https://doi.org/10.1016/j.exger.2014.01.021.

[72]

V. Eisner, M. Picard, G. Hajnóczky. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses, Nat. Cell Biol. 20 (2018) 755-765. https://doi.org/10.1038/s41556-018-0133-0.

[73]

J. Ma, X. Liu, Y. Zhang, et al., Diet quality scores are positively associated with whole blood-derived mitochondrial DNA copy number in the Framingham Heart Study, J. Nutr. 152 (2022) 690-697. https://doi.org/10.1093/jn/nxab418.

[74]

S. Wu, X. Li, S. Meng, et al., Fruit and vegetable consumption, cigarette smoke, and leukocyte mitochondrial DNA copy number, Am. J. Clin. Nutr. 109 (2019) 424-432. https://doi.org/10.1093/ajcn/nqy286.

[75]

Z. Niu, K. Li, C. Xie, et al., Adverse birth outcomes and birth telomere length: a systematic review and meta-analysis, J. Pediatr. 215 (2019) 201-226. https://doi.org/10.1016/j.jpeds.2019.08.040.

[76]

R. Naha, A, Anees, S. Chakrabarty, et al., Placental mitochondrial DNA mutations and copy numbers in intrauterine growth restricted (IUGR) pregnancy, Mitochondrion 55 (2020) 85-94. https://doi.org/10.1016/j.mito.2020.08.008.

[77]

C. Novielli, C. Mandò C, S. Tabano, et al., Mitochondrial DNA content and methylation in fetal cord blood of pregnancies with placental insufficiency, Placenta 55 (2017) 63-70. https://doi.org/10.1016/j.placenta.2017.05.008.

[78]

A.J. Montpetit, A.A. Alhareeri, M. Montpetit, et al., Telomere length: a review of methods for measurement, Nurs. Res. 63 (2014) 289-299. https://doi.org/10.1097/NNR.0000000000000037.

[79]

J. Lin, D.L. Smith, K. Esteves, et al., Telomere length measurement by qPCR-summary of critical factors and recommendations for assay design, Psychoneuroendocrinology 99 (2019) 271-278. https://doi.org/10.1016/j.psyneuen.2018.10.005.

[80]

J. Lin, J. Cheon, R. Brown, et al., Systematic and cell type-specific telomere length changes in subsets of lymphocytes, J. Immunol. Res. 2016 (2016) 1-9. https://doi.org/10.1155/2016/5371050.

[81]

J. Knez, E. Winckelmans, M. Plusquin, et al., Correlates of peripheral blood mitochondrial DNA content in a general population, Am. J. Epidemiol. 183 (2016) 138-146. https://doi.org/10.1093/aje/kwv175.

[82]

Y.F. Chou and R.F.S. Huang. Mitochondrial DNA deletions of blood lymphocytes as genetic markers of low folate-related mitochondrial genotoxicity in peripheral tissues, Eur. J. Nutr. 48 (2009) 429-436. https://doi.org/10.1007/s00394-009-0031-0.

[83]

I. Garcia-Martin, A.B. Janssen, R.E. Jones, et al., Telomere length heterogeneity in placenta revealed with high-resolution telomere length analysis, Placenta 59 (2017) 61-68. https://doi.org/10.1016/j.placenta.2017.09.007.

[84]

K. Maasen, P.T. James, A.M. Prentice, et al., Periconceptional environment predicts leukocyte telomere length in a cross-sectional study of 7-9 year old rural Gambian children, Sci. Rep. 10 (2020) 9675. https://doi.org/10.1038/s41598-020-66729-9.

[85]

J. Coates, A. Swindale, P. Bilinsky, Household food insecurity access scale (HFIAS) for measurement of food access: indicator guide (v.3). Washington, D.C.: Food and Nutrition Technical Assistance Project & FHI 360; 2007. 29 p.

Food Science and Human Wellness
Article number: 9250304
Cite this article:
Hanley-Cook GT, Bastos-Moreira Y, Martens DS, et al. Prenatal multiple micronutrient-fortified balanced energy-protein supplementation and newborn telomere length and mitochondrial DNA content: a randomized controlled efficacy trial in rural Burkina Faso. Food Science and Human Wellness, 2025, 14(4): 9250304. https://doi.org/10.26599/FSHW.2024.9250304

697

Views

129

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 April 2023
Revised: 09 June 2024
Accepted: 11 November 2024
Published: 28 February 2025
© 2025 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return