AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Arecoline causes cognitive impairment and potential addiction via disturbing Kenyon cells in bumblebee brain

Huiling LiuaXiaohuan MuaRongrong FanaJieteng ChenaJie MabLiang MengbXiaosong HuaHao ZhengaShanshan LiubXiaofei Wanga
National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
BGI-Qingdao, Qingdao 266555, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Highlights

• Arecoline induces locomotor hyperactivity and cognitive impairment.

• Arecoline specifically targets Kenyon cells in the brain.

• Low-dose arecoline affects the expression of genes related to addiction.

• High-dose arecoline induces Calcium dyshomeostasis in lKC subcluster.

Graphical Abstract

Abstract

Areca nut is the basic ingredient of betel quid, which is chewed by hundreds of millions of people in South-Eastern Asia. Chewing of areca nut has been associated with oral cancers potentially due to its specific alkaloids, among which arecoline constitutes about 90% of total fraction. Being the world’s fourth most commonly used psychoactive substance, arecoline evokes stimulation, addiction, and other direct neurological effects, while its misuse correlates to neurotoxic effects. However, what might underlie its neurotoxic mechanisms has been poorly documented. The brain is encoded by a complex network of neuronal and glial cell types, and neurotoxicity of hazardous compounds present transcriptional heterogeneity. Recently, the eusocial bumblebee has been used as a model for studying brain effects, with sophisticated cognitive capability and precisely measured brain architecture. Here, we decipher cell-type-specific mental risks to arecoline using bumblebees. Arecoline induced locomotor hyperactivity and cognitive impairment. Single nucleus RNA sequencing (snRNA-seq) unearthed arecoline-induced cell-specific responses, primarily targeted on Kenyon cells (KC). Moreover, high-dose arecoline induced distinctive cell responses among KC subtypes, particularly class Ⅰ large Kenyon cell (lKC), leading to DNA damage, excitatory/inhibitory (E/I) imbalance, and calcium dyshomeostasis, which potentially resulted in cognitive impairment. Given arecoline’s popularity and growing exposure risks to humans, neurological health risks of areca nut warrant serious consideration.

Electronic Supplementary Material

Download File(s)
fshw-14-7-9250167_ESM.docx (50.4 MB)

References

[1]

P.F. Wu, T.A. Chiang, M.T. Chen, et al., A characterization of the antioxidant enzyme activity and reproductive toxicity in male rats following sub-chronic exposure to areca nut extracts, J. Hazard. Mater. 178 (2010) 541-546. https://doi.org/10.1016/j.jhazmat.2010.01.118.

[2]

E.E. Chang, Z.F. Miao, W.J. Lee, et al., Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells, J. Hazard. Mater. 146 (2007) 356-361. https://doi.org/10.1016/j.jhazmat.2006.12.035.

[3]

M.H. Chiang, P.H. Chen, Y.K. Chen, et al., Characterization of a novel dermal fibrosis model induced by areca nut extract that mimics oral submucous fibrosis, PLoS ONE 11 (2016) e0166454. https://doi.org/10.1371/journal.pone.0166454.

[4]

P.Y. Chang, T.M. Kuo, P.K. Chen, et al., Arecoline N-oxide upregulates caspase-8 expression in oral hyperplastic lesions of mice, J. Agric. Food Chem. 65 (2017) 10197-10205. https://doi.org/10.1021/acs.jafc.7b03999.

[5]

N.W. Chang, R. J. Pei, H.C. Tseng, et al., Co-treating with arecoline and 4-nitroquinoline 1-oxide to establish a mouse model mimicking oral tumorigenesis, Chem. Biol. Interact. 183 (2010) 231-237. https://doi.org/10.1016/j.cbi.2009.10.005.

[6]

L.M. Lin, Y. K. Chen, D. L. Lai, et al., Minimal arecaidine concentrations showing a promotion effect during DMBA-induced hamster cheek pouch carcinogenesis, J. Oral Pathol. Med. 25 (1996) 65-68. https://doi.org/10.1111/j.1600-0714.1996.tb00194.x.

[7]

IARC, Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines, IARC Monogr Eval Carcinog Risks Hum. 85 (2004) 1-334.

[8]

R.R. Pasupuleti, C.H. Lee, P.G. Osborne, et al., Rapid green analytical methodology for simultaneous biomonitoring of five toxic areca nut alkaloids using UHPLC-MS/MS for predicting health hazardous risks, J. Hazard. Mater. 422 (2022) 126923. https://doi.org/10.1016/j.jhazmat.2021.126923.

[9]

W. Tilakaratne, M. Klinikowski, T. Saku, et al., Oral submucous fibrosis: review on aetiology and pathogenesis, Oral Oncol. 42 (2006) 561-568. https://doi.org/10.1016/j.oraloncology.2005.08.005.

[10]

N.G. Oliveira, D.L. Ramos, R.J. Dinis-Oliveira, genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: an updated review, Arch. Toxicol. 95 (2021) 375-393. https://doi.org/10.1007/s00204-020-02926-9.

[11]

L. Xia, T.Y. Ling, Y.J. Gao, et al., Arecoline and oral keratinocytes may affect the collagen metabolism of fibroblasts, J. Oral Pathol. Med. 38 (2009) 422-426. https://doi.org/10.1111/j.1600-0714.2009.00758.x.

[12]

S.S. Lee, C.H. Tsai, L.L. Tsai, et al., β-Catenin expression in areca quid chewing-associated oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells, J. Formos. Med. Assoc. 111 (2012) 194-200. https://doi.org/10.1016/j.jfma.2010.11.002.

[13]

J. Zhou, Q. Sun, Z. Yang, et al., The hepatotoxicity and testicular toxicity induced by arecoline in mice and protective effects of vitamins C and E, Korean J. Physiol. Pharmacol. 18 (2014) 143-148. https://doi.org/10.4196/kjpp.2014.18.2.143.

[14]
I.W.G.o.t.I.o.C.H.t. Humans, (2021). IARC Monographs on the Identification of Carcinogenic Hazards to Humans. In Acrolein, Crotonaldehyde, and Arecoline. Lyon (FR): International Agency for Research on Cancer© International Agency for Research on Cancer, 2021. For more information contact publications@iarc.fr.
[15]

B. Shakya, Y.H. Siddique, Evaluation of the toxic potential of arecoline toward the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9, Toxicol. Res. 7 (2018) 432-443. https://doi.org/10.1039/c7tx00305f.

[16]

M. Lechner, C.E. Breeze, F. Vaz, et al., Betel nut chewing in high-income countries-lack of awareness and regulation, Lancet Oncol. 20 (2019) 181-183. https://doi.org/10.1016/s1470-2045(18)30911-2.

[17]

S. Williams, A. Malik, S. Chowdhury, et al., Sociocultural aspects of areca nut use, Addict. Biol. 7 (2002) 147-154. https://doi.org/10.1080/135562101200100147.

[18]

M.A. Crocq, Alcohol, nicotine, caffeine, and mental disorders, Dialogues Clin. Neurosci. 5 (2003) 175-185. https://doi.org/10.31887/DCNS.2003.5.2/macrocq.

[19]

Y.T. Shih, P.S. Chen, C.H. Wu, et al., Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system, Free Radic. Biol. Med. 49 (2010) 1471-1479. https://doi.org/10.1016/j.freeradbiomed.2010.07.017.

[20]

N. Serikuly, E.T. Alpyshov, D. Wang, et al., Effects of acute and chronic arecoline in adult zebrafish: anxiolytic-like activity, elevated brain monoamines and the potential role of microglia, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 104 (2021) 109977. https://doi.org/10.1016/j.pnpbp.2020.109977.

[21]

L. Molinengo, M. Orsetti, B. Pastorello, et al., The action of arecoline on retrieval and memory storage evaluated in the staircase maze, Neurobiol. Learn. Mem. 63 (1995) 167-173. https://doi.org/https://doi.org/10.1006/nlme.1995.1017.

[22]

P.N. Tariot, R.M. Cohen, J.A. Welkowitz, et al., Multiple-dose arecoline infusions in Alzheimer’s disease, Arch. Gen. Psychiatry 45 (1988) 901-905. https://doi.org/10.1001/archpsyc.1988.01800340023003.

[23]

R.K. Gupta, J. Kuznicki, Biological and medical importance of cellular heterogeneity deciphered by single-cell RNA sequencing, Cells 9 (2020) 1751. https://doi.org/10.3390/cells9081751.

[24]

B.B. Lake, R. Ai, G.E. Kaeser, et al., Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain, Science 352 (2016) 1586-1590. https://doi.org/10.1126/science.aaf1204.

[25]

A.J. Riveros, W. Gronenberg, Olfactory learning and memory in the bumblebee Bombus occidentalis, Naturwissenschaften 96 (2009) 851-856. https://doi.org/10.1007/s00114-009-0532-y.

[26]

H. Siviter, F. Muth, Exposure to the novel insecticide flupyradifurone impairs bumblebee feeding motivation, learning, and memory retention, Environ. Pollut. 307 (2022) 119575. https://doi.org/10.1016/j.envpol.2022.119575.

[27]

O.J. Loukola, C. Solvi, L. Coscos, et al., Bumblebees show cognitive flexibility by improving on an observed complex behavior, Science 355 (2017) 833-836. https://doi.org/10.1126/science.aag2360.

[28]

D.B. Smith, G. Bernhardt, N.E. Raine, et al., Exploring miniature insect brains using micro-CT scanning techniques, Sci Rep. 6 (2016) 21768. https://doi.org/10.1038/srep21768.

[29]

A.K. Gupta, S. Tulsyan, N. Thakur, et al., Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration, Regul. Toxicol. Pharmacol. 110 (2020) 104548. https://doi.org/10.1016/j.yrtph.2019.104548.

[30]

D.A. Stanley, K.E. Smith, N.E. Raine, Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide, Sci Rep. 5 (2015) 1-10. https://doi.org/10.1038/srep16508.

[31]
C.Y. Liu, T. Wu, F. Fan, et al., A portable and cost-effective microfluidic system for massively parallel single-cell transcriptome profiling, bioRxiv (2019) 818450. https://doi.org/10.1101/818450.
[32]

A. Dobin, C.A. Davis, F. Schlesinger, et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics. 29 (2013) 15-21. https://doi.org/10.1093/bioinformatics/bts635.

[33]

A. Tarasov, A.J. Vilella, E. Cuppen, et al., Sambamba: fast processing of NGS alignment formats, Bioinformatics. 31 (2015) 2032-2034. https://doi.org/10.1093/bioinformatics/btv098.

[34]

M.D. Young, S. Behjati, SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data, Gigascience. 9 (2020) giaa151. https://doi.org/10.1093/gigascience/giaa151.

[35]

K. Davie, J. Janssens, D. Koldere, et al., A single-cell transcriptome atlas of the aging Drosophila brain, Cell 174 (2018) 982-998. e920. https://doi.org/10.1016/j.cell.2018.05.057.

[36]

L. Sheng, E.J. Shields, J. Gospocic, et al., Social reprogramming in ants induces longevity-associated glia remodeling, Sci. Adv. 6 (2020) eaba9869. https://doi.org/10.1126/sciadv.aba9869.

[37]

Q. Li, M. Wang, P. Zhang, et al., A single-cell transcriptomic atlas tracking the neural basis of division of labour in an ant superorganism, Nat. Ecol. Evol. 6 (2022) 1191-1204. https://doi.org/10.1038/s41559-022-01784-1.

[38]

W. Zhang, L. Wang, Y. Zhao, et al., Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor, iScience 25 (2022) 104643. https://doi.org/10.1016/j.isci.2022.104643.

[39]

H. Kohno, T. Kubo, Genetics in the honey bee: achievements and prospects toward the functional analysis of molecular and neural mechanisms underlying social behaviors, Insects 10 (2019) 348. https://doi.org/10.3390/insects10100348.

[40]

N. Kraft, J. Spaethe, W. Rössler, et al., Neuronal plasticity in the mushroombody calyx of bumble bee workers during early adult development, Dev. Neurobiol. 79 (2019) 287-302. https://doi.org/10.1002/dneu.22678.

[41]

J. Harrison, H. Chen, E. Sattelle, et al., Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system of Drosophila melanogaster, Cell Tissue Res. 284 (1996) 269-278. https://doi.org/10.1007/s004410050587.

[42]

K. Khanna, M. Lavin, S. Jackson, et al., ATM, a central controller of cellular responses to DNA damage, Cell Death Differ. 8 (2001) 1052-1065. https://doi.org/10.1038/sj.cdd.4400874.

[43]

K. Kaneko, S. Suenami, T. Kubo, Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel ‘middle-type’ Kenyon cells, Zool. Lett. 2 (2016) 1-13. https://doi.org/10.1186/s40851-016-0051-6.

[44]

S. Suenami, S. Oya, H. Kohno, et al., Kenyon cell subtypes/populations in the honeybee mushroom bodies: possible function based on their gene expression profiles, differentiation, possible evolution, and application of genome editing, Front. Psychol. 9 (2018) 1717. https://doi.org/10.3389/fpsyg.2018.01717.

[45]

M.R. Picciotto, M.J. Higley, Y.S. Mineur, Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior, Neuron. 76 (2012) 116-129. https://doi.org/10.1016/j.neuron.2012.08.036.

[46]

S.C. Pandey, A. Roy, H. Zhang, The decreased phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein in the central amygdala acts as a molecular substrate for anxiety related to ethanol withdrawal in rats, Alcohol. Clin. Exp. Res. 27 (2003) 396-409. https://doi.org/10.1097/01.ALC.0000056616.81971.49.

[47]

K. Kurokawa, K. Mizuno, S. Ohkuma, Dopamine D1 receptor signaling system regulates ryanodine receptor expression in ethanol physical dependence, Alcohol. Clin. Exp. Res. 37 (2013) 771-783. https://doi.org/10.1111/acer.12036.

[48]

E.J. Nestler, Is there a common molecular pathway for addiction? Nat. Neurosci. 8 (2005) 1445-1449. https://doi.org/10.1038/nn1578.

[49]

I.F. King, M. Eddison, K.R. Kaun, et al., EGFR and FGFR pathways have distinct roles in Drosophila mushroom body development and ethanolinduced behavior, PLoS ONE 9 (2014) e87714. https://doi.org/10.1371/journal.pone.0087714.

[50]

Y. Zhao, C.V. Dayas, H. Aujla, et al., Activation of group Ⅱ metabotropic glutamate receptors attenuates both stress and cue-induced ethanol-seeking and modulates c-fos expression in the hippocampus and amygdala, J. Neurosci. 26 (2006) 9967-9974. https://doi.org/10.1523/JNEUROSCI.2384-06.2006.

[51]

D.W. Self, L.M. Genova, B.T. Hope, et al., Involvement of cAMPdependent protein kinase in the nucleus accumbens in cocaine selfadministration and relapse of cocaine-seeking behavior, J. Neurosci. 18 (1998) 1848-1859. https://doi.org/10.1523/JNEUROSCI.18-05-01848.1998.

[52]

L. Lu, J.W. Grimm, Y. Shaham, et al., Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats, J. Neurochem. 85 (2003) 1604-1613. https://doi.org/10.1046/j.1471-4159.2003.01824.x.

[53]

K. Wędzony, K. Markowicz-Kula, A. Chocyk, et al., The effect of ‘binge’ cocaine administration on the expression of cyclin-dependent kinase 5 and its activator p35 in various regions of rat brain, Brain Res. 1063 (2005) 195-200. https://doi.org/10.1016/j.brainres.2005.09.034.

[54]

J.A. Bibb, J. Chen, J.R. Taylor, et al., Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5, Nature. 410 (2001) 376-380. https://doi.org/10.1038/35066591.

[55]

D.N. Cao, R. Song, S.Z. Zhang, et al., Nucleus accumbens hyperpolarization-activated cyclic nucleotide-gated channels modulate methamphetamine self-administration in rats, Psychopharmacology. 233 (2016) 3017-3029. https://doi.org/10.1007/s00213-016-4349-z.

[56]

J.L. Cadet, C. Brannock, I.N. Krasnova, et al., Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence, Mol. Psychiatry. 22 (2017) 1196-1204. https://doi.org/10.1038/mp.2016.48.

[57]

D. Siegal, J. Erickson, H.E.E. Varoqui, et al., Brain vesicular acetylcholine transporter in human users of drugs of abuse, Synapse. 52 (2004) 223-232. https://doi.org/10.1002/syn.20020.

[58]

M. Shibasaki, K. Kurokawa, K. Mizuno, et al., Up-regulation of Cav1.2 subunit via facilitating trafficking induced by Vps34 on morphine-induced place preference in mice, Eur. J. Pharmacol. 651 (2011) 137-145. https://doi.org/10.1016/j.ejphar.2010.11.013.

[59]

A. Zelek-Molik, A. Bielawski, G. Kreiner, et al., Morphine-induced place preference affects mRNA expression of G protein α subunits in rat brain, Pharmacol. Rep. 64 (2012) 546-557. https://doi.org/10.1016/S1734-1140(12)70850-2.

[60]

N. Matus-Leibovitch, Z. Vogel, V. Ezra-Macabee, et al., Chronic morphine administration enhances the expression of Kv1. 5 and Kv1. 6 voltage-gated K+ channels in rat spinal cord, Mol. Brain Res. 40 (1996) 261-270. https://doi.org/10.1016/0169-328X(96)00054-X.

[61]

S. Hayashida, M. Katsura, F. Torigoe, et al., Increased expression of L-type high voltage-gated calcium channel α1 and α2/δ subunits in mouse brain after chronic nicotine administration, Mol. Brain Res. 135 (2005) 280-284. https://doi.org/10.1016/j.molbrainres.2004.11.002.

[62]

B.T. Hope, D. Nagarkar, S. Leonard, et al., Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers, J. Neurosci. 27 (2007) 1964-1972. https://doi.org/10.1523/JNEUROSCI.3661-06.2007.

[63]

E. Ziviani, G. Lippi, D. Bano, et al., Ryanodine receptor-2 upregulation and nicotine-mediated plasticity, EMBO J. 30 (2011) 194-204. https://doi.org/10.1038/emboj.2010.279.

[64]

W.A. Corrigall, K.M. Coen, K.L. Adamson, et al., Response of nicotine selfadministration in the rat to manipulations of mu-opioid and γ-aminobutyric acid receptors in the ventral tegmental area, Psychopharmacology 149 (2000) 107-114. https://doi.org/10.1007/s002139900355.

[65]

Y.S. Tsai, K.W. Lee, J.L. Huang, et al., Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells, J. Toxicol. 249 (2008) 230-237. https://doi.org/10.1016/j.tox.2008.05.007.

[66]

L. Pizzamiglio, E. Focchi, F. Antonucci, ATM protein kinase: old and new implications in neuronal pathways and brain circuitry, Cells 9 (2020). https://doi.org/10.3390/cells9091969.

[67]

R.H. Osborne, Insect neurotransmission: neurotransmitters and their receptors, Pharmacol. Ther. 69 (1996) 117-142. https://doi.org/10.1016/0163-7258(95)02054-3.

[68]

B. Shakya, Y.H. Siddique, Exploring the neurotoxicity and changes in life cycle parameters of Drosophila melanogaster exposed to arecoline, J. Basic Appl. Zool. 79 (2018) 1-11. https://doi.org/10.1186/s41936-018-0057-z.

[69]

K.C. Retz, C.K. Trimmer, M.J. Forster, et al., Motor responses of autoimmune NZB/B1NJ and C57BL/6NNia mice to arecoline and nicotine, Pharmacol Biochem Be. 28 (1987) 275-282. https://doi.org/10.1016/0091-3057(87)90225-5.

[70]

I.M. Traniello, S.A. Bukhari, P. Dibaeinia, et al., Single-cell dissection of aggression in honeybee colonies, Nat. Ecol. Evol. 7 (2023) 1232-1244. https://doi.org/10.1038/s41559-023-02090-0.

[71]

S.E. Fahrbach, Structure of the mushroom bodies of the insect brain, Annu. Rev. Entomol. 51 (2006) 209-232. https://doi.org/10.1146/annurev.ento.51.110104.150954.

[72]

D. Merlo, I. Cuchillo-Ibañez, R. Parlato, et al., DNA damage, neurodegeneration, and synaptic plasticity, Neural. Plast. 2016 (2016) 1206840. https://doi.org/10.1155/2016/1206840.

[73]

T. Lu, Y. Pan, S.Y. Kao, et al., Gene regulation and DNA damage in the ageing human brain, Nature. 429 (2004) 883-891. https://doi.org/10.1038/nature02661.

[74]

L. Pizzamiglio, E. Focchi, C. Cambria, et al., The DNA repair protein ATM as a target in autism spectrum disorder, JCI Insight 6 (2021). https://doi.org/10.1172/jci.insight.133654.

[75]

C. Ménard, M. Folacci, L. Brunello, et al., Multiple combinations of RDL subunits diversify the repertoire of GABA receptors in the honey bee parasite Varroa destructor, J. Biol. Chem. 293 (2018) 19012-19024. https://doi.org/10.1074/jbc.RA118.005365.

[76]

A.K. El Hassani, M. Dacher, M. Gauthier, et al., Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera), Pharmacol Biochem Be. 82 (2005) 30-39. https://doi.org/10.1016/j.pbb.2005.07.008.

[77]

G. Riedel, B. Platt, J. Micheau, Glutamate receptor function in learning and memory, Behav. Brain Res. 140 (2003) 1-47. https://doi.org/10.1016/S0166-4328(02)00272-3.

[78]

X.J. Liu, P. Zhong, C.Vickstrom, et al., PDE4 inhibition restores the balance between excitation and inhibition in VTA dopamine neurons disrupted by repeated in vivo cocaine exposure, Neuropsychopharmacology 42 (2017) 1991-1999. https://doi.org/10.1038/npp.2017.96.

[79]

E. Carrillo, L. Pacheco, D. Balleza, et al., K+-dependent selectivity and external Ca2+ block of Shab K+ channels, PLoS ONE 10 (2015) e0120431. https://doi.org/10.1371/journal.pone.0120431.

[80]

S. Suenami, S. Iino, T. Kubo, Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.), Biol. Open. 7 (2018) bio028191. https://doi.org/10.1242/bio.028191.

[81]

J.P. Pin, The two faces of glutamate, Nature. 394 (1998) 19-20. https://doi.org/10.1038/27771.

[82]

G.A. Czapski, Y. Zhao, W.J. Lukiw, et al., Acute systemic inflammatory response alters transcription profile of genes related to immune response and Ca2+ homeostasis in hippocampus; relevance to neurodegenerative disorders, Int. J. Mol. Sci. 21 (2020). https://doi.org/10.3390/ijms21217838.

[83]

S.C. Hopp, H.M. D’Angelo, S.E. Royer, et al., Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation, J. Neuroinflamm. 12 (2015) 56. https://doi.org/10.1186/s12974-015-0262-3.

[84]

J. Quevedo, M. Vianna, D. Daroit, et al., L-Type voltage-dependent calcium channel blocker nifedipine enhances memory retention when infused into the hippocampus, Neurobiol. Learn. Mem. 69 (1998) 320-325. https://doi.org/10.1006/nlme.1998.3822.

Food Science and Human Wellness
Article number: 9250167
Cite this article:
Liu H, Mu X, Fan R, et al. Arecoline causes cognitive impairment and potential addiction via disturbing Kenyon cells in bumblebee brain. Food Science and Human Wellness, 2025, 14(7): 9250167. https://doi.org/10.26599/FSHW.2024.9250167

427

Views

22

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 08 November 2023
Revised: 18 December 2023
Accepted: 31 January 2024
Published: 11 June 2025
© 2025 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return