Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polygonati Rhizoma, a functional food and a traditional Chinese medicine broadly used in China and several Southeast Asia countries, possesses effective health-promoting activities. Prepared from 3 plants in Polygonatum genus (Polygonatum kingianum, Polygonatum sibiricum, and Polygonatum cyrtonema), Polygonati Rhizoma has drawn increasing attention due to its remarkable immune-enhancing and metabolic regulatory activities in recent years. In this review, we summarized the updated research of chemical constituents and biological activities of Polygonati Rhizoma, especially the metabolic regulation, immunomodulatory effects, and anti-fatigue activities, aiming to provide a comprehensive understanding, broaden the usage and promote more in-depth exploration of Polygonati Rhizoma as a functional food.
Commission of China Flora, Flora of China, vol. 15. Beijing Science and Technology Publishing House, Beijing, 1978, pp. 64-78.
Commission of Chinese Materia Medica, Chinese Materia Medica, Vol. 8. Shanghai Science and Technology Publishing House, Shanghai, 1999, pp. 8142-8148.
Commission of Chinese Medicine Dictionary, Chinese Medicine Dictionary, (part Ⅱ) version 2. Shanghai Science and Technology Publishing House, Shanghai, 2006, pp. 2828-2829.
Commission of Chinese Pharmacopoeia, Pharmacopoeia of the People’s Republic of China, vol. 1. China Medico-Pharmaceutical Science & Technology Publishing House, Beijing, 2015, pp.288, 857, 864.
M.J. Ahn, C.Y. Kim, K.D. Yoon, et al., Steroidal saponins from the rhizomes of Polygonatum sibiricum, J. Nat. Prod. 69 (2006) 360-364. https://doi.org/10.1021/np050394d.
S.H. Baek, J.G. Lee, S.Y. Park, et al., Gas chromatographic determination of azetidine-2-carboxylic acid in rhizomes of Polygonatum sibiricum and Polygonatum odoratum, J. Food Compos. Anal. 25 (2012) 137-141. https://doi.org/10.1016/j.jfca.2011.09.005.
J. Chen, J.Z. Zhu, X.G. Li, et al., Botrytis cinerea causing gray mold of Polygonatum sibiricum (Huang Jing) in China, Crop. Prot. 140 (2021) 105424. https://doi.org/10.1016/j.cropro.2020.105424.
X.Y. Zhao, J. Li, Chemical constituents of the genus Polygonatum and their role in medicinal treatment, Nat. Prod. Commun. 10 (2015) 683-688. https://doi.org/10.1177/1934578X1501000439.
X. Cui, S. Wang, H. Cao, et al., A review: the bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides, Molecules 23 (2018) 1170. https://doi.org/10.3390/molecules23051170.
L. Liu, Q. Dong, X.T. Dong, et al., Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum, Carbohyd. Polym. 70 (2007) 304-309. https://doi.org/10.1016/j.carbpol.2007.04.012.
C.T. Horng, J. K. Huang, H.Y. Wang, et al., Antioxidant and antifatigue activities of Polygonatum alte-lobatum Hayata rhizomes in rats, Nutrients 6 (2014) 5327-5337. https://doi.org/10.3390/nu6115327.
S. Zhu, P. Liu, W. Wu, et al., Multi-constituents variation in medicinal crops processing: investigation of nine cycles of steam-sun drying as the processing method for the rhizome of Polygonatum cyrtonema, J. Pharm. Biomed Anal. 209 (2022) 114497. https://doi.org/10.1016/j.jpba.2021.114497.
X. Cheng, H. Ji, X. Cheng, et al., Characterization, classification, and authentication of Polygonatum sibiricum samples by volatile profiles and flavor properties, Molecules 27 (2022) 25. https://doi.org/10.3390/molecules27010025.
Y. He, Z. Chen, X. Nie, et al., Recent advances in polysaccharides from edible and medicinal Polygonati Rhizoma: from bench to market, Int. J. Biol. Macromol. 195 (2022) 102-116. https://doi.org/10.1016/j.ijbiomac.2021.12.010.
Y. Shi, D. Si, D. Chen, et al., Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives, Food Chem. 408 (2023) 135183. https://doi.org/10.1016/j.foodchem.2022.135183.
H.S. Kun, C.D. Jae, S.K. Sam, Isolation of adenosine from the rhizomes of Polygonatum sibidcum, Arch. Pharm. Res. 14 (1991) 193-194. https://doi.org/10.1007/BF02892028.
L.R. Sun, X. Li, S.X. Wang, Two new alkaloids from the rhizome of Polygonatum sibiricum, J. Asian Nat. Prod. Res. 7 (2005) 127-130. https://doi.org/10.1080/10286020310001625157.
H. Gong, X Gan, Y. Li, et al., Review on the genus Polygonatum polysaccharides: extraction, purification, structural characteristics and bioactivities, Int. J. Biol. Macromol. 229 (2023) 909-930. https://doi.org/10.1016/j.ijbiomac.2022.12.320.
H. Pei, L. Ma, Y. Cao, et al., Traditional Chinese medicine for Alzheimer’s disease and other cognitive impairment: a review, Am. J. Chin. Med. 48 (2020) 487-511. https://doi.org/10.1142/S0192415X20500251.
M. Gu, Y. Zhang, S.J. Fan, et al., Extracts of Rhizoma Polygonati odorati prevent high-fat diet-induced metabolic disorders in C57BL/6 Mice, PLoS ONE 8 (2013) 1-12. https://doi.org/10.1371/journal.pone.0081724.
B. Fan, G. Wei, X. Gan, et al., Study on the varied content of Polygonatum cyrtonema polysaccharides in the processing of steaming and shining for nine times based on HPLC-MS/MS and chemometrics, Microchem. J. 159 (2020) 105352. https://doi.org/10.1016/j.microc.2020.105352.
J. Zhang, Y. Z. Wang, M.Q. Yang, et al., Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy, Microchem. J. 160 (2021) 105662. https://doi.org/10.1016/j.microc.2020.105662.
J.B. Bai, J.C. Ge, W.J. Zhang, et al., Physicochemical, morpho-structural, and biological characterization of polysaccharides from three Polygonatum spp, RSC Adv. 11 (2021) 37952-37965. https://doi.org/10.1039/D1RA07214E.
J. Hu, H. Cheng, J. Xu, et al., Determination and analysis of monosaccharides in Polygonatum cyrtonema Hua polysaccharides from different areas by ultra-high-performance liquid chromatography quadrupole trap tandem mass spectrometry, J. Sep. Sci. 44 (2021) 3506-3515. https://doi.org/10.1002/jssc.202100263.
P. Zhao, X. Li, Y. Wang, et al., Comparative studies on characterization, saccharide mapping and antiglycation activity of polysaccharides from different Polygonatum ssp., J. Pharm. Biomed. Anal. 186 (2020) 113243. https://doi.org/10.1016/j.jpba.2020.113243.
F. Bertaud, A. Sundber, B. Holmbom, Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins, Carbohyd. Polym. 48 (2002) 319-324. https://doi.org/10.1016/S0144-8617(01)00249-1.
D. Liu, W. Tang, J. Y. Yin, et al., Monosaccharide composition analysis of polysaccharides from natural sources: hydrolysis condition and detection method development, Food Hydrocoll. 116 (2021) 106641.
D. Liu, W. Tang, C. Han, et al., Advances in Polygonatum sibiricum polysaccharides: extraction, purification, structure, biosynthesis, and bioactivity, Front. Nutr. 9 (2022) 1074671. https://doi.org/10.3389/fnut.2022.1074671.
X. Li, Q. Chen, G. Liu, et al., Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities, Int. J. Biol. Macromol. 190 (2021) 730-738. https://doi.org/10.1016/j.ijbiomac.2021.09.038.
K. Yelithao, U. Surayot, J.H. Lee, et al., RAW2647 cell activating glucomannans extracted from rhizome of Polygonatum sibiricum, Prev. Nutr. Food Sci. 21 (2016) 245-254. https://doi.org/10.3746/pnf.2016.21.3.245.
Y. Xu, Y. Ye, C. Liu, et al., Positive effects of steamed Polygonatum sibiricum polysaccharides including a glucofructan on fatty acids and intestinal microflora, Food Chem. 402 (2023) 134068. https://doi.org/10.1016/j.foodchem.2022.
J. Jin, J. Lao, R. Zhou, et al., Simultaneous identification and dynamic analysis of saccharides during steam processing of rhizomes of Polygonatum cyrtonema by HPLC-QTOF-MS/MS, Molecules 23 (2018) 2855. https://doi.org/10.3390/molecules23112855.
P. Zhao, X. Li, Y. Wang, et al., Characterisation and saccharide mapping of polysaccharides from four common Polygonatum spp., Carbohyd. Polym, 233 (2020) 115836. https://doi.org/10.1016/j.carbpol.2020.115836.
W.J. Wu, N.W. Huang, J.P. Huang, et al., Effects of the steaming process on the structural properties and immunological activities of polysaccharides from Polygonatum cyrtonema, J. Funct. Foods 88 (2022) 104866. https://doi.org/10.1016/j.jff.2021.104866.
Q. Li, J. Zeng, P. Gong, et al., Effect of steaming process on the structural characteristics and antioxidant activities of polysaccharides from Polygonatum sibiricum rhizomes, Glycoconjugate J. 38 (2021) 561-572. https://doi.org/10.1007/s10719-021-10013-z.
Z. Bian, C. Li, D. Peng, et al., Use of steaming process to improve biochemical activity of Polygonatum sibiricum polysaccharides against D-galactose-induced memory impairment in mice, Int. J. Mol. Sci. 23 (2022) 11220. https://doi.org/10.3390/ijms231911220.
W.X. Wang, X. Zhang, X.L.T. Dabu, et al., Analysis of chemical constituents from Polygonatum cyrtonema after “nine-steam-nine-bask” processing, Phytochem. Lett. 29 (2019) 35-40. https://doi.org/10.1016/j.phytol.2018.11.004.
Z. Chen, B. Zhu, Z. Chen, et al., Effects of steam on polysaccharides from Polygonatum cyrtonema based on saccharide mapping analysis and pharmacological activity assays, Chin. Med-UK 17 (2022) 97. https://doi.org/10.1186/s13020-022-00650-3.
C.Y. Hu, D.P. Xu, Y.M. Wu, et al., Triterpenoid saponins from the rhizome of Polygonatum sibiricum, J. Asian Nat. Prod. Res. 12 (2010) 801-808. https://doi.org/10.1080/10286020.2010.505562.
P. Zhao, C. Zhao, X. Li, et al., The genus Polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology, J. Ethnopharmacol. 214 (2018) 274-291. https://doi.org/10.1016/j.jep.2017.12.006.
S. Liu, S. T. Hu, Q.J. Jia, et al., Advances in chemical constituents and pharmacological effects of Polygonati Rhizoma, Natural Product Research and Development 33 (2021) 1783-1796. (in Chinese)
Z. Chen, J. Luo, M. Jia, et al., Polygonatum sibiricum saponin exerts beneficial hypoglycemic effects in type 2 diabetes mice by improving hepatic insulin resistance and glycogen synthesis-related proteins, Nutrients 14 (2022) 5222. https://doi.org/10.3390/nu14245222.
B. Liu, H. Peng, Q. Yao, et al., Bioinformatics analyses of the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities, Phytomedicine 16 (2009) 601-608. https://doi.org/10.1016/j.phymed.2008.12.010.
J.J. Ding, J.K. Bao, D.Y. Zhu, et al., Crystal structures of a novel anti-HIV mannose-binding lectin from Polygonatum cyrtonema Hua with unique ligand-binding property and super-structure, J. Struct. Biol. 171 (2010) 309-317. https://doi.org/10.1016/j.jsb.2010.05.009.
B. Liu, Y. Cheng, B. Zhang, et al., Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway, Cancer Lett. 275 (2009) 54-60. https://doi.org/10.1016/j.canlet.2008.09.042.
Y. Chen, K. Lu, J. Li, et al., Structure and function analysis of Polygonatum cyrtonema lectin by site-directed mutagenesis, Acta Biochim. Biophys. Sin. 49 (2017) 1099-1111. https://doi.org/10.1093/abbs/gmx116.
C.Y. Li, P. Luo, J.J. Liu, et al., Recombinant expression of Polygonatum cyrtonema lectin with anti-viral, apoptosis-inducing activities and preliminary crystallization, Process Biochem. 46 (2011) 533-542. https://doi.org/10.1016/j.procbio.2010.10.005.
L.S. Gan, J.J. Chen, M.F. Shi, et al., A new homoisoflavanone from the rhizomes of Polygonatum cyrtonema, Nat. Prod. Commun. 8 (2013) 597-598. https://doi.org/10.1177/1934578X1300800513.
X. Li, G. F. Lai, Y. F. Wang, et al., Study on the chemical constituents of Polygonatum kingianum (Ⅱ), Chinese Traditional and Herbal Drugs 39 (2008) 825-828. (in Chinese)
C. Tang, Y. Yu, P. Guo, et al., Chemical constituents of Polygonatum sibiricum, Chem. Nat. Comp. 55 (2019) 331-333. https://doi.org/10.1007/s10600-019-02681-z.
C. Mu, Y. Sheng, Q. Wang, et al., Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: viral and cancer signaling mechanisms, J. Funct. Foods 77 (2021) 104149. https://doi.org/10.1016/j.jff.2020.104149.
M. Luo, Z. Hu, Z. Zhong, et al., Chemical structures and pharmacological properties of typical bioflavonoids in Polygonati Rhizoma (PGR), J. Environ. Public Health 2022 (2022) 4649614. https://doi.org/10.1155/2022/4649614.
F. Wang, H. Chen, Y. Hu, et al., Integrated comparative metabolomics and network pharmacology approach to uncover the key active ingredients of Polygonati Rhizoma and their therapeutic potential for the treatment of Alzheimer’s disease, Front Pharmacol. 13 (2022) 934947. https://doi.org/10.3389/fphar.2022.934947.
Y.F. Wang, C.H. Lu, G.F. Lai, et al., A new indolizinone from Polygonatum kingianum, Planta Med. 69 (2003) 1066-1068. https://doi.org/10.1055/s-2003-45160.
K. Jo, H.J. Suh, H.S. Choi. Polygonatum sibiricum rhizome promotes sleep by regulating non-rapid eye movement and GABAergic/serotonergic receptors in rodent models, Biomed. Pharmacother. 105 (2018) 167-175. https://doi.org/10.1016/j.biopha.2018.05.115.
Z. Wang, J. Lao, X. Kang, et al., Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system, Front Nutr. 10 (2023) 1093761. https://doi.org/10.3389/fnut.2023.1093761.
H. Alkadi, A review on free radicals and antioxidants, Infect Disord. Drug Targets. 20 (2020) 16-26. https://doi.org/10.2174/1871526518666180628124323.
B. Akbari, N. Baghaei-Yazdi, M. Bahmaie, et al., The role of plant-derived natural antioxidants in reduction of oxidative stress, Biofactors 48 (2022) 611-633. https://doi.org/10.1002/biof.1831.
D. Challabathula, B. Analin, A. Mohanan, et al., Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport, J. Plant Physiol. 268 (2022) 153583. https://doi.org/10.1016/j.jplph.2021.153583.
H. Zhang, F. Hao, Z. Yao, et al., Efficient extraction of flavonoids from Polygonatum sibiricum using a deep eutectic solvent as a green extraction solvent, Microchem. J. 175 (2022) 107168. https://doi.org/10.1016/j.microc.2021.107168.
J. P. Lu, J. Zhang, Y. Z. Zhang, The function activities and application of Polygonatum sibiricum polysaccharides, Journal of Food Safety and Quality 4 (2013) 273-278. https://doi.org/CNKI:SUN:SPAJ.0.2013-01-044.(inChinese)
S. Wang, G. Li, X. Zhang, et al., Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides, Carbohyd. Polym. 291 (2022) 119524. https://doi.org/10.1016/j.carbpol.2022.119524.
J. Yang, S. Wu, X. Huang, et al., Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of Polygonatum sibiricum in rabbit model and related cellular mechanisms, Evid. Based Complement. Alternat. Med. 2015 (2015) 391065. https://doi.org/10.1155/2015/391065.
C. Sun, G. Wang, J. Sun, et al., A new method of extracting Polygonatum sibiricum polysaccharide with antioxidant function: ultrasound-assisted extraction-deep eutectic solvents method, Foods 12 (2023) 3438. https://doi.org/10.3390/foods12183438.
H. Teng, Y. Zhang, C. Jin, et al., Polysaccharides from steam-processed Polygonatum cyrtonema Hua protect against D-galactose-induced oxidative damage in mice by activation of Nrf2/HO-1 signaling, J. Sci. Food Agric. 103 (2023) 779-791. https://doi.org/10.1002/jsfa.12189.
J. Li, X. Wang, R. Zhou, et al., Polygonatum cyrtonema Hua polysaccharides protect BV2 microglia relief oxidative stress and ferroptosis by regulating NRF2/HO-1 pathway, Molecules 27 (2022) 7088. https://doi.org/10.3390/molecules27207088.
Y. Cheng, X. Huang, L. Li, et al., Effects of solid fermentation on Polygonatum cyrtonema polysaccharides: isolation, characterization and bioactivities, Molecules 28 (2023) 5498. https://doi.org/10.3390/molecules28145498.
W. Ma, S. Wei, W. Peng, et al., Antioxidant effect of Polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice, BioMed Res. Int. 2021 (2021) 6688855. https://doi.org/10.1155/2021/6688855.
S. Zheng, Protective effect of Polygonatum sibiricum polysaccharide on D-galactose-induced aging rats model, Sci. Rep. 10 (2020) 2246. https://doi.org/10.1038/s41598-020-59055-7.
Y. Luan, Y. Jiang, R. Huang, et al., Polygonati Rhizoma polysaccharide prolongs lifespan and healthspan in Caenorhabditis elegans, Molecules 28 (2023) 2235. https://doi.org/10.3390/molecules28052235.
N. Liu, Z.H. Dong, X.S. Zhu, et al., Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in BALB/c mice, Int. J. Biol. Macromol. 107 (2018) 796-802. https://doi.org/10.1016/j.ijbiomac.2017.09.051.
Z. Chen, J. Liu, X. Kong, et al., Characterization and immunological activities of polysaccharides from Polygonatum sibiricum, Biol. Pharm. Bull. 43 (2020) 959-967. https://doi.org/10.1248/bpb.b19-00978.
G. Shu, D. Xu, J. Zhao, et al., Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens, Res. Vet. Sci. 135 (2021) 96-105. https://doi.org/10.1016/j.rvsc.2020.12.025.
Y.F. Xian, Z.X. Lin, X.Y. Xu, et al., Effect of Rhizoma polygonati on 12-O-tetradecanoylphorbol-acetate-induced ear edema in mice, J. Ethnopharmacol. 142 (2012) 851-856. https://doi.org/10.1016/j.jep.2012.06.013.
C. Li, J. Li, Y. Shang, et al., Hypoglycemic and hypolipidemic activity of Polygonatum sibiricum fermented with Lactobacillus brevis YM 1301 in diabetic C57BL/6 mice, J. Med. Food 24 (2021) 720-731. https://doi.org/10.1089/jmf.2021.K.0034.
J. Cai, Y. Zhu, Y. Zuo, et al., Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high glucose and high insulin induced 3T3L1 adipocytes by promoting Nrf2 expression, Mol. Med. Rep. 20 (2019) 3951-3958. https://doi.org/10.3892/mmr.2019.10626.
L. He, B. Yan, C. Yao, et al., Oligosaccharides from Polygonatum cyrtonema Hua: structural characterization and treatment of LPS-induced peritonitis in mice, Carbohyd. Polym. 255 (2020) 117392. https://doi.org/10.1016/j.carbpol.2020.117392.
P. Zhao, H. Zhou, C. Zhao, et al., Purification, characterization and immunomodulatory activity of fructans from Polygonatum odoratum and P. cyrtonema, Carbohyd. Polym. 214 (2019) 44-52. https://doi.org/10.1016/j.carbpol.2019.03.014.
J. Zhang, N. Liu, C. Sun, et al., Polysaccharides from Polygonatum sibiricum Delar. ex Redoute induce an immune response in the RAW 264.7 cell line via an NF-κB/MAPK pathway, RSC Adv. 9 (2019) 17988-17994. https://doi.org/10.1039/c9ra03023a.
H. Ni, S. Xu, P. Gu, et al., Optimization of preparation conditions for CTAB-modified Polygonatum sibiricum polysaccharide cubosomes using the response surface methodology and their effects on splenic lymphocytes, Int. J. Pharmaceut. 559 (2019) 410-419. https://doi.org/10.1016/j.ijpharm.2019.01.060.
A. Konstantinidi, R. Nason, T. Čaval, et al., Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells, J. Biol. Chem. 298 (2022) 101784. https://doi.org/10.1016/j.jbc.2022.101784.
X. Li, F. Jin, H.J. Lee, et al., Kaempferol regulates the expression of airway MUC5AC Mucin gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 signaling pathways, Biomol. Ther. 29 (2020) 303-310. https://doi.org/10.4062/biomolther.2020.149.
L. Su., X. Li, Z. Guo, et al., Effects of different steaming times on the composition, structure and immune activity of Polygonatum polysaccharide, J. Ethnopharmacol. 310 (2023) 116351. https://doi.org/10.1016/j.jep.2023.116351.
J.H. Ko, H.S. Kwon, J. M. Yoon, et al., Effects of Polygonatum sibiricum rhizome ethanol extract in high-fat diet-fed mice, Pharm. Biol. 53 (2015) 563-570. https://doi.org/10.3109/13880209.2014.932393.
B. Liu, Y. Tang, Z. Song, et al., Polygonatum sibiricum F. Delaroche polysaccharide ameliorates HFD-induced mouse obesity via regulation of lipid metabolism and inflammatory response, Mol. Med. Rep. 24 (2021) 501. https://doi.org/10.3892/mmr.2021.12140.
J. Dong, W. Gu, X. Yang, et al., Crosstalk between Polygonatum kingianum, the miRNA, and gut microbiota in the regulation of lipid metabolism, Front. Pharmacol. 12 (2021) 740528. https://doi.org/10.3389/fphar.2021.740528.
L.Z. Yu, X.P. Zhang, Y.X. Wang, Polygonatum sibiricum extract exerts inhibitory effect on diabetes in a rat model, Trop. J. Pharm. Res. 18 (2021) 1493-1497. https://doi.org/10.4314/tjpr.v18i7.19.
H. Yan, J. Lu, Y. Wang, et al., Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats, Phytomedicine 26 (2017) 45-54. https://doi.org/10.1016/j.phymed.2017.01.007.
J. Luo, Y. Chai, M. Zhao, et al., Hypoglycemic effects and modulation of gut microbiota of diabetic mice by saponin from Polygonatum sibiricum, Food Funct. 11 (2020) 4327-4338. https://doi.org/10.1039/d0fo00428f.
Y. Chai, J. Luo, Y. Bao, Effects of Polygonatum sibiricum saponin on hyperglycemia, gut microbiota composition and metabolic profiles in type 2 diabetes mice, Biomed. Pharmacother. 143 (2021) 112155. https://doi.org/10.1016/j.biopha.2021.112155.
J. Lu, Y. Wang, H. Yan, et al., Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced diabetic rats, J. Ethnopharmacol. 179 (2016) 291-300. https://doi.org/10.1016/j.jep.2015.12.057.
J. Wang, C.S. Lu, D.Y. Liu, et al., Constituents from Polygonatum sibiricum and their inhibitions on the formation of advanced glycosylation end products, J. Asian Nat. Prod. Res. 18 (2016) 697-704. https://doi.org/10.1080/10286020.2015.1135905.
L. Zhai, X. Wang, Syringaresinol-di-O-β-D-glucoside, a phenolic compound from Polygonatum sibiricum, exhibits an antidiabetic and antioxidative effect on a streptozotocin-induced mouse model of diabetes, Mol. Med. Rep. 18 (2018) 5511-5519. https://doi.org/10.3892/mmr.2018.9580.
J.O. Kim, K.S. Kim, G.D. Lee, et al., Antihyperglycemic and antioxidative effects of new herbal formula in streptozotocin-induced diabetic rats, J. Med. Food 12 (2009) 728-735. https://doi.org/10.1089/jmf.2008.1195.
Y. P. Mao, Y.M. Song, S.W. Pan, et al., Effect of Codonopsis Radix and Polygonati Rhizoma on the regulation of the IRS1/PI3K/AKT signaling pathway in type 2 diabetic mice, Front. Endocrinol (Lausanne). 13 (2022) 1068555. https://doi.org/10.3389/fendo.2022.1068555.
B. Liu, J.M. Wu, J. Li, et al., Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-AKT signaling pathways, Biochimie 92 (2010) 1934-1938. https://doi.org/10.1016/j.biochi.2010.08.009.
Z.T. Zhang, H. Peng, C.Y. Li, et al., Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis via a caspase-dependent pathway as compared to Ophiopogon japonicus lectin, Phytomedicine 18 (2010) 25-31. https://doi.org/10.1016/j.phymed.2010.05.013.
S. Y. Wang, Q. J. Yu, J. K. Bao, Polygonatum cyrtonema lectin: a potential antineoplastic drug targeting programmed cell death pathways, Biochem. Bioph. Res. Co. 406 (2011) 497-500. https://doi.org/10.1016/j.bbrc.2011.02.049.
T. Liu, L. Wu, D. Wang, et al., Role of reactive oxygen species-mediated MAPK and NF-κB activation in Polygonatum cyrtonema lectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells, J. Biochem. 160 (2016) 315-324. https://doi.org/10.1093/jb/mvw040.
T. Long, Z. Liu, J. Shang, et al., Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways, Int. J. Biol. Macromol. 111 (2018) 813-821. https://doi.org/10.1016/j.ijbiomac.2018.01.070.
Y. Xie, Z. Jiang, R. Yang R, et al., Polysaccharide-rich extract from Polygonatum sibiricum protects hematopoiesis in bone marrow suppressed by triple negative breast cancer, Biomed. Pharmacother. 137 (2021) 111338. https://doi.org/10.1016/j.biopha.2021.111338.
D. Zhou, X. Li, W. Chang, et al., Antiproliferative steroidal glycosides from rhizomes of Polygonatum sibiricum, Phytochemistry 164 (2019) 172-183. https://doi.org/10.1016/j.phytochem.2019.05.013.
X. Zhang, L. Ni, S. Hu, et al., Polygonatum sibiricum ameliorated cognitive impairment of naturally aging rats through BDNF-TrkB signaling pathway, J. Food Biochem. 2022 (2022) e14510. https://doi.org/10.1111/jfbc.14510.
J. Cai, Y. Tian, R. Lin, et al., Protective effects of kidney-tonifying Chinese herbal preparation on substantia nigra neurons in a mouse model of Parkinson’s disease, Neural. Regen. Res. 7 (2012) 413-420. https://doi.org/10.3969/j.issn.1673-5374.2012.06.002.
S. Ye, K. H. Kee, F. Wen, et al., Effect of a traditional Chinese herbal medicine formulation on cell survival and apoptosis of MPP+-treated MES 23.5 dopaminergic cells, Parkinsons Dis. 2017 (2017) 4764212. https://doi.org/10.1155/2017/4764212.
S. Huang, H. Yuan, W. Li, et al., Polygonatum sibiricum polysaccharides protect against MPP-induced neurotoxicity via the Akt/mTOR and Nrf2 pathways, Oxid Med. Cell Longev. 2021 (2021) 8843899. https://doi.org/10.1155/2021/8843899.
H.X. Zhang, Y.Z. Cao, L.X. Chen, et al., A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells, Carbohydr. Polym. 117 (2015) 879-886. https://doi.org/10.1016/j.carbpol.2014.10.034.
F. Zhang, J. Zhang, L. Wang, et al., Effects of Polygonatum sibiricum polysaccharide on learning and memory in a scopolamine-induced mouse model of dementia, Neural. Regen. Res. 3 (2008) 33-36. https://doi.org/10.1016/j.phymed.2010.05.013.
A. D. Drozdov, J. D. Christianse, Self-recovery, fatigue and anti-fatigue of supramolecular elastomers, Int. J. Fatigue 134 (2020) 105496. https://doi.org/10.13052/jsame2245-4551.2018016.
Z. F. Wang, Y. Q. Hu, Q.G. Wu, Virtual screening of potential anti-fatigue mechanism of Polygonati Rhizoma based on network pharmacology, Comb. Chem. High T. Scr. 22 (2019) 612-624. https://doi.org/10.2174/1386207322666191106110615.
N. Hirai, T. Miura, M. Moriyasu, Cardiotonic activity of the rhizome of Polygonatum sibiricum in rats, Biol. Pharm. Bull. 20 (1997) 1271-1273. https://doi.org/10.1248/bpb.20.1271.
F. Z. Shen, P. Song, L. Xie, et al., Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage, J. Ethnopharmacol. 275 (2021) 114164. https://doi.org/10.1016/j.jep.2021.114164.
Y.Q. Yang, Y.Q. Li, L.P. Yu, et al., Muscle fatigue-alleviating effects of a prescription composed of Polygonati Rhizoma and Notoginseng radix et rhizoma, BioMed Res. Int. 2020 (2020) 3963045. https://doi.org/10.1155/2020/3963045.
F. Liu, Y. Liu, Y. Meng, et al., Structure of polysaccharide from Polygonatum cyrtonema Hua and the antiherpetic activity of its hydrolyzed fragments, Antivir. Res. 63 (2004) 183-189. https://doi.org/10.1016/j.antiviral.2004.04.006.
X.X. Liu, Z.J. Wan, S. Lin, et al., Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua, Carbohyd. Polym. 83 (2011) 737-742. https://doi.org/10.1016/j.carbpol.2010.08.044.
J. An, J.Z. Liu, C.F.A. Wu, et al., Anti-HIV Ⅰ/Ⅱ activity and molecular cloning of a novel mannose/sialic acidbinding lectin from rhizome of Polygonatum cyrtonema Hua, Acta Biochim. Biophys. Sin. 38 (2006) 70-78. https://doi.org/10.1111/j.1745-7270.2006.00140.x.
M. Yang, F. Meng, W. Gu, et al., Influence of polysaccharides from Polygonatum kingianum on short-chain fatty acid production and quorum sensing in Lactobacillus faecis, Front. Microbiol. 12 (2021) 758870. https://doi.org/10.3389/fmicb.2021.758870.
J. Zhang, H. Chen, L. Luo, et al., Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria, Carbohyd. Polym. 267 (2021) 118219. https://doi.org/10.1016/j.carbpol.2021.118219.
P. Pietschmann, M. Rauner, W. Sipos, et al., Osteoporosis: an age-related and gender-specific disease-a mini review, Gerontology 55 (2009) 3-12. https://doi.org/10.1159/000166209.
J. Liu, T. Li, H. Chen, et al., Structural characterization and osteogenic activity in vitro of novel polysaccharides from the rhizome of Polygonatum sibiricum, Food Funct. 12 (2021) 6626-6636. https://doi.org/10.1039/d1fo00938a.
G. F. Zeng, Z.Y. Zhang, L. Lu, et al., Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy-induced bone loss in rats, J. Ethnopharmacol. 136 (2011) 224-229. https://doi.org/10.1016/j.jep.2011.04.049.
L. Du, M.N. Nong, J.M. Zhao, et al., Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β -catenin signalling pathway, Sci. Rep 6 (2016) 32261. https://doi.org/10.1038/srep32261.
X.M. Peng, J.C. He, J.M. Zhao, et al., Polygonatum sibiricum polysaccharide promotes osteoblastic differentiation through the ERK/GSK-3β/β-catenin signaling pathway in vitro, Rejuv. Res. 21 (2017) 44-52. https://doi.org/10.1089/rej.2017.1956.
B. Li, P. Wu, W. Fu, et al., The role and mechanism of miRNA-1224 in the Polygonatum sibiricum polysaccharide regulation of bone marrow-derived macrophages to osteoclast differentiation, Rejuv. Res. 22 (2019) 420-430. https://doi.org/10.1089/rej.2018.2126.
X. Zhu, W. Wu, X. Chen, et al., Protective effects of Polygonatum sibiricum polysaccharide on acute heart failure in rats, Acta Cir. Bras. 33 (2018) 868-878. https://doi.org/10.1590/s0102-865020180100000001.
G. Wang, Y. Fu, J. Li, et al., Aqueous extract of Polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the Nrf2/ARE pathway, J. Food Biochem. 45 (2021) e13537. https://doi.org/10.1111/jfbc.13537.
L. Xiao, L. Qi, G. Zhang, et al., Polygonatum sibiricum polysaccharides attenuate lipopoly-saccharide-induced septic liver injury by suppression of pyroptosis via NLRP3/GSDMD signals, Molecules 27 (2022) 5999. https://doi.org/10.3390/molecules27185999.
X.X. Yang, X. Wang, T.T. Shi, et al., Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: the alleviating effect and its mechanism of Polygonatum kingianum, Biomed Pharmacother. 117 (2019) 109083. https://doi.org/10.1016/j.biopha.2019.109083.
T. Wang, Y. Li, L. Yu, et al., Compatibility of Polygonati Rhizoma and Angelicae Sinensis Radix enhance the alleviation of metabolic dysfunction-associated fatty liver disease by promoting fatty acid β-oxidation, Biomed Pharmacother. 162 (2023) 114584. https://doi.org/10.1016/j.biopha.2023.114584.
W. Li, L. Yu, B. Fu, et al., Protective effects of Polygonatum kingianum polysaccharides and aqueous extract on uranium-induced toxicity in human kidney (HK-2) cells, Int. J. Biol. Macromol. 202 (2022) 68-79. https://doi.org/10.1016/j.ijbiomac.2022.01.043.
H. Liu, W. Sun, L. B. Gu, et al., Huaiqihuang Granules (槐杞黄颗粒) reduce proteinuria by enhancing nephrin expression and regulating necrosis factor κB signaling pathway in adriamycin-induced nephropathy, Chin. J. Integr. Med. 23 (2017) 279-287. https://doi.org/10.1007/s11655-015-2293-0.
C. Han, Y. Zhu, Z. Yang, et al., Protective effect of Polygonatum sibiricum against cadmium-induced testicular injury in mice through inhibiting oxidative stress and mitochondria-mediated apoptosis, J. Ethnopharmacol. 261 (2020) 113060. https://doi.org/10.1016/j.jep.2020.113060.
P.Y. Qin, Y.J. Xu, X.D. Zuo, et al., Effect and mechanisms of Polygonatum kingianum (Polygonati Rhizome) on wound healing in diabetic rats, J. Ethnopharmacol. 298 (2022) 115612. https://doi.org/10.1016/j.jep.2022.115612.
X. Y. Tang, J. Xie, Y. Qin, et al., Proteomic analysis reveals that Polygonatum cyrtonema Hua polysaccharide ameliorates mice muscle atrophy in chemotherapy-induced cachexia, J. Pharm. Biomed Anal. 234 (2023) 115533. https://doi.org/10.1016/j.jpba.2023.115533.
J. Wang, F. Wang, L. Yuan, et al., Blood-enriching effects and immune-regulation mechanism of steam-processed Polygonatum sibiricum polysaccharide in blood deficiency syndrome mice, Front. Immunol. 13 (2022) 813676. https://doi.org/10.3389/fimmu.2022.813676.
T.Y. Liu, L.L. Zhao, S.B. Chen, et al., Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-κB pathway, Exp. Ther. Med. 20 (2020) 3733-3739. https://doi.org/10.3892/etm.2020.9097.
Q. Gan, X. Wang, M. Cao, et al., NF-κB and AMPK-Nrf2 pathways support the protective effect of polysaccharides from Polygonatum cyrtonema Hua in lipopolysaccharide-induced acute lung injury, J. Ethnopharmacol. 291 (2022) 115153. https://doi.org/10.1016/j.jep.2022.115153.
F. Shen, P. Xie, C. Li, et al., Polysaccharides from Polygonatum cyrtonema Hua reduce depression-like behavior in mice by inhibiting oxidative stress-calpain-1-NLRP3 signaling axis, Oxid. Med. Cell Longev. 2022 (2022) 2566917. https://doi.org/10.1155/2022/2566917.
D. Liao, R. An, J. Wei, et al., Transcriptome profiles revealed molecular mechanisms of alternating temperatures in breaking the epicotyl morphophysiological dormancy of Polygonatum sibiricum seeds, BMC Plant Biol. 21 (2021) 370. https://doi.org/10.1186/s12870-021-03147-7.
S. Liu, Q. J. Jia, Y.Q. Peng, et al. Advances in mechanism research on polygonatum in prevention and treatment of diabetes, Front. Pharmacol. 13 (2022) 758501. https://doi.org/10.3389/fphar.2022.758501.
Y. Wang, S. Qin, G. Pen, et al., Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozoc-ininduced diabetic rats’ model, Exp. Biol. Med. 242 (2017) 92-101. https://doi.org/10.1177/1535370216663866.
L. Zhao, W. Xu, W. Zhou, et al., Polygonati Rhizoma with the homology of medicine and food: a review of ethnopharmacology, botany, phytochemistry, pharmacology and applications, J. Ethnopharmacol. 309 (2023) 116296. https://doi.org/10.1016/j.jep.2023.116296.
L. Zeng, F. Zhong, Z. Chen, et al., Polygonatum sibiricum polysaccharides protect against obesity and non-alcoholic fatty liver disease in rats fed a high-fat diet, Food Sci. Hum. Wellness 11 (2022) 1045-1052. https://doi.org/10.1016/j.fshw.2022.03.031.
A. Guo, X. Li, L. Pan, et al., The interventional effect of Polygonatum cyrtonema Hua polysaccharide on atherosclerosis in mice of different sexes, Food Sci. Hum. Wellness 13 (2024) 370-380. https://doi.org/10.26599/FSHW.2022.9250031.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).