AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Enhanced protective effect of selenium-biofortified peptide RYNA(Se)MNDYT compared with its native peptide RYNAMNDYT in lipopolysaccharide-injured murine gut microbiota

Shujian Wua,bZhenjun ZhubMengfei Chena,bAohuan Huanga,bYizhen XiecJiaming ChencLiang XueaMoutong ChenaJumei ZhangaJuan WangdQingping Wua( )Yu Dingb( )
Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510530, China
College of Food Science, South China Agricultural University, Guangzhou 510070, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Se-containing peptide RYNA(Se)MNDYT exhibited a superior protection effect on LPS-injured mice than its original peptide RYNAMNDYT.

• The bioactivity of RYNAMNDYT was enhanced by organic combination with Se.

• Se-containing peptide RYNA(Se)MNDYT exerted bioactivities through the microbiota-metabolite axis.

Graphical Abstract

Abstract

Selenopeptides may be a valuable bioactive compound to promote gut microbiota-targeted therapeutic methods for intestinal disease and hepatopathy. However, limited information is available on the utilization of selenopeptides by gut microbiota, especially Selenium (Se) function. For this purpose, the present study aimed to investigate the protective effect of selenopeptide (RYNA(Se)MNDYT, Se-P2, purity of ≥ 95%) and its original peptide (RYNAMNDYT, P2, purity of ≥ 95%) in vivo by the microbiota-metabolite axis and further analyze the potential contribution of Se biofortification to Se-P2 bioactivity. The results showed that Se-P2 exhibits a higher protective effect on lipopolysaccharide (LPS)-induced inflammation than P2, including pathology of the colon and liver, which suggested that the bioactivity of P2 was promoted by the organic combination of Se. Notably, gut microbiota composition tended to be a healthy structure by Se-P2 pretreatment in LPS-injured mice, which had a positive effect on LPS-induced gut microbiota dysbacteriosis. Additionally, only Se-P2 promoted an increase in the relative abundance of Lactobacillus, Alistipes, and Roseburia and a decrease in the relative abundance of Akkermansia, Erysipelatoclostridium, and Bacteroides in LPS-injured mice. The changes in gut microbiota were obviously correlated with the changes in metabolites and affected the metabolic pathways of valine, leucine, isoleucine, phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism. This may be one of the key reasons for Se-P2 to exert bioactivity through the microbiota-metabolite axis. Furthermore, Se-biofortification in Se-enriched Cordyceps militaris affected the parental proteins of Se-P2 to modulate mitogen-activated protein kinase, GPI anchored protein, and carbohydrate metabolism, translation, folding, sorting and degradation, which may contribute to the bioactivity of Se-P2. Our study provides information on the effect of Se on selenopeptides in vivo, which further promotes the prospective applications of selenopeptides as dietary supplements.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3391_ESM.docx (391.7 KB)

References

[1]

A.N. Ananthakrishnan, G.G. Kaplan, C.N. Bernstein, Lifestyle, behaviour, and environmental modification for the management of patients with inflammatory bowel diseases: an international organization for study of inflammatory bowel diseases consensus, The Lancet Gastroenterol. Hepatol. 7(7) (2022) 666-678. https://doi.org/10.1016/S2468-1253(22)00021-8.

[2]

J.V. Lazarus, M. Ekstedt, G. Marchesini, et al., A cross-sectional study of the public health response to non-alcoholic fatty liver disease in Europe, J. Hepatol. 72(1) (2020) 14-24. https://doi.org/10.1016/j.jhep.2019.08.027.

[3]

X. Zhang, H. He, J. Xiang, et al., Selenium-containing soybean antioxidant peptides: preparation and comprehensive comparison of different selenium supplements, Food Chem. 358(2021) 129888. https://doi.org/10.1016/j.foodchem.2021.129888.

[4]

J. Wu, P. Li, Y. Shi, et al., Neuroprotective effects of two selenium-containing peptides, TSEMMM and SEMDPGQQ, derived from selenium-enriched rice protein hydrolysates on pb2+-induced oxidative stress in HT22 cells, Food Chem. Toxicol. 135(2020) 110932. https://doi.org/10.1016/j.fct.2019.110932.

[5]

S. Wu, Q. Wu, J. Wang, et al., Novel selenium peptides obtained from selenium-enriched Cordyceps militaris alleviate neuroinflammation and gut microbiota dysbacteriosis in LPS-injured mice, J. Agric. Food Chem. 70(10) (2022) 3194-3206. https://doi.org/10.1021/acs.jafc.1c08393.

[6]

S. Zhu, W. Yang, Y. Lin, et al., Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine violifolia protein hydrolysate, J. Funct. Food 79(2021) 104412. https://doi.org/10.1016/j.jff.2021.104412.

[7]

W. Liao, R. Zhang, C. Dong, et al., Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity, Int. J. Nanomed. 11(2016) 1305-1321. https://doi.org/10.2147/IJN.S92257.

[8]

M. Zhang, D. Zhao, G. Zhou, et al., Dietary pattern, gut microbiota, and Alzheimer’s disease, J. Agric. Food Chem. 68(46) (2020) 12800-12809. https://doi.org/10.1021/acs.jafc.9b08309.

[9]

S. Wu, A.E.A. Bekhit, Q. Wu, et al., Bioactive peptides and gut microbiota: candidates for a novel strategy for reduction and control of neurodegenerative diseases, Trends Food Sci. Technol. 108(2021) 164-176. https://doi.org/10.1016/j.tifs.2020.12.019.

[10]

M. Xie, X. Sun, P. Li, et al., Selenium in cereals: insight into species of the element from total amount, Compr. Rev. Food. Sci. Food Saf. 20(3) (2021) 2914-2940. https://doi.org/10.1111/1541-4337.12748.

[11]

A. Hossain, M. Skalicky, M. Brestic, et al., Selenium biofortification: roles, mechanisms, responses and prospects, Molecules 26(4) (2021) 881. https://doi.org/10.3390/molecules26040881.

[12]

X. Zhang, H. He, J. Xiang, et al., Selenium-containing proteins/peptides from plants: a review on the structures and functions, J. Agric. Food Chem. 68(51) (2020) 15061-15073. https://doi.org/10.1021/acs.jafc.0c05594.

[13]

M. Puccinelli, F. Malorgio, I. Rosellini, et al., Production of selenium-biofortified microgreens from selenium-enriched seeds of basil, J. Sci. Food Agric. 99(12) (2019) 5601-5605. https://doi.org/10.1002/jsfa.9826.

[14]

T. Hu, Y. Liang, G. Zhao, et al., Selenium biofortification and antioxidant activity in Cordyceps militaris supplied with selenate, selenite, or selenomethionine, Biol. Trace Elem. Res. 187(2) (2019) 553-561. https://doi.org/10.1007/s12011-018-1386-y.

[15]

L. Wang, Q. Huang, Y. Huang, et al., Comparison of protective effect of ordinary Cordyceps militaris and selenium-enriched Cordyceps militaris on triptolide-induced acute hepatotoxicity and the potential mechanisms, J. Funct. Food 46(2018) 365-377. https://doi.org/10.1016/j.jff.2018.05.016.

[16]

S. Wu, M. Chen, X. Liao, et al., Protein hydrolysates from Pleurotus geesteranus obtained by simulated gastrointestinal digestion exhibit neuroprotective effects in H2O2-injured pc12 cells, J. Food Biochem. 46(4) (2022) e13879. https://doi.org/10.1111/jfbc.13879.

[17]

J.R. Wi Niewski, M. Mann, A. Zougman, et al., Universal sample preparation method for proteome analysis, Nat. Methods 6(5) (2009) 359-362. https://doi.org/10.1038/nmeth.1322.

[18]

Y. Liu, Y. Hou, G. Wang, et al., Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay, Trends Endocrinol. Metab. 31(11) (2020) 818-834. https://doi.org/10.1016/j.tem.2020.02.012.

[19]

A. Lavelle, H. Sokol, Gut microbiota-derived metabolites as key actors in inflammatory bowel disease, Nat. Rev. Gastroenterol. Hepatol. 17(4) (2020) 223-237. https://doi.org/10.1038/s41575-019-0258-z.

[20]

A. Zhang, H. Sun, P. Wang, et al., Modern analytical techniques in metabolomics analysis, Analyst 137(2) (2012) 293-300. https://doi.org/10.1039/c1an15605e.

[21]

P. Miggiels, B. Wouters, G.J.P. van Westen, et al., Novel technologies for metabolomics: more for less, TrAC Trends Anal. Chem. 120(2019) 115323. https://doi.org/https://doi.org/10.1016/j.trac.2018.11.021.

[22]

J. Li, M. Nadeem, L. Chen, et al., Differential proteomic analysis of soybean anthers by Itraq under high-temperature stress, J. Proteomics 229(2020) 103968. https://doi.org/10.1016/j.jprot.2020.103968.

[23]

Q. Li, Y. Han, A.B.C. Dy, et al., The gut microbiota and autism spectrum disorders, Front. Cell. Neurosci. 11(2017) 120. https://doi.org/10.3389/fncel.2017.00120.

[24]

Q. Xu, J. Xu, K. Zhang, et al., Study on the protective effect and mechanism of Dicliptera chinensis (L.) Juss (Acanthaceae) polysaccharide on immune liver injury induced by LPS, Biomed. Pharmacother. 134(2021) 111159. https://doi.org/10.1016/j.biopha.2020.111159.

[25]

Z. Xiao, L. Liu, Y. Jin, et al., Clostridium tyrobutyricum protects against LPS-induced colonic inflammation via IL-22 signaling in mice, Nutrients 13(1) (2021) 215. https://doi.org/10.3390/nu13010215.

[26]

R. Fischer, O. Maier, N. Noguchi, Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF, Oxidative Med. Cell. Longev. 2015(2015) 610813-610818. https://doi.org/10.1155/2015/610813.

[27]

M. Roman, P. Jitaru, C. Barbante, Selenium biochemistry and its role for human health, Metallomics 6(1) (2013) 25-54. https://doi.org/10.1039/c3mt00185g.

[28]

A.S. Rahmanto, M.J. Davies, Selenium-containing amino acids as direct and indirect antioxidants, Iubmb Life 64(11) (2012) 863-871. https://doi.org/10.1002/iub.1084.

[29]

Q. Wu, M.P. Rayman, H. Lv, et al., Low population selenium status is associated with increased prevalence of thyroid disease, J. Clin. Endocrinol. Metab. 100(11) (2015) 4037-4047. https://doi.org/10.1210/jc.2015-2222.

[30]

S. Hariharan, S. Dharmaraj, Selenium and selenoproteins: it’s role in regulation of inflammation, Inflammopharmacology 28(3) (2020) 667-695. https://doi.org/10.1007/s10787-020-00690-x.

[31]

P. Wilmes, C. Martin-Gallausiaux, M. Ostaszewski, et al., The gut microbiome molecular complex in human health and disease, Cell Host Microbe 30(9) (2022) 1201-1206. https://doi.org/10.1016/j.chom.2022.08.016.

[32]

T.J. Ashaolu, S. Fernández-Tomé, Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics, Trends Food Sci. Technol. 112(2021) 764-779. https://doi.org/https://doi.org/10.1016/j.tifs.2021.04.040.

[33]

S. Wu, Z.F. Bhat, R.S. Gounder, et al., Effect of dietary protein and processing on gut microbiota–a systematic review, Nutrients 14(3) (2022) 453. https://doi.org/10.3390/nu14030453.

[34]

S. Fernández-Tomé, B. Hernandez-Ledesma, Gastrointestinal digestion of food proteins under the effects of released bioactive peptides on digestive health, Mol. Nutr. Food Res. 64(21) (2020) e2000401. https://doi.org/10.1002/mnfr.202000401.

[35]

S. Stojanov, A. Berlec, B. Atrukelj, The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease, Microorganisms 8(11) (2020) 1715. https://doi.org/10.3390/microorganisms8111715.

[36]

X. Tian, Z. Yu, P. Feng, et al., Lactobacillus plantarum TW1-1 alleviates Diethylhexylphthalate-induced testicular damage in mice by modulating gut microbiota and decreasing inflammation, Front. Cell. Infect. Microbiol. 9(2019) 221. https://doi.org/10.3389/fcimb.2019.00221.

[37]

Z. Tamanai-Shacoori, I. Smida, L. Bousarghin, et al., Roseburia spp.: a marker of health? Future Microbiol. 12(2017) 157-170. https://doi.org/10.2217/fmb-2016-0130.

[38]

Y. Li, T. Liu, C. Yan, et al., Diammonium glycyrrhizinate protects against nonalcoholic fatty liver disease in mice through modulation of gut microbiota and restoration of intestinal barrier, Mol. Pharm. 15(9) (2018) 3860-3870. https://doi.org/10.1021/acs.molpharmaceut.8b00347.

[39]

X. Cai, Y. Han, M. Gu, et al., Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice, Food Funct. 1(1) (2019) 6331-6341. https://doi.org/10.1039/c9fo01537j.

[40]

Z. Qiu, H. Yang, L. Rong, et al., Targeted metagenome based analyses show gut microbial diversity of inflammatory bowel disease patients, Indian J. Microbiol. 57(3) (2017) 307-315. https://doi.org/10.1007/s12088-017-0652-6.

[41]

X. Zhao, H. Liu, Y. Wu, et al., Intervention with the crude polysaccharides of Physalis pubescens L. Mitigates colitis by preventing oxidative damage, aberrant immune responses, and dysbacteriosis, J. Food Sci. 85(8) (2020) 2596-2607. https://doi.org/10.1111/1750-3841.15330.

[42]

S.M. Bloom, V.N. Bijanki, G.M. Nava, et al., Commensal bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease, Cell Host Microbe 9(5) (2011) 390-403. https://doi.org/10.1016/j.chom.2011.04.009.

[43]

K. Kang, Y. Sun, D. Pan, et al., Distinctive gut microbial dysbiosis between chronic alcoholic fatty liver disease and metabolic-associated fatty liver disease in mice, Exp. Ther. Med. 21(5) (2021) 418. https://doi.org/10.3892/etm.2021.9862.

[44]

M.V. Kasaikina, M.A. Kravtsova, B.C. Lee, et al., Dietary selenium affects host selenoproteome expression by influencing the gut microbiota, FASEB J. 25(7) (2011) 2492-2499. https://doi.org/10.1096/fj.11-181990.

[45]

Q. Zhai, S. Cen, P. Li, et al., Effects of dietary selenium supplementation on intestinal barrier and immune responses associated with its modulation of gut microbiota, Environ. Sci. Technol. Lett. 5(12) (2018) 724-730. https://doi.org/10.1021/acs.estlett.8b00563.

[46]

S. Gangadoo, I. Dinev, J. Chapman, et al., Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii, Appl. Microbiol. Biotechnol. 102(3) (2018) 1455-1466. https://doi.org/10.1007/s00253-017-8688-4.

[47]

B. Callejón-Leblic, M. Selma-Royo, M.C. Collado, et al., Impact of antibiotic-induced depletion of gut microbiota and selenium supplementation on plasma selenoproteome and metal homeostasis in a mice model, J. Agric. Food Chem. 69(27) (2021) 7652-7662. https://doi.org/10.1021/acs.jafc.1c02622.

[48]

N.B. Danneskiold-Samsøe, H. Dias De Freitas Queiroz Barros, R. Santos, et al., Interplay between food and gut microbiota in health and disease, Food Res. Int. 115(2019) 23-31. https://doi.org/10.1016/j.foodres.2018.07.043.

[49]

D.H. Ngo, T.S. Vo, An updated review on pharmaceutical properties of gamma-aminobutyric acid, Molecules 24(15) (2019) 2678. https://doi.org/10.3390/molecules24152678.

[50]

P.A. Dryland, D.R. Love, M.F. Walker, et al., Allantoin as a biomarker of inflammation in an inflammatory bowel disease mouse model: NMR analysis of urine, The Open Bioactive Compounds Journal 1(2008) 1-6.

[51]

R. Schicho, A. Nazyrova, R. Shaykhutdinov, et al., Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by (1)H NMR spectroscopy, J. Proteome Res. 9(12) (2010) 6265-6273. https://doi.org/10.1021/pr100547y.

[52]

B. Liu, H. Guo, L. Li, et al., Serum metabolomics analysis of deficiency pattern and excess pattern in patients with rheumatoid arthritis, Chin. Med. 17(1) (2022) 71. https://doi.org/10.1186/s13020-022-00632-5.

[53]

Q. He, P. Wei, T. Liu, et al., Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by suppressing leucine-related mtorc1 signaling and reducing oxidative stress, Available at SSRN (2022). https://doi.org/10.2139/ssrn.4211245.

[54]

H. Jian, S. Miao, Y. Liu, et al., Dietary valine ameliorated gut health and accelerated the development of nonalcoholic fatty liver disease of laying hens, Oxidative Med. Cell. Longev. 2021(2021) 4704771. https://doi.org/10.1155/2021/4704771.

[55]

Z. Hong, Q. Cai, X. Duan, et al., Effect of compound sophorae decoction in the treatment of ulcerative colitis by tissue extract metabolomics approach, J. Tradit. Chin. Med. 41(3) (2021) 414.

[56]

G. Neurauter, K. Schrocksnadel, S. Scholl-Burgi, et al., Chronic immune stimulation correlates with reduced phenylalanine turnover, Curr. Drug Metab. 9(7) (2008) 622-627. https://doi.org/10.2174/138920008785821738.

[57]

J.D. Fernstrom, M.H. Fernstrom, Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain, J. Nutr. 137(6) (2007) 1539S-1547S. https://doi.org/10.1093/jn/137.6.1539S.

[58]

J.J. Mitchell, Y.J. Trakadis, C.R. Scriver, Phenylalanine hydroxylase deficiency, Genet. Med. 13(8) (2011) 607-617. https://doi.org/10.1097/GIM.0b013e3182141b48.

[59]

S. Wu, X. Liao, Z. Zhu, et al., Antioxidant and anti-inflammation effects of dietary phytochemicals: the NRF2/NF-κB signaling pathway and upstream factors of NRF2, Phytochemistry 204(2022) 113429.

[60]

L. Luo, J. Zhou, H. Zhao, et al., The anti-inflammatory effects of formononetin and ononin on lipopolysaccharide-induced zebrafish models based on lipidomics and targeted transcriptomics, Metabolomics 15(12) (2019) 153. https://doi.org/10.1007/s11306-019-1614-2.

[61]

K. De Schutter, E.J. Van Damme, Protein-carbohydrate interactions as part of plant defense and animal immunity, Molecules 20(5) (2015) 9029-9053. https://doi.org/10.3390/molecules20059029.

[62]

M. Mateus, R. Tavanti, T.R. Tavanti, et al., Selenium biofortification enhances ros scavenge system increasing yield of coffee plants, Ecotox. Environ. Safe. 209(2021) 111772. https://doi.org/10.1016/j.ecoenv.2020.111772.

Food Science and Human Wellness
Pages 3391-3402
Cite this article:
Wu S, Zhu Z, Chen M, et al. Enhanced protective effect of selenium-biofortified peptide RYNA(Se)MNDYT compared with its native peptide RYNAMNDYT in lipopolysaccharide-injured murine gut microbiota. Food Science and Human Wellness, 2024, 13(6): 3391-3402. https://doi.org/10.26599/FSHW.2023.9250024

1036

Views

171

Downloads

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 November 2022
Accepted: 06 April 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return