Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.

Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract, characterized by an inflammatory process. Gut mycobiota community dysbiosis has been reported that is closely related to the development of IBD. Our previous findings indicated that polyphenol of the inner shell (BPIS) from foxtail millet bran could restore the gut microbiome and inhibit the progress of colorectal cancer (CRC). In the present study, we studied the anti-inflammatory potential of BPIS in the dextran sodium sulfate (DSS)-induced mouse colitis model. Data suggested that BPIS alleviated experimental colitis by restoring body weight, colonic length and protecting the epithelial architecture from damage by DSS. Moreover, we found that BPIS strengthened the gut barrier function and inhibited the activation of Wnt1/β-catenin pathway. Gene sequence analysis indicated that BPIS remodeled the overall structure of the gut mycobiota from colitis mice toward that of the normal counterparts, including 1 phylum and 9 genera. Interestingly, BPIS significantly increased the abundance of Aspergillus ruber. It further verified that BPIS significantly promoted the growth of A. ruber in vitro. Collectively, BPIS has great potential to develop into an effective against IBD drug.
G.P. Ramos, K.A. Papadakis, Mechanisms of disease: inflammatory bowel diseases, Mayo. Clin. Proc. 94 (2019) 155-165. https://doi.org/10.1016/j.mayocp.2018.09.013.
Y.Z. Zhang, Y.Y. Li, Inflammatory bowel disease: pathogenesis, World J. Gastroenterol. 20 (2014) 91-99. https://doi.org/10.3748/wjg.v20.i1.91.
D.N. Frank, A.L. St Amand, R.A. Feldman, et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 13780-13785. https://doi.org/10.1073/pnas.0706625104.
D. Gevers, S. Kugathasan, L.A. Denson, et al., The treatment-naive microbiome in new-onset Crohn’s disease, Cell Host Microbe 15 (2014) 382-392. https://doi.org/10.1016/j.chom.2014.02.005.
S.J. Ott, T. Kühbacher, M. Musfeldt, et al., Fungi and inflammatory bowel diseases: alterations of composition and diversity, Scand. J. Gastroenterol. 43 (2008) 831-841. https://doi.org/10.1080/00365520801935434.
H. Sokol, V. Leducq, H. Aschard, et al., Fungal microbiota dysbiosis in IBD, Gut 66 (2017) 1039-1048. https://doi.org/10.1136/gutjnl-2015-310746.
X. Qiu, F. Zhang, X. Yang,et al., Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis, Sci. Rep. 3 (2015) 10415-10416. https://doi.org/10.1038/srep10416.
L.Z. Zhang, R.H. Liu, Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet, Food Chem. 174 (2015) 495-501. https://doi.org/10.1016/j.foodchem.
Y. Zhao, Q. Jiang, Roles of the polyphenol-gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer, Adv. Nutr. 12 (2021) 546-565. https://doi.org/10.1093/advances/nmaa104.
K. Wang, Q. Yang, Q. Ma, et al., Protective effects of salvianolic acid a against dextran sodium sulfate-induced acute colitis in rats, Nutrients 10 (2018) 791-800. https://doi.org/10.3390/nu10060791.
G. Paturi, T. Mandimika, C.A. Butts, et al., Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a-/- mice, a model of inflammatory bowel diseases, Nutrition 28 (2012) 324-330. https://doi.org/10.1016/j.nut.2011.07.018.
Y. Narumi, S. Takatsuto, Identification of trace sterols in the seeds of foxtail millet (Setaria italica Beauv.), Biosci. Biotechnol. Biochem. 63 (1999) 1800-1802. https://doi.org/10.1271/bbb.63.1800.
S.S. Shan, Z.W. Li, I.P. Newton,et al., A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells, Toxicol. Lett. 227 (2014) 129-138. https://doi.org/10.1016/j.toxlet.2014.03.008.
Y. Lu, S.S. Shan, H. Li, et al., Reversal effects of bound polyphenol from foxtail millet bran on multidrug resistance in human HCT-8/Fu colorectal cancer cell, J. Agric. Food Chem. 66 (2018) 5190-5199. https://doi.org/10.1021/acs.jafc.8b01659.
J.Y. Shi, S.S. Shan, H.Q. Li, et al., Anti-inflammatory effects of millet bran derived-bound polyphenols in LPS-induced HT-29 cell via ROS/miR-149/Akt/NF-κB signaling pathway, Oncotarget 8 (2017) 74582-74594. https://doi.org/10.18632/oncotarget.20216.
R.P. Yang, S.S. Shan, C. Zhang,et al., Inhibitory effects of bound polyphenol from foxtail millet bran on colitis-associated carcinogenesis by the restoration of gut microbiota in a mice model, J. Agric. Food Chem. 68 (2020) 3506-3517. https://doi.org/10.1021/acs.jafc.0c00370.
R.P. Yang, S.S. Shan, N. An, et al., Polyphenols from foxtail millet bran ameliorate DSS-induced colitis by remodeling gut microbiome, Front. Nutr. 21 (2022) 1030744-1030750. https://doi.org/10.3389/fnut.2022.1030744.
M.A. Odenwald, J.R. Turner. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 9-21. https://doi.org/10.1038/nrgastro.2016.
F. Yang, A. Wang, X. Zeng, et al., Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions, BMC Microbiol. 15 (2015) 15-32. https://doi.org/10.1186/s12866-015-0372-1.
Y. Zhou, J. Jin, M. Feng, et al., Wnt signaling in inflammation in tissue repair and regeneration, Curr. Protein Pept. Sci. 20 (2019) 829-843. https://doi.org/10.2174/1389203720666190507094441.
L. Moparthi, S. Koch, Wnt signaling in intestinal inflammation, Differentiation 108 (2019) 24-32. https://doi.org/10.1016/j. diff.2019.01.002.
M.M. Fischer, V.P. Yeung, F. Cattaruzza, et al., RSPO3 antagonism inhibits growth and tumorigenicity in colorectal tumors harboring common Wnt pathway mutations, Sci. Rep. 7 (2017) 15270-15280. https://doi.org/10.1038/s41598-017-15704-y.
K. Kretzschmar, H. Clevers, Wnt/β-catenin signaling in adult mammalian epithelial stem cells, Dev. Biol. 428 (2017) 273-282. https://doi.org/10.1016/j.ydbio.2017.05.015.
K.S. Carmon, X. Gong, J. Yi, et al., LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway, J. Biol. Chem. 292 (2017) 14989-15001. https://doi.org/10.1074/jbc.M117.786798.
S. Lam, T. Zuo, M. Ho, et al., Review article: fungal alterations in inflammatory bowel diseases, Aliment. Pharmacol. Ther. 50 (2019) 1159-1171. https://doi.org/10.1111/apt.15523.
Y. Jiang, K. Jarr, C. Layton,et al., Therapeutic implications of diet in inflammatory bowel disease and related immune-mediated inflammatory diseases, Nutrients 13 (2021) 890-900. https://doi.org/10.3390/nu13030890.
F. Rahimi-Moghaddam, N. Sattarahmady, N. Azarpira, Gold-curcumin nanostructure in photo-thermal therapy on breast cancer cell line: 650 and 808 nm diode lasers as light sources, J. Biomed. Phys. Eng. 9 (2019) 473-482. https://doi.org/10.31661/jbpe.v0i0.906.
S. Subramanian, B.J. Campbell, J.M. Rhodes, Bacteria in the pathogenesis of inflammatory bowel disease, Curr. Opin. Infect. Dis. 19 (2006) 475-484. https://doi.org/10.1097/01.qco.0000244054.69253.f3.
S. Wirtz, V. Popp, M. Kindermann,et al., Chemically induced mouse models of acute and chronic intestinal inflammation, Nat. Protoc. 12 (2017) 1295-1309. https://doi.org/10.1038/nprot.2017.044.
P. Allavena, C. Garlanda, M.G. Borrello, et al., Pathways connecting inflammation and cancer, Curr. Opin. Genet. Dev. 18 (2008) 3-10. https://doi.org/10.1016/j.gde.2008.01.003.
L. Cheng, M.D. Lai, Aberrant crypt foci as microscopic precursors of colorectal cancer, World J. Gastroenterol. 9 (2003) 2642-2649. https://doi.org/10.3748/wjg.v9.i12.2642.
R.P. Bird, Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings, Cancer Lett. 37 (1987) 147-151. https://doi.org/10.1016/0304-3835(87)90157-1.
J. Bian, M. Dannappel, C. Wan,et al., Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer, Cells 9 (2020) 21-25. https://doi.org/10.3390/cells9092125.
X. Huo, D. Li, F. Wu, et al., Cultivated human intestinal fungus Candida metapsilosis M2006B attenuates colitis by secreting acyclic sesquiterpenoids as FXR agonists, Gut 71 (2022) 2205-2217. https://doi.org/10.1136/gutjnl-2021-325413.
S.P. Costello, P.A. Hughes, O. Waters, Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial, JAMA 321 (2019) 156-164. https://doi.org/10.1001/jama.2018.20046.
G.P. Donaldson, S.M. Lee, S.K. Mazmanian, Gut biogeography of the bacterial microbiota, Nat. Rev. Microbiol. 14 (2016) 20-32. https://doi.org/10.1038/nrmicro3552.
M.E. Johansson, M. Phillipson, J. Petersson, et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 15064-15069. https://doi.org/10.1073/pnas.0803124105.
K. Martinez-Guryn, V. Leone, E.B. Chang, Regional diversity of the gastrointestinal microbiome, Cell Host Microbe 26 (2019) 314-324. https://doi.org/10.1016/j.chom.2019.08.011.
T. Pelaseyed, J.H. Bergström, J.K. Gustafsson, et al., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of thegastrointestinal tract and interact with the immune system, Immunol. Rev. 260 (2014) 8-20. https://doi.org/10.1111/imr.12182.
A.M. Yang, T. Inamine, K. Hochrath,et al., Intestinal fungi contribute to development of alcoholic liver disease, J. Clin. Invest. 127 (2017) 2829-2841. https://doi.org/10.1172/JCI90562.
I. Leonardi, I.H. Gao, W.Y. Lin, et al., Mucosal fungi promote gut barrier function and social behavior via type 17 immunity, Cell 185 (2022) 831-846. https://doi.org/10.1016/j.cell.2022.01.017.
T.T. Jiang, T.Y. Shao, W.X.G. Ang, et al., Commensal fungi recapitulate the protective benefits of intestinal bacteria, Cell Host Microbe 22 (2017) 809-816. https://doi.org/10.1016/j.chom.2017.10.013.
Y. Zhu, T. Shi, X. Lu, et al., Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22, EMBO J. 40 (2021) e105320. https://doi.org/10.15252/embj.2020105320.
R.P. Yin, T. Wang, H.Q. Dai, et al., Immunogenic molecules associated with gut bacterial cell walls: chemical structures, immune-modulating functions, and mechanisms, Protein & Cell, 10 (2023) 776-785. https://doi.org/10.1093/procel/pwad016.
X. Zhao, X. Hu, J. Han, et al., Gut mycobiome: a “black box” of gut microbiome-host interactions, WIREs Mech. Dis. 15 (2023) 1611-1618. https://doi.org/10.1002/wsbm.1611.
G. Liguori, B. Lamas, M.L. Richard, et al., Fungal dysbiosis in mucosa-associated microbiota of crohn’s disease patients, J. Crohns. Colitis 10 (2016) 296-305. https://doi.org/10.1093/ecco-jcc/jjv209.
840
Views
79
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).