AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Effects of dietary olive oil, camellia seed oil and soybean oil on serum lipid composition in women with a high risk of cardiovascular disease: a lipidomic analysis

Minyu WuaChangfeng HubLirong Shena( )
Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Abstract

Numerous studies currently compare the lipid metabolism in patients with cardiovascular disease (CVD) and healthy individuals to identify lipid markers for predicting CVD. In this study, multidimensional mass spectrometry-based shotgun lipidomics was used to examine the serum lipidomics of participants in a clinical randomized controlled feeding trial undergoing olive oil (OO), camellia seed oil (CSO), and soybean oil (SO) dietary interventions. 189 lipid molecules are identified, including 14 species of phosphatidylinositol, 45 species of ethanolamine glycerols (PE), 47 species of choline glycerophospholipids (PC), 39 species of triacylglycerols (TAG), 18 species of lysophosphatidylcholine, and 26 species of sphingomyelin. After screening, 10 lipid markers are found, among which 18:2 fatty acid (FA), 16:1 FA, C54:4/C55:11, C54:3/C55:10, and C52:3/C53:10 in TAG pool, p18:0/20:0 and a18:0/18:1 in PC pool, and p18:1/20:4 in PE pool have differential regulation in the SO group compared to OO and CSO. The d16:0/18:1 in PC pool and C52:2/C53:9 in TAG pool are differentially regulated by OO and CSO. The C52:2/C53:9 in TAG pool has a significant negative correlation with aspartate aminotransferase (r = -0.363, P = 0.048) and high-density lipoprotein cholesterol (r = -0.519, P < 0.01). This study provides a reference for researching the effect of dietary fat on blood lipid metabolism.

Electronic Supplementary Material

Download File(s)
fshw-13-6-3193_ESM.docx (40 KB)

References

[1]

E. Fahy, S. Subramaniam, H.A. Brown, et al., A comprehensive classification system for lipids, J. Lipid Res. 46(5) (2005) 839-861. https://doi.org/10.1194/jlr.E400004-JLR200.

[2]

E.A. Dennis, Lipidomics joins the omics evolution, Proc. Natl. Acad. Sci. U. S. A. 106(7) (2009) 2089-2090. https://doi.org/10.1073/pnas.0812636106.

[3]

R.W. Gross, X. Han, Lipidomics at the interface of structure and function in systems biology, Chem. Biol. 18(3) (2011) 284-291. https://doi.org/10.1016/j. chembiol.2011.01.014.

[4]

X.L. Han, J.Y. Yang, K. Yang, Z.D. et al., Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study, Biochemistry 46(21) (2007) 6417-6428. https://doi.org/10.1021/bi7004015.

[5]

M. Holcapek, B. Cervena, E. Cifkova, et al., Lipidomic analysis of plasma, erythrocytes and lipoprotein fractions of cardiovascular disease patients using UHPLC/MS, MALDI-MS and multivariate data analysis, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 990 (2015) 52-63. https://doi.org/10.1016/j.jchromb.2015.03.010.

[6]

X. Gao, C. Ke, H. Liu, et al., Large-scale metabolomic analysis reveals potential biomarkers for early stage coronary atherosclerosis, Sci. Rep. 7(1) (2017) 1-11. https://doi.org/10.1038/s41598-017-12254-1.

[7]

H. Kulkarni, M. Mamtani, J. Blangero, et al., Lipidomics in the study of hypertension in metabolic syndrome, Curr. Hypertens. Rep. 19(1) (2017) 1-8. https://doi.org/10.1007/s11906-017-0705-6.

[8]

P.J. Meikle, G. Wong, C.K. Barlow, et al., Lipidomics: potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease, Pharmacol. Ther. 143(1) (2014) 12-23. https://doi.org/10.1016/j.pharmthera.2014.02.001.

[9]

P.A. Mundra, C.K. Barlow, P.J. Nestel, et al., Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention, JCI Insight 3(17) (2018) 1-15. https://doi.org/10.1172/jci.insight.121326.

[10]

P.A. Mundra, J.E. Shaw, P.J. Meikle, Lipidomic analyses in epidemiology, Int. J. Epidemiol. 45(5) (2016) 1329-1338. https://doi.org/10.1093/ije/dyw112.

[11]

I.M. Rivas-Serna, M. Sitina, G.B. Stokin, et al., Lipidomic profiling identifies signatures of poor cardiovascular health, Metabolites 11(11) (2021) 1-15. https://doi.org/10.3390/metabo11110747.

[12]

K.D. Stark, Applications of innovative lipidomic methods for blood lipid biomarkers, J. Oleo. Sci. 68(6) (2019) 503-510. https://doi.org/10.5650/jos.ess19042.

[13]

C. Stegemann, R. Pechlaner, P. Willeit, et al., Lipidomics profiling and risk of cardiovascular disease in the prospective population-based bruneck study, Circulation 129(18) (2014) 1821-1831. https://doi.org/10.1161/CIRCULATIONAHA.113.002500.

[14]

R.P. Mensink, P.L. Zock, A.D. Kester, et al., Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials, Am. J. Clin. Nutr. 77(5) (2003) 1146-1155. https://doi.org/10.1093/ajcn/77.5.1146.

[15]

D.D. Wang, F.B. Hu, Dietary fat and risk of cardiovascular disease: recent controversies and advances, Annu. Rev. Nutr. 37 (2017) 423-446. https://doi.org/10.1146/annurev-nutr-071816-064614.

[16]

M.U. Jakobsen, E.J. O’Reilly, B.L. Heitmann, et al., Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies, Am. J. Clin. Nutr. 89(5) (2009) 1425-1432. https://doi.org/10.3945/ajcn.2008.27124.

[17]

R. Chowdhury, S. Warnakula, S. Kunutsor, et al., Association of dietary, circulating, and supplement fatty acids with coronary risk a systematic review and meta-analysis, Ann. Intern. Med. 161(6) (2014) 453-459. https://doi.org/10.7326/M13-1788.

[18]

Y.P. Li, A. Hruby, A.M. Bernstein, et al., Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease a prospective cohort study, J. Am. Coll. Cardiol. 66(14) (2015) 1538-1548. https://doi.org/10.1016/j.jacc.2015.07.055.

[19]

A. Mente, L. De-Koning, H.S. Shannon, et al., A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease, Arch. Intern. Med. 169(7) (2009) 659-669. https://doi.org/10.1001/archinternmed.2009.38.

[20]

M. Miettinen, O. Turpeinen, R. Elosuo, et al., Effect of cholesterol-lowering diet on mortality from coronary heart-disease and other causes - 12-year clinical trial in men and women, Lancet 2(7782) (1972) 835-838. https://doi.org/10.1016/s0140-6736(72)92208-8.

[21]

M.Y. Wu, M.H. Du, H. Wen, et al., Effects of n-6 PUFA-rich soybean oil, MUFA-rich olive oil and camellia seed oil on weight and cardiometabolic profiles among Chinese women: a 3-month double-blind randomized controlled-feeding trial, Food Funct. 13(8) (2022) 4375-4383. https://doi.org/10.1039/d1fo03759e.

[22]

M.Y. Wu, J.S. Zheng, L.R. Shen, Dietary camellia (Camellia oleifera abel) seed oil in traditional Chinese cooking for high-risk cardiovascular disease: a three-arm double-blind randomized controlled feeding trial protocol, Asia Pac. J. Clin. Nutr. 29(4) (2020) 751-762. https://doi.org/10.6133/apjcn.202012_29(4).0010.

[23]

X. Han, R.W. Gross, Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics, J. Lipid Res. 44(6) (2003) 1071-1079. https://doi.org/10.1194/jlr. R300004-JLR200.

[24]

X. Han, R.W. Gross, Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples, Mass Spectrom. Rev. 24(3) (2005) 367-412. https://doi.org/10.1002/mas.20023.

[25]

X. Han, K. Yang, H. Cheng, et al., Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization, J. Lipid Res. 46(7) (2005) 1548-1560. https://doi.org/10.1194/jlr.D500007-JLR200.

[26]

X. Han, K. Yang, R.W. Gross, Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses, Mass Spectrom. Rev. 31(1) (2012) 134-178. https://doi.org/10.1002/mas.20342.

[27]

K. Yang, H. Cheng, R.W. Gross, et al., Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics, Anal. Chem. 81(11) (2009) 4356-4368. https://doi.org/10.1021/ac900241u.

[28]

C. Hu, Q. Duan, X. Han, Strategies to improve/eliminate the limitations in shotgun lipidomics, Proteomics 20(11) (2020) e1900070. https://doi.org/10.1002/pmic.201900070.

[29]

X. Han, H. Ye, Overview of lipidomic analysis of triglyceride molecular species in biological lipid extracts, J. Agric. Food Chem. 69(32) (2021) 8895-8909. https://doi.org/10.1021/acs.jafc.0c07175.

[30]

J.W. Burgess, T.A. Neville, P. Rouillard, et al., Phosphatidylinositol increases HDL-C levels in humans, J. Lipid Res. 46(2) (2005) 350-355. https://doi.org/10.1194/jlr.M400438-JLR200.

[31]

F. L. Li, V. Fu, G. Liu, et al., Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides, Nat. Chem. Biol. 18(10) (2022) 1076-1086. https://doi.org/10.1038/s41589-022-01061-z.

[32]

G. Kim, M. Yoo, M.H. Hong, et al., Predictive factors for the development of diabetes in cancer patients treated with phosphatidylinositol 3-kinase inhibitors, Cancer Chemother. Pharmacol. 84(2) (2019) 405-414. https://doi.org/10.1007/s00280-019-03889-0.

[33]

X.C. Jiang, F. Paultre, T.A. Pearson, et al., Plasma sphingomyelin level as a risk factor for coronary artery disease, Arterioscler. Thromb. Vasc. Biol. 20(12) (2000) 2614-2618. https://doi.org/10.1161/01.ATV.20.12.2614.

[34]

A. Schlitt, S. Blankenberg, D.G. Yan, et al., Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease, Nutr. Metab. 3 (2006) 1-8. https://doi.org/10.1186/1743-7075-3-5.

[35]

R. Ross, The pathogenesis of atherosclerosis - a perspective for the 1990s, Nature 362(6423) (1993) 801-809. https://doi.org/10.1038/362801a0.

[36]

K. Simons, E. Ikonen, Functional rafts in cell membranes, Nature 387(6633) (1997) 569-572. https://doi.org/10.1038/42408.

[37]

L. Chen, B.H. Liang, D.E. Froese, et al., Oxidative modification of low density lipoprotein in normal and hyperlipidemic patients: effect of lysophosphatidylcholine composition on vascular relaxation, J. Lipid Res. 38(3) (1997) 546-553.

[38]

H. Tanaka, N. Zaima, T. Sasaki, et al., Lysophosphatidylcholine acyltransferase-3 expression is associated with atherosclerosis progression, J. Vasc. Res. 54(4) (2017) 200-208. https://doi.org/10.1159/000473879.

[39]

A. Ossoli, S. Simonelli, C. Vitali, et al., Role of LCAT in atherosclerosis, J. Atheroscler. Thromb. 23(2) (2016) 119-127. https://doi.org/10.5551/jat.32854.

[40]

L. Yang, L. Wang, Y. Deng, et al., Serum lipids profiling perturbances in patients with ischemic heart disease and ischemic cardiomyopathy, Lipids Health Dis. 19(1) (2020) 1-10. https://doi.org/10.1186/s12944-020-01269-9.

[41]

S. Chen, G. Zong, Q. Wu, et al., Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older chinese, Diabetologia 65(2) (2022) 315-328. https://doi.org/10.1007/s00125-021-05611-3.

[42]

P.J. Raubenheimer, M.J. Nyirenda, B.R. Walker, A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet, Diabetes 55(7) (2006) 2015-2020. https://doi.org/10.2337/db06-0097.

[43]

R.L. Jacobs, Y. Zhao, D.P.Y. Koonen, et al., Impaired de novo choline synthesis explains why phosphatidylethanolamine n-methyltransferase-deficient mice are protected from diet-induced obesity, J. Biol. Chem. 285(29) (2010) 22403-22413. https://doi.org/10.1074/jbc.M110.108514.

[44]

S.N. Fu, L. Yang, P. Li, et al., Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity, Nature 473(7348) (2011) 528-531. https://doi.org/10.1038/nature09968.

[45]

L. Zhang, T.T. Wei, Y. Li, et al., Functional metabolomics characterizes a key role for n-acetylneuraminic acid in coronary artery diseases, Circulation 137(13) (2018) 1374-1390. https://doi.org/10.1161/CIRCULATIONAHA.117.031139.

Food Science and Human Wellness
Pages 3193-3201
Cite this article:
Wu M, Hu C, Shen L. Effects of dietary olive oil, camellia seed oil and soybean oil on serum lipid composition in women with a high risk of cardiovascular disease: a lipidomic analysis. Food Science and Human Wellness, 2024, 13(6): 3193-3201. https://doi.org/10.26599/FSHW.2023.9250006

826

Views

114

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 October 2022
Revised: 07 December 2022
Accepted: 16 December 2022
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return