AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Association of moderate beer consumption with the gut microbiota

Zhaoxi LiuaJinming ShiaLushan WangaJianjun DongbJunhong Yub( )Min Chena( )
State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
Tsingtao Brewery Co., Ltd., State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266061, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• The main components and its contents in beer are listed.

• The paper summarizes the effects of beer consumption in gut microbiota.

• Discuss the main positive effects on the gut microbiota resulting from moderate beer intake due mainly to their non-alcoholic components like polyphenols.

• Revealing the possible mechanisms of biological activities of beer components and the interaction between beer components and gut microbiota.

Abstract

Beer is a fermented beverage prepared from water, malted barley, hops, and yeast that has been around for centuries. Alcoholic beverages alter the composition of the gut microbiota, which in turn causes oxidative stress brought on by alcohol, increases intestinal permeability to luminal bacterial products. However, beer has been shown to contain several intriguing non-alcoholic chemicals. Recent research demonstrates that moderate beer drinking could have positive impacts on human health. Beer’s non-alcoholic ingredients have a significant impact on gut microbiota, and this type of diet is known to modulate gut microbiota, which has a variety of effects on the body, including effects on intestinal permeability, mucosal immune function, intestinal motility, antioxidant activity, and anti-inflammatory activity. Although the negative consequences of excessive alcohol intake are widely known, it is still debatable whether or not some non-alcoholic components, such as polyphenols and carbohydrates, have any positive benefits. In this review, we explain the primary benefits of moderate beer consumption on the gut microbiota, which are mostly attributable to non-alcoholic components such polyphenols. Despite any potential advantages of moderating consumption of alcoholic beverages, the lowest alcohol intake is the most secure.

References

[1]

B. Olas, M. Brys, Beer components and their beneficial effect on the hemostasis and cardiovascular diseases-truth or falsehood, Food Chem. Toxicol. 146 (2020) 111782. https://doi.org/10.1016/j.fct.2020.111782.

[2]

A. Marcos, L. Serra-Majem, F. Perez-Jimenez, et al., Moderate consumption of beer and its effects on cardiovascular and metabolic health: an updated review of recent scientific evidence, Nutrients 13 (2021) 879. https://doi.org/10.3390/nu13030879.

[3]

H.Q. Yeo, S.Q. Liu, An overview of selected specialty beers: developments, challenges and prospects, Food Sci. Technol. Int. 49 (2014) 1607-1618. https://doi.org/10.1111/ijfs.12488.

[4]

M.I. Betancur, K. Motoki, C. Spence, et al., Factors influencing the choice of beer: a review. Food Res. Int. 137 (2020) 109367. https://doi.org/10.1016/j.foodres.2020.109367.

[5]

S. Gerhards, M.I. Talaverano, A.I. Andres, et al., Different dry hopping and fermentation methods: influence on beer nutritional quality, J. Sci. Food Agric. 101 (2021) 2828-2835. https://doi.org/10.1002/jsfa.10912

[6]

A. Piazzon, M. Forte, M. Nardini, Characterization of phenolics content and antioxidant activity of different beer types, J. Agric. Food Chem. 58 (2010) 10677-10683. https://doi.org/10.1021/jf101975q.

[7]

M. Nardini, M.S. Foddai, Phenolics profile and antioxidant activity of special beers, Molecules 25 (2020) 2466. https://doi.org/10.3390/molecules25112466.

[8]

A. Di Castelnuovo, S. Costanzo, V. Bagnardi, et al., Alcohol dosing and total mortality in men and women - an updated meta-analysis of 34 prospective studies, Arch. Intern. Med. 166 (2006) 2437-2445. https://doi.org/10.1001/archinte.166.22.2437.

[9]

G. de Gaetano, S. Costanzo, A. Di Castelnuovo, et al., Effects of moderate beer consumption on health and disease: a consensus document, Nutr. Metab. Cardiovas. 26 (2016) 443-467. https://doi.org/10.1016/j.numecd.2016.03.007

[10]

V. Bell, J. Ferrao, L. Pimentel, et al., One health, fermented foods, and gut microbiota, Foods 7 (2018) 195. https://doi.org/10.3390/foods7120195.

[11]

M.L. Marco, D. Heeney, S. Binda, et al., Health benefits of fermented foods: microbiota and beyond, Curr. Opin. Biotech. 44 (2017) 94-102. https://doi.org/10.1016/j.copbio.2016.11.010.

[12]

I. Osorio-Paz, R. Brunauer, S. Alavez, Beer and its non-alcoholic compounds in health and disease, Crit. Rev. Food Sci. 60 (2020) 3492-3505. https://doi.org/10.1080/10408398.2019.1696278.

[13]

F. Sommer, F. Backhed, The gut microbiota - masters of host development and physiology, Nat. Rev. Microbiol. 11 (2013) 227-238. https://doi.org/10.1038/nrmicro2974.

[14]

Y.S. Kim, T. Unno, B.Y. Kim, et al., Sex differences in gut microbiota, World J. Mens Health. 38 (2020) 48-60. https://doi.org/10.5534/wjmh.190009.

[15]

E. Rinninella, P. Raoul, M. Cintoni, et al., What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases, Microorganisms 7 (2019) 14. https://doi.org/10.3390/microorganisms7010014.

[16]

M. Romo-Vaquero, A. Cortes-Martin, V. Loria-Kohen, et al., Deciphering the human gut microbiome of urolithin metabotypes: association with enterotypes and potential cardiometabolic health implications, Mol. Nutr. Food Res. 63 (2019) e1800958. https://doi.org/10.1002/mnfr.201800958.

[17]

A. Cuevas-Sierra, O. Ramos-Lopez, J.I. Riezu-Boj, et al., Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications, Adv. Nutr. 10 (2019) S17-S30. https://doi.org/10.1093/advances/nmy078.

[18]

J.M. Blander, R.S. Longman, I.D. Iliev, et al., Regulation of inflammation by microbiota interactions with the host, Nat. Immunol. 18 (2017) 851-860. https://doi.org/10.1038/ni.3780.

[19]

G. Blandino, R. Inturri, F. Lazzara, et al., Impact of gut microbiota on diabetes mellitus, Diabetes Metab. 42 (2016) 303-315. https://doi.org/10.1016/j.diabet.2016.04.004.

[20]

D.C. Rapozo, C. Bernardazzi, H.S. de Souza, Diet and microbiota in inflammatory bowel disease: the gut in disharmony, World J. Gastroenterol. 23 (2017) 2124-2140. https://doi.org/10.3748/wjg.v23.i12.2124.

[21]

S. Vivarelli, R. Salemi, S. Candido, et al., Gut microbiota and cancer: from pathogenesis to therapy, Cancers 11 (2019) 38. https://doi.org/10.3390/cancers11010038.

[22]

Y.T. Loo, K. Howell, M. Chan, et al., Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods, Compr. Rev. Food Sci. Food Saf. 19 (2020) 1268-1298. https://doi.org/10.1111/1541-4337.12563.

[23]

J.A. Vinson, M. Mandarano, M. Hirst, et al., Phenol antioxidant quantity and quality in foods: beers and the effect of two types of beer on an animal model of atherosclerosis, J. Agric. Food Chem. 51 (2003) 5528-5533. https://doi.org/10.1021/jf034189k.

[24]

F. Hernandez-Quiroz, K. Nirmalkar, L.E. Villalobos-Flores, et al., Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and beta-cell function, Alcohol 85 (2020) 77-94. https://doi.org/10.1016/j.alcohol.2019.05.006.

[25]

A. Zhernakova, A. Kurilshikov, M.J. Bonder, et al., Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity, Science 352 (2016) 565-569. https://doi.org/10.1126/science.aad3369.

[26]

N. Gonzalez-Zancada, N. Redondo-Useros, L.E. Diaz, et al., Association of moderate beer consumption with the gut microbiota and SCFA of healthy adults, Molecules 25 (2020) 4772. https://doi.org/10.3390/molecules25204772.

[27]

S.A. Shetty, F. Hugenholtz, L. Lahti, et al., Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies, FEMS Microbiol. Rev. 41 (2017) 182-199. https://doi.org/10.1093/femsre/fuw045.

[28]

E.E. Blaak, E.E. Canfora, S. Theis, et al., Short chain fatty acids in human gut and metabolic health, Benef. Microbes 11 (2020) 411-455. https://doi.org/10.3920/BM2020.0057.

[29]

P. Louis, H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine, Fems Microbiol. Lett. 294 (2009) 1-8. https://doi.org/10.1111/j.1574-6968.2009.01514.x.

[30]

D. Deb, S. Das, A. Adak, et al., Traditional rice beer depletes butyric acid-producing gut bacteria Faecalibacterium and Roseburia along with fecal butyrate levels in the ethnic groups of Northeast India, 3 Biotech 10 (2020) 283. https://doi.org/10.1007/s13205-020-02280-8.

[31]

R. Mateo-Gallego, I. Moreno-Indias, A.M. Bea, et al., An alcohol-free beer enriched with isomaltulose and a resistant dextrin modulates gut microbiome in subjects with type 2 diabetes mellitus and overweight or obesity: a pilot study, Food Funct. 12 (2021) 3635-3646. https://doi.org/10.1039/d0fo03160g.

[32]

J.I. Martinez-Montoro, M. Quesada-Molina, C. Gutierrez-Repiso, et al., Effect of moderate consumption of different phenolic-content beers on the human gut microbiota composition: a randomized crossover trial, Antioxidants 11 (2022) 696. https://doi.org/10.3390/antiox11040696.

[33]

C. Marques, L. Dinis, I.B. Mota, et al., Impact of beer and nonalcoholic beer consumption on the gut microbiota: a randomized, double-blind, controlled trial, J. Agric. Food Chem. 70 (2022) 13062-13070. https://doi.org/10.1021/acs.jafc.2c00587.

[34]

S. Cortacero-Ramirez, M.H.B. de Castro, A. Segura-Carretero, et al., Analysis of beer components by capillary electrophoretic methods, Trac-Trend Anal. Chem. 22 (2003) 440-455. https://doi.org/10.1016/S0165-9936(03)00704-0.

[35]

I.F. Duarte, M. Godejohann, U. Braumann, et al., Application of NMR spectroscopy and LC-NMR/MS to the identification of carbohydrates in beer, J. Agric. Food Chem. 51 (2003) 4847-4852. https://doi.org/10.1021/jf030097j.

[36]

M.M. Li, J.H. Du, K.L. Zhang, Profiling of carbohydrates in commercial beers and their influence on beer quality, J. Sci. Food Agric. 100 (2020) 3062-3070. https://doi.org/10.1002/jsfa.10337.

[37]

C. Martins, T. Brandao, A. Almeida, et al., Enlarging knowledge on lager beer volatile metabolites using multidimensional gas chromatography, Foods 9 (2020) 1276. https://doi.org/10.3390/foods9091276.

[38]

S. Arranz, G. Chiva-Blanch, P. Valderas-Martinez, et al., Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer, Nutrients 4 (2012) 759-781. https://doi.org/10.3390/foods9091276.

[39]

G. Xin, Z.L. Wei, C.J. Ji, et al., Xanthohumol isolated from Humulus lupulus prevents thrombosis without increased bleeding risk by inhibiting platelet activation and mtDNA release, Free Radic. Biol. Med. 108 (2017) 247-257. https://doi.org/10.1016/j.freeradbiomed.2017.02.018.

[40]

C.A. Zugravu, C. Medar, L.S.C. Manolescu, et al., Beer and microbiota: pathways for a positive and healthy interaction, Nutrients 15 (2023) 844. https://doi.org/10.3390/nu15040844.

[41]

M. Liu, P.E. Hansen, G.Z. Wang, et al., Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), Molecules 20 (2015) 754-779. https://doi.org/10.3390/molecules20010754.

[42]

P. Quifer-Rada, A. Vallverdu-Queralt, M. Martinez-Huelamo, et al., A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS), Food Chem. 169 (2015) 336-343. https://doi.org/10.1016/j.foodchem.2014.07.154.

[43]

P.J. Magalhaes, D.O. Carvalho, J.M. Cruz, et al., Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer, Nat. Prod. Commun. 4 (2009) 591-610. https://doi.org/10.1177/1934578X09004005.

[44]

G.I. Vazquez-Cervantes, D.R. Ortega, T.B. Ayala, et al., Redox and anti-inflammatory properties from hop components in beer-related to neuroprotection, Nutrients 13 (2021) 2000. https://doi.org/10.3390/nu13062000.

[45]

M. Trius-Soler, A. Vilas-Franquesa, A. Tresserra-Rimbau, et al., Effects of the non-alcoholic fraction of beer on abdominal fat, osteoporosis, and body hydration in women, Molecules 25 (2020) 3910. https://doi.org/10.3390/molecules25173910.

[46]

K. Obara, M. Mizutani, Y. Hitomi, et al., Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes, Clin. Nutr. 28 (2009) 278-284. https://doi.org/10.1016/j.clnu.2009.03.012.

[47]

L. Ceslova, M. Holcapek, M. Fidler, et al., Characterization of prenylflavonoids and hop bitter acids in various classes of Czech beers and hop extracts using high-performance liquid chromatography-mass spectrometry, J. Chromatogr. A 1216 (2009) 7249-7257. https://doi.org/10.1016/j.chroma.2009.09.022.

[48]

A. Mahli, A. Koch, K. Fresse, et al., Iso-alpha acids from hops (Humulus lupulus) inhibit hepatic steatosis, inflammation, and fibrosis, Lab. Invest. 98 (2018) 1614-1626. https://doi.org/10.1038/s41374-018-0112-x.

[49]

C.L. Miranda, J.F. Stevens, A. Helmrich, et al., Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines, Food Chem. Toxicol. 37 (1999) 271-285. https://doi.org/10.1016/S0278-6915(99)00019-8.

[50]

S. Sohrabvandi, S.M. Mousavi, S.H. Razavi, et al., Viability of probiotic bacteria in low alcohol- and non-alcoholic beer during refrigerated storage, Philippine Agricultural Scientist 93 (2010) 104-108.

[51]

J. Tekel, D. De Keukeleire, H. Rong, et al., Determination of the hop-derived phytoestrogen, 8-prenylnaringenin, in beer by gas chromatography/mass spectrometry, J. Agric. Food Chem. 47 (1999) 5059-5063. https://doi.org/10.1021/jf990645m.

[52]

W. Chen, T. Becker, F. Qian, et al., Beer and beer compounds: physiological effects on skin health. J. Eur. Acad. Dermatol. Venereol. 28 (2014) 142-150. https://doi.org/10.1111/jdv.12204.

[53]

M. Quesada-Molina, A. Munoz-Garach, F.J. Tinahones, et al., A new perspective on the health benefits of moderate beer consumption: involvement of the gut microbiota, Metabolites 9 (2019) 272. https://doi.org/10.3390/metabo9110272.

[54]

G. Arfelli, E. Sartini, Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection, Food Chem. 142 (2014) 152-158. https://doi.org/10.1016/j.foodchem.2013.07.008.

[55]

J.U. Fangel, J. Eiken, A. Sierksma, et al., Tracking polysaccharides through the brewing process, Carbohydr. Polym. 196 (2018) 465-473. https://doi.org/10.1016/j.carbpol.2018.05.053.

[56]

M. Kupetz, J. Aumer, D. Harms, et al., High-throughput β-glucan analyses and their relationship with beer filterability, Eur. Food Res. Technol. 243 (2017) 341-351. https://doi.org/10.1007/s00217-016-2748-3.

[57]

M. Krahl, S. Muller, M. Zarnkow, et al., Arabinoxylan and fructan in the malting and brewing process, Qual. Assur. Saf. Crop. 1 (2009) 246-255. https://doi.org/10.1111/j.1757-837X.2009.00035.x.

[58]

A.J. Das, P. Khawas, T. Miyaji, et al., HPLC and GC-MS analyses of organic acids, carbohydrates, amino acids and volatile aromatic compounds in some varieties of rice beer from northeast India, J. I. Brewing 120 (2014) 244-252. https://doi.org/10.1002/jib.134

[59]

P. Fantozzi, L. Montanari, F. Mancini, et al., In vitro antioxidant capacity from wort to beer, LWT-Food Sci. Technol. 31 (1998) 221-227. https://doi.org/10.1006/fstl.1997.0341.

[60]

P. Pohl, Determination and fractionation of metals in beer: a review, Food Addit Contam Part A Chem. Anal. Control Expo. Risk Assess. 25 (2008) 693-703. https://doi.org/10.1080/02652030701772323.

[61]

C.T. Price, K.J. Koval, J.R. Langford, Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis, Int. J. Endocrinol. 2013 (2013) 316783. https://doi.org/10.1155/2013/316783.

[62]

R. Cejnar, P. Dostalek, Silicon and Beer, Chem. Listy 107 (2013) 110-113.

[63]

C.W. Bamforth, Nutritional aspects of beer - a review, Nutr. Res. 22 (2002) 227-237. https://doi.org/10.1016/S0271-5317(01)00360-8.

[64]

J.E. Lee, J.S. Ha, H.Y. Park, et al., Alteration of gut microbiota composition by short-term low-dose alcohol intake is restored by fermented rice liquor in mice, Food Res. Int. 128 (2020) 108800. https://doi.org/10.1016/j.foodres.2019.108800.

[65]

X. Zhao, R. Zhou, H. Li, et al., The effects of moderate alcohol consumption on circulating metabolites and gut microbiota in patients with coronary artery disease, Front. Cardiovasc. Med. 8 (2021) 767692. https://doi.org/10.3389/fcvm.2021.767692.

[66]

A. Cuervo, C.G. de los Reyes-Gavilan, P. Ruas-Madiedo, et al., Red wine consumption is associated with fecal microbiota and malondialdehyde in a human population, J. Am. Coll. Nutr. 34 (2015) 135-141. https://doi.org/10.1080/07315724.2014.904763.

[67]

V.L. Peterson, N.J. Jury, R. Cabrera-Rubio, et al., Drunk bugs: chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice, Behav. Brain Res. 323 (2017) 172-176. https://doi.org/10.1016/j.bbr.2017.01.049.

[68]

S.T. Bjorkhaug, H. Aanes, S.P. Neupane, et al., Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption, Gut Microbes. 10 (2019) 663-675. https://doi.org/10.1080/19490976.2019.1580097.

[69]

E.A. Mutlu, P.M. Gillevet, H. Rangwala, et al., Colonic microbiome is altered in alcoholism, Am. J. Physiol. Gastrointest. Liver Physiol. 302 (2012) G966-G978. https://doi.org/10.1152/ajpgi.00380.2011.

[70]

M.D. Levitt, R. Li, E.G. DeMaster, et al., Use of measurements of ethanol absorption from stomach and intestine to assess human ethanol metabolism, Am. J. Physiol. 273 (1997) G951-G957. https://doi.org/10.1152/ajpgi.1997.273.4.G951.

[71]

E. Lee, J.E. Lee, Impact of drinking alcohol on gut microbiota: recent perspectives on ethanol and alcoholic beverage, Curr. Opin. Food Sci. 37 (2021) 91-97. https://doi.org/10.1016/j.cofs.2020.10.001.

[72]

K.L. Kosnicki, J.C. Penprase, P. Cintora, et al., Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome, Addict Biol. 24 (2019) 617-630. https://doi.org/10.1111/adb.12626.

[73]

R. Guo, J. Ren, Alcohol and acetaldehyde in public health: from marvel to menace, Int. J. Environ. Res. Public Health 7 (2010) 1285-1301. https://doi.org/10.3390/ijerph7041285.

[74]

S. Bluemel, L.R. Wang, C. Kuelbs, et al., Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice, Gut Microbes. 11 (2020) 265-275. https://doi.org/10.1080/19490976.2019.1595300.

[75]

A.Z. Leite, N.D. Rodrigues, M.I. Gonzaga, et al., Detection of increased plasma Interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of Type 2 diabetes patients, Front. Immunol. 8 (2017) 1107. https://doi.org/10.3389/fimmu.2017.01107.

[76]

J.M. Larsen, The immune response to Prevotella bacteria in chronic inflammatory disease, Immunology 151 (2017) 363-374. https://doi.org/10.1111/imm.12760.

[77]

M.I. Queipo-Ortuno, M. Boto-Ordonez, M. Murri, et al., Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers, Am. J. Clin. Nutr. 95 (2012) 1323-1334. https://doi.org/10.3945/ajcn.111.027847.

[78]

Y. Cao, J. Shen, Z.H. Ran, Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature, Gastroenterol. Res. Pract. 2014 (2014) 872725. https://doi.org/10.1155/2014/872725.

[79]

N. Zafari, M. Velayati, M. Fahim, et al., Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: molecular mechanisms, biomarkers, and therapeutic prospective, Life Sci. 305 (2022) 120760. https://doi.org/10.1016/j.lfs.2022.120760.

[80]

G.G. Chen, F.L. Shi, W. Yin, et al., Gut microbiota dysbiosis: the potential mechanisms by which alcohol disrupts gut and brain functions, Front Microbiol. 13 (2022) 916765. https://doi.org/10.3389/fmicb.2022.916765.

[81]

G.E. Jaskiw, M.E. Obrenovich, C.J. Donskey, The phenolic interactome and gut microbiota: opportunities and challenges in developing applications for schizophrenia and autism, Psychopharmacology 236 (2019) 1471-1489. https://doi.org/10.1007/s00213-019-05267-3.

[82]

W.R. Russell, S.H. Duncan, L. Scobbie, et al., Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein, Mol. Nutr. Food Res. 57 (2013) 523-535. https://doi.org/10.1002/mnfr.201200594.

[83]

H. Ma, Y.Z. Hu, B.W. Zhang, et al., Tea polyphenol - gut microbiota interactions: hints on improving the metabolic syndrome in a multi-element and multi-target manner, Food Sci. Hum. Wellness 11 (2022) 11-21. https://doi.org/10.1016/j.fshw.2021.07.002.

[84]

J. Muralidharan, I. Moreno-Indias, M. Bullo, et al., Effect on gut microbiota of a 1-y lifestyle intervention with Mediterranean diet compared with energy-reduced Mediterranean diet and physical activity promotion: PREDIMED-Plus Study, Am. J. Clin. Nutr. 114 (2021) 1148-1158. https://doi.org/10.1093/ajcn/nqab150.

[85]

G. Celano, M. Vacca, F.M. Calabrese, et al., The controversial role of human gut Lachnospiraceae, Eur. J. Clin. Invest. 51 (2021) 79-80.

[86]

D.O. Carvalho, L.F. Guido, A review on the fate of phenolic compounds during malting and brewing: technological strategies and beer styles, Food Chem. 372 (2022) 131093. https://doi.org/10.1016/j.foodchem.2021.131093.

[87]

J.Y. Ou, J.Q. Huang, Y. Song, et al., Feruloylated Oligosaccharides from Maize Bran modulated the gut microbiota in rats, Plant Foods Hum. Nutr. 71 (2016) 123-128. https://doi.org/10.1007/s11130-016-0547-4.

[88]

P.M. Aron, T.H. Shellhammer, A discussion of polyphenols in beer physical and flavour stability, J. I. Brewing 116 (2010) 369-380. https://doi.org/10.1002/j.2050-0416.2010.tb00788.x.

[89]

J. Wannenmacher, M. Gastl, T. Becker, Phenolic substances in beer: structural diversity, reactive potential and relevance for brewing process and beer quality, Compr. Rev. Food Sci. Food Saf. 17 (2018) 953-988. https://doi.org/10.1111/1541-4337.12352.

[90]

J.R.O. Neto, I.Y.L. de Macedo, N.R.L. de Oliveira, et al., Antioxidant capacity and total phenol content in hop and malt commercial samples, Electroanalysis 29 (2017) 2788-2792. https://doi.org/10.1002/elan.201700492.

[91]

D. Sibalic, M. Planinic, A. Juric, et al., Analysis of phenolic compounds in beer: from raw materials to the final product, Chemical Papers 75 (2021) 67-76. https://doi.org/10.1007/s11696-020-01276-1.

[92]

D.O. Carvalho, L.F. Guido, A review on the fate of phenolic compounds during malting and brewing: technological strategies and beer styles, Food Chem. 372 (2022) 131093. https://doi.org/10.1016/j.foodchem.2021.131093.

[93]

S. Venturelli, M. Burkard, M. Biendl, et al., Prenylated chalcones and flavonoids for the prevention and treatment of cancer, Nutrition 32 (2016) 1171-1178. https://doi.org/10.1016/j.nut.2016.03.020.

[94]

S. Radonjic, V. Maras, J. Raicevic, et al., Wine or beer? Comparison, changes and improvement of polyphenolic compounds during technological phases, Molecules 25 (2020) 4960. https://doi.org/10.3390/molecules25214960.

[95]

Q. Kang, J.Y. Sun, B.W. Wang, et al., Wine, beer and Chinese Baijiu in relation to cardiovascular health: the impact of moderate drinking. Food Sci. Hum. Wellness 12 (2023) 1-13. https://doi.org/10.1016/j.fshw.2022.07.013.

[96]

J.F. Stevens, A.W. Taylor, M.L. Deinzer, Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 832 (1999) 97-107. https://doi.org/10.1016/s0021-9673(98)01001-2.

[97]

H.F. Neumann, J. Frank, S. Venturelli, et al., Bioavailability and cardiometabolic effects of xanthohumol: evidence from animal and human studies, Mol. Nutr. Food Res. 66 (2022) e2100831. https://doi.org/10.1002/mnfr.202100831.

[98]

Y. Zhang, G. Bobe, J.S. Revel, et al., Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism, Mol. Nutr. Food Res. 64 (2020) e1900789. https://doi.org/10.1002/mnfr.201900789.

[99]

F. Donoso, S. Egerton, T.F.S. Bastiaanssen, et al., Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the rat, Psychoneuroendocrinology 116 (2020) 104673. https://doi.org/10.1016/j.psyneuen.2020.104673.

[100]

P. Cermak, J. Olsovska, A. Mikyska, et al., Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria, APMIS. 125 (2017) 1033-1038. https://doi.org/10.1111/apm.12747.

[101]

M. Makarewicz, I. Drozdz, T. Tarko, et al., The interactions between polyphenols and microorganisms, especially gut microbiota, Antioxidants 10 (2021) 188. https://doi.org/10.3390/antiox10020188.

[102]

R. Bradley, B.O. Langley, J.J. Ryan, et al., Xanthohumol microbiome and signature in healthy adults (the XMaS trial): a phase Ⅰ triple-masked, placebo-controlled clinical trial, Trials 21 (2020) 835. https://doi.org/10.1186/s13063-020-04769-2.

[103]

B.O. Langley, J.J. Ryan, D. Hanes, et al., Xanthohumol microbiome and signature in healthy adults (the XMaS Trial): safety and tolerability results of a Phase Ⅰ Triple-Masked, Placebo-Controlled Clinical Trial, Mol. Nutr. Food Res. 65 (2021) e2001170. https://doi.org/10.1002/mnfr.202001170.

[104]

R.J. Robbins, Phenolic acids in foods: an overview of analytical methodology, J. Agric. Food Chem. 51 (2003) 2866-2887. https://doi.org/10.1021/jf026182t.

[105]

D. Szwajgier, K. Borowiec, K. Pustelniak, The neuroprotective effects of phenolic acids: molecular mechanism of action, Nutrients 9 (2017) 477. https://doi.org/10.3390/nu9050477.

[106]

A.M. Mahmoud, O.E. Hussein, W.G. Hozayen, et al., Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats, Environ. Sci. Pollut. Res. Int. 27 (2020) 7910-7921. https://doi.org/10.1007/s11356-019-07532-6.

[107]

W. Wang, Y. Pan, L. Wang, et al., Optimal dietary ferulic acid for suppressing the obesity-related disorders in leptin-deficient obese C57BL/6J-ob/ob mice, J. Agric. Food Chem. 67 (2019) 4250-4258. https://doi.org/10.1021/acs.jafc.8b06760.

[108]

Z.Y. Zhang, P. Yang, J.B. Zhao, Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health, Anim. Nutr. 9 (2022) 31-38. https://doi.org/10.1016/j.aninu.2021.08.004.

[109]

L. Rondini, M.N. Peyrat-Maillard, A. Marsset-Baglieri, et al., Bound ferulic acid from bran is more bioavailable than the free compound in rat, J. Agric. Food Chem. 52 (2004) 4338-4343. https://doi.org/10.1021/jf0348323.

[110]

Z. Liu, Z. Ma, H. Zhang, et al., Ferulic acid increases intestinal Lactobacillus and improves cardiac function in TAC mice, Biomed. Pharmacother. 120 (2019) 109482. https://doi.org/10.1016/j.biopha.2019.109482.

[111]

Y. Ma, K. Chen, L. Lv, et al., Ferulic acid ameliorates nonalcoholic fatty liver disease and modulates the gut microbiota composition in high-fat diet fed ApoE-/- mice, Biomed. Pharmacother. 113 (2019) 108753. https://doi.org/10.1016/j.biopha.2019.108753.

[112]

Y. Gu, Y. Zhang, M. Li, et al., Ferulic acid ameliorates atherosclerotic injury by modulating gut microbiota and lipid metabolism, Front. Pharmacol. 12 (2021) 621339. https://doi.org/10.3389/fphar.2021.621339.

[113]

G.L. Ma, Y.T. Chen, Polyphenol supplementation benefits human health via gut microbiota: a systematic review via meta-analysis, J. Funct. Foods 66 (2020) 103829. https://doi.org/10.1016/j.jff.2020.103829.

[114]

S.M. Aravind, S. Wichienchot, R. Tsao, et al., Role of dietary polyphenols on gut microbiota, their metabolites and health benefits, Food Res. Int. 142 (2021) 110189. https://doi.org/10.1016/j.foodres.2021.110189.

[115]

M. Wu, Q. Luo, R. Nie, et al., Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota, Crit. Rev. Food Sci. Nutr. 61 (2021) 2175-2193. https://doi.org/10.1080/10408398.2020.1773390.

[116]

H.B. Ul Ain, F. Saeed, N. Ahmad, et al., Functional and health-endorsing properties of wheat and barley cell wall’s non-starch polysaccharides, Int. J. Food Prop. 21 (2018) 1463-1480. https://doi.org/10.1080/10942912.2018.1489837

[117]

D. So, K. Whelan, M. Rossi, et al., Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis, Am. J. Clin. Nutr. 107 (2018) 965-983. https://doi.org/10.1093/ajcn/nqy041.

[118]

B.O. Petersen, M. Nilsson, M. Bojstrup, et al., H-1 NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer, Food Chem. 150 (2014) 65-72. https://doi.org/10.1016/j.foodchem.2013.10.136.

[119]

E.J. Lao, N. Dimoso, J. Raymond, et al., The prebiotic potential of brewers’ spent grain on livestock’s health: a review, Trop. Anim. Health Prod. 52 (2020) 461-472. https://doi.org/10.1007/s11250-019-02120-9.

[120]

W.F. Broekaert, C.M. Courtin, K. Verbeke, et al., Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides, Crit. Rev. Food Sci. 51 (2011) 178-194. https://doi.org/10.1080/10408390903044768

[121]

J.B. Cheng, J.L. Hu, F. Geng, et al., Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health, Food Sci. Hum. Wellness 11 (2022) 1101-1110. https://doi.org/10.1016/j.fshw.2022.04.002.

[122]

I.E.J.A. Francois, O. Lescroart, W.S. Veraverbeke, et al., Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial, Br. J. Nutr. 108 (2012) 2229-2242. https://doi.org/10.1017/S0007114512000372.

[123]

A. Jefferson, K. Adolphus, The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: a systematic review, Front Nutr. 6 (2019) 33. https://doi.org/10.3389/fnut.2019.00033.

[124]

W.S.F. Chung, A.W. Walker, D. Bosscher, et al., Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides, BMC Microbiol. 20 (2020) 283. https://doi.org/10.1186/s12866-020-01968-4.

[125]

C. De Filippo, D. Cavalieri, M. Di Paola, et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 14691-14696. https://doi.org/10.1073/pnas.1005963107.

[126]

A.W. Walker, J. Ince, S.H. Duncan, et al., Dominant and diet-responsive groups of bacteria within the human colonic microbiota, ISME J. 5 (2011) 220-230. https://doi.org/10.1038/ismej.2010.118.

[127]

A. Megur, E.B.M. Daliri, D. Baltriukiene, et al., Prebiotics as a tool for the prevention and treatment of obesity and diabetes: classification and ability to modulate the gut microbiota, Int. J. Mol. Sci. 23 (2022) 6097. https://doi.org/10.3390/ijms23116097

[128]

M. Shoukat, A. Sorrentino, Cereal beta-glucan: a promising prebiotic polysaccharide and its impact on the gut health, Int. J. Biol. Macromol. 56 (2021) 2088-2097. https://doi.org/10.1016/j.ijbiomac.2021.02.087

[129]

Y. Wang, N.P. Ames, H.M. Tun, et al., High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk, Front. Microbiol. 7 (2016) 129. https://doi.org/10.3389/fmicb.2016.00129.

[130]

M.P. Arena, G. Caggianiello, D. Fiocco, et al., Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria, Int. J. Mol. Sci. 15 (2014) 3025-3039. https://doi.org/10.3390/ijms15023025.

[131]

S.M. Tosh, N. Bordenave, Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota, Nutr. Rev. 78 (2020) 13-20. https://doi.org/10.1093/nutrit/nuz085.

[132]

M.S.R. Rajoka, J.L. Shi, H.M. Mehwish, et al., Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health, Food Sci. Hum. Wellness 6 (2017) 121-130. https://doi.org/10.1016/j.fshw.2017.07.003.

[133]

H. Zhao, M. He, M. Zhang, et al., Colorectal cancer, gut microbiota and traditional Chinese medicine: a systematic review, Am. J. Chin. Med. 49 (2021) 805-828. https://doi.org/10.1142/S0192415X21500385.

[134]

P. Maity, I.K. Sen, I. Chakraborty, et al., Biologically active polysaccharide from edible mushrooms: a review, Int. J. Biol. Macromol. 172 (2021) 408-417. https://doi.org/10.1016/j.ijbiomac.2021.01.081.

[135]

S. Chaichian, B. Moazzami, F. Sadoughi, et al., Functional activities of beta-glucans in the prevention or treatment of cervical cancer, J. Ovarian Res. 13 (2020) 24. https://doi.org/10.1186/s13048-020-00626-7.

[136]

G.D. Brown, Dectin-1: a signalling non-TLR pattern-recognition receptor, Nat. Rev. Immunol. 6 (2006) 33-43. https://doi.org/10.1038/nri1745.

[137]

G.C. Chan, W.K. Chan, D.M. Sze, The effects of beta-glucan on human immune and cancer cells, J. Hematol Oncol. 2 (2009) 25. https://doi.org/10.1186/1756-8722-2-25.

[138]

S.M. Wani, A. Gani, S.A. Mir, et al., Beta-Glucan: a dual regulator of apoptosis and cell proliferation, Int. J. Biol. Macromol. 182 (2021) 1229-1237. https://doi.org/10.1016/j.ijbiomac.2021.05.065.

[139]

M. Iorizzo, F. Coppola, F. Letizia, et al., Role of yeasts in the brewing process: tradition and innovation, Processes 9 (2021) 839. https://doi.org/10.3390/pr9050839.

[140]

F. Iattici, M. Catallo, L. Solieri, Designing new yeasts for craft brewing: when natural biodiversity meets biotechnology, Beverages 6 (2020) 3. https://doi.org/10.3390/beverages6010003.

[141]

A. Capece, R. Romaniello, G. Siesto, et al., Conventional and non-conventional yeasts in beer production, Fermentation 4 (2018) 38. https://doi.org/10.3390/fermentation4020038.

[142]

G. Ianiro, G. Bruno, L. Lopetuso, et al., Role of yeasts in healthy and impaired gut microbiota: the gut mycome, Curr. Pharm. Des. 20 (2014) 4565-4569. https://doi.org/10.2174/13816128113196660723.

[143]

S.I. Gringhuis, T.M. Kaptein, B.A. Wevers, et al., Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome, Nat. Immunol. 13 (2012) 246-263. https://doi.org/10.1038/ni.2222.

[144]

A. Vilela, F. Cosme, A. Ines, Wine and non-dairy fermented beverages: a novel source of pro- and prebiotics, Fermentation 6 (2020) 113. https://doi.org/10.3390/fermentation6040113.

[145]

A. Czech, A. Smolczyk, E.R. Grela, et al., Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on growth performance, basic nutrients digestibility and biochemical blood profile in piglets, J. Anim. Physiol. Anim. Nutr. 102 (2018) 1720-1730. https://doi.org/10.1111/jpn.12987.

[146]

D.H. Kim, J.W. Chon, H. Kim, et al., Modulation of intestinal microbiota in mice by kefir administration, Food Sci Biotechnol. 24 (2015) 1397-1403. https://doi.org/10.1007/s10068-015-0179-8.

[147]

D.H. Kim, D. Jeong, H. Kim, et al., Modern perspectives on the health benefits of kefir in next generation sequencing era: improvement of the host gut microbiota, Crit. Rev. Food Sci. 59 (2019) 1782-1793. https://doi.org/10.1080/10408398.2018.1428168.

[148]

V. Cecarini, O. Gogoi, L. Bonfili, et al., Modulation of gut microbiota and neuroprotective effect of a yeast-enriched beer, Nutrients 14 (2022) 2380. https://doi.org/10.3390/nu14122380.

[149]

S. Possemiers, I. Pinheiro, A. Verhelst, et al., A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota and protects against inflammation, as studied in an integrated in vitro approach, J. Agric. Food Chem. 61 (2013) 9380-9392. https://doi.org/10.1021/jf402137r.

[150]
World Health Organization. Global status report on alcohol and health 2018. (2018). https://www.who.int/publications/i/item/9789241565639.
[151]

B.R. Hamaker, Y.E. Tuncil, A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota, J. Mol. Biol. 426 (2014) 3838-3850. https://doi.org/10.1016/j.jmb.2014.07.028.

[152]

D. Bongaerts, J. De Roos, L. De Vuyst, Technological and environmental features determine the uniqueness of the Lambic beer microbiota and production process, Appl. Environ. Microbiol. 87 (2021) e00612-21. https://doi.org/10.1128/AEM.00612-21.

[153]

M.G. Griswold, N. Fullman, C. Hawley, et al., Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392 (2018) 10152. https://doi.org/10.1016/S0140-6736(18)31310-2.

[154]

O.V. Gaisenok, What is hidden behind the gender differences of carotid atherosclerosis? Russian Open Medical Journal 11 (2022) e0203. https://doi.org/10.15275/rusomj.2022.0203.

[155]

B.C. Zyriax, K. Lau, T. Klahn, et al., Association between alcohol consumption and carotid intima-media thickness in a healthy population: data of the STRATEGY study (Stress, Atherosclerosis and ECG Study), Eur. J. Clin. Nutr. 64 (2010) 1199-1206. https://doi.org/10.1038/ejcn.2010.144.

[156]

V. Vatsalya, H.B. Liaquat, K. Ghosh, et al., A review on the sex differences in organ and system pathology with alcohol drinking, Curr. Drug Abuse. Rev. 9 (2016) 87-92. https://doi.org/10.2174/1874473710666170125151410.

[157]

S. Lozenov, B. Krastev, G. Nikolaev, et al., Gut microbiome composition and its metabolites are a key regulating factor for malignant transformation, metastasis and antitumor immunity, Int. J. Mol. Sci. 24 (2023) 5978. https://doi.org/10.3390/ijms24065978.

[158]

C. Li, Understanding interactions among diet, host and gut microbiota for personalized nutrition, Life Sci. 312 (2023) 121265. https://doi.org/10.1016/j.lfs.2022.121265.

Food Science and Human Wellness
Pages 3126-3138
Cite this article:
Liu Z, Shi J, Wang L, et al. Association of moderate beer consumption with the gut microbiota. Food Science and Human Wellness, 2024, 13(6): 3126-3138. https://doi.org/10.26599/FSHW.2023.9250004

930

Views

118

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 February 2023
Revised: 26 March 2023
Accepted: 17 May 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return