AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Food-derived peptides with inhibitory capacity for HMG-CoA reductase activity: a potential nutraceutical for hypercholesterolemia

Guillermo Santos-Sáncheza,b( )Ana Isabel Álvarez-Lópeza,bEduardo Ponce-Españaa,bPatricia Judith Lardonea,bAntonio Carrillo-Vicoa,b( )Ivan Cruz-Chamorroa,b
Instituto de Biomedicina de Sevilla, Instituto de Biomedicina de Sevilla (IbiS); Hospital Universitario Virgen del Rocío; Consejo Superior de Investigaciones Científicas (CSIC); Universidad de Sevilla, Seville 41013, Spain
Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Several food-derived peptides have been shown to inhibit the HMG-CoAR activity.

• Biopeptides inhibit HMG-CoAR activity by competitive or non-competitive mechanisms.

• Physicochemical characteristics of peptides define the type of enzyme inhibition.

• Food-derived peptides may help to reduce the side effects of statin therapy.

• Biopeptides are potential compounds as future hypocholesterolemic treatments.

Graphical Abstract

Abstract

Cardiovascular diseases (CVDs) are the leading global cause of mortality and disease burden. Statins are the most prescribed lipid-lowering drugs to treat hypercholesterolemia and prevent CVDs. The biochemical mechanism of statins consists of competitive inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase enzyme (HMG-CoAR), the limiting enzyme in cholesterol biosynthesis. Due to statin intolerance in some patient groups, the search for new inhibitors is a field of great interest. This review focusses on the studies reporting the inhibitory effect of protein hydrolysates and biopeptides on the HMG-CoAR enzyme activity. The analysis of the action mechanism and physicochemical characteristics of the HMG-CoAR inhibitory peptides revealed that the molecular weight, amino acid composition, charge, and polarity are key aspects of the interaction with the HMG-CoAR enzyme. In conclusion, this review reveals the potential of using food peptides as new cholesterol-lowering agents and opens a new interesting field of research. However, clinical approaches are mandatory to confirm their therapeutic hypercholesterolemic effect.

References

[1]
World Health Organization, Cardiovascular diseases (CVDs), 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
[2]

N. Townsend, D. Kazakiewicz, F. Lucy Wright, et al., Epidemiology of cardiovascular disease in Europe, Nat. Rev. Cardiol. 19 (2021) 133-143. https://doi.org/10.1038/s41569-021-00607-3.

[3]

P. Libby, The changing landscape of atherosclerosis, Nature 592 (2021) 524-533. https://doi.org/10.1038/s41586-021-03392-8.

[4]

C.A. Perry, K.M. Gadde, The role of calorie restriction in the prevention of cardiovascular disease, Curr. Atheroscler. Rep. 24(4) (2022) 1-8. https://doi.org/10.1007/s11883-022-00999-8.

[5]

J. Delgado-Lista, J.F. Alcala-Diaz, J.D. Torres-Peña, et al., Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial, Lancet 399 (2022) 1876-1885. https://doi.org/10.1016/S0140-6736(22)00122-2.

[6]

A.C. Razavi, A. Mehta, L.S. Sperling, Statin therapy for the primary prevention of cardiovascular disease: Pros, Atherosclerosis 356 (2022) 41-45. https://doi.org/10.1016/j.atherosclerosis.2022.07.004.

[7]

P. Joseph, G. Roshandel, P. Gao, et al., Fixed-dose combination therapies with and without aspirin for primary prevention of cardiovascular disease: an individual participant data meta-analysis, Lancet 398 (2021) 1133-1146. https://doi.org/10.1016/S0140-6736(21)01827-4.

[8]

B.B. Adhyaru, T.A. Jacobson, Safety and efficacy of statin therapy, Nat. Rev. Cardiol. 15 (2018) 757-769. https://doi.org/10.1038/s41569-018-0098-5.

[9]

C. Murphy, E. Deplazes, C.G. Cranfield, et al., The role of structure and biophysical properties in the pleiotropic effects of statins, Int. J. Mol. Sci. 21 (2020) 8745. https://doi.org/10.3390/ijms21228745.

[10]

D.S. Gesto, C. Pereira, N.M. Cerqueira, et al., An atomic-level perspective of HMG-CoA-reductase: the target enzyme to treat hypercholesterolemia, Molecules 25 (2020) 3891. https://doi.org/10.3390/molecules25173891.

[11]

P.R. Hebert, J.M. Gaziano, K.S. Chan, et al., Cholesterol lowering with statin drugs, risk of stroke, and total mortality: an overview of randomized trials, JAMA 278 (1997) 313-321. https://doi.org/10.1001/jama.1997.03550040069040.

[12]

J.A. Friesen, V.W. Rodwell, The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases, Genome Biol. 5 (2004) 1-7. https://doi.org/10.1186/gb-2004-5-11-248.

[13]

G. Lippi, C. Mattiuzzi, G. Cervellin, Statins popularity: a global picture, Br. J. Clin. Pharmacol. 85 (2019) 1614. https://doi.org/10.1111/bcp.13944.

[14]

M. Ruscica, N. Ferri, M. Banach, et al., Side effects of statins: from pathophysiology and epidemiology to diagnostic and therapeutic implications, Cardiovasc. Res. 118 (2022) 3288-3304. https://doi.org/10.1093/cvr/cvac020.

[15]

M. Banach, Statin intolerance—we know everything, we know nothing, J. Clin. Med. 11 (2022) 5250. https://doi.org/10.3390/jcm11175250.

[16]

I. Bytyçi, P.E. Penson, D.P. Mikhailidis, et al., Prevalence of statin intolerance: a meta-analysis, Eur. Heart J. 43 (2022) 3213-3223. https://doi.org/10.1093/eurheartj/ehac015.

[17]

P.E. Penson, E. Bruckert, D. Marais, et al., Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP), J. Cachexia Sarcopenia Muscle 13 (2022) 1596-1622. https://doi.org/10.1002/jcsm.12960.

[18]

M. Ruscica, P.E. Penson, N. Ferri, et al., Impact of nutraceuticals on markers of systemic inflammation: potential relevance to cardiovascular diseases-a position paper from the International Lipid Expert Panel (ILEP), Prog. Cardiovasc. Dis. 67 (2021) 40-52. https://doi.org/10.1016/j.pcad.2021.06.010.

[19]

A. Santini, G.C. Tenore, E. Novellino, Nutraceuticals: a paradigm of proactive medicine, Eur. J. Pharm. Sci. 96 (2017) 53-61. https://doi.org/10.1016/j.ejps.2016.09.003.

[20]

M. AlAli, M. Alqubaisy, M.N. Aljaafari, et al., Nutraceuticals: transformation of conventional foods into health promoters/disease preventers and safety considerations, Molecules 26 (2021) 2540. https://doi.org/10.3390/molecules26092540.

[21]

S. Chakrabarti, S. Guha, K. Majumder, Food-derived bioactive peptides in human health: challenges and opportunities, Nutrients 10 (2018) 1738. https://doi.org/10.3390/nu14061188.

[22]

D.E. Cruz-Casas, C.N. Aguilar, J.A. Ascacio-Valdés, et al., Enzymatic hydrolysis and microbial fermentation: the most favorable biotechnological methods for the release of bioactive peptides, Food Chem. 3 (2021) 100047. https://doi.org/10.1016/j.fochms.2021.100047.

[23]

I. Cruz-Chamorro, N. Álvarez-Sánchez, M. del Carmen Millán-Linares, et al., Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes, Food Res. Int. 126 (2019) 108585. https://doi.org/10.1016/j.foodres.2019.108585.

[24]

I. Cruz-Chamorro, G. Santos-Sánchez, C. Bollati, et al., Hempseed (Cannabis sativa) peptides WVSPLAGRT and IGFLIIWV exert anti-inflammatory activity in the LPS-stimulated human hepatic cell line, J. Agric. Food Chem. 70 (2022) 577-583. https://doi.org/10.1021/acs.jafc.1c07520.

[25]

C. Bollati, I. Cruz-Chamorro, G. Aiello, et al., Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3), Food Res. Int. 152 (2022) 110720. https://doi.org/10.1016/j.foodres.2021.110720.

[26]

G. Santos-Sánchez, I. Cruz-Chamorro, A.I. Álvarez-Ríos, et al., Lupinus angustifolius protein hydrolysates reduce abdominal adiposity and ameliorate metabolic associated fatty liver disease (MAFLD) in Western diet fed-ApoE−/− mice, Antioxidants 10 (2021) 1222. https://doi.org/10.3390/antiox10081222.

[27]

I. Cruz-Chamorro, N. Álvarez-Sánchez, G. Santos-Sánchez, et al., Immunomodulatory and antioxidant properties of wheat gluten protein hydrolysates in human peripheral blood mononuclear cells, Nutrients 12 (2020) 1673. https://doi.org/10.3390/nu12061673.

[28]

I. Cruz-Chamorro, N. Álvarez-Sánchez, A.I. Álvarez-Ríos, et al., Safety and Efficacy of a beverage containing lupine protein hydrolysates on the immune, oxidative and lipid status in healthy subjects: an intervention study (the Lupine-1 Trial), Mol. Nutr. Food Res. 65 (2021) 2100139. https://doi.org/10.1002/mnfr.202100139.

[29]

G. Santos-Sánchez, I. Cruz-Chamorro, C. Bollati, et al., A Lupinus angustifolius protein hydrolysate exerts hypocholesterolemic effect in western diet-fed-ApoE−/− mice through the modulation of LDLR and PCSK9 pathways, Food Funct. 13 (2022) 4158-4170. https://doi.org/10.1039/D1FO03847H.

[30]

G. Aiello, Y. Li, G. Boschin, et al., Chemical and biological characterization of spirulina protein hydrolysates: focus on ACE and DPP-IV activities modulation, J. Funct. Foods 63 (2019) 103592. https://doi.org/10.1016/j.jff.2019.103592.

[31]

Y. Li, G. Aiello, E.M.A. Fassi, et al., Investigation of Chlorella pyrenoidosa protein as a source of novel angiotensin i-converting enzyme (ACE) and dipeptidyl peptidase-iv (DPP-IV) inhibitory peptides, Nutrients 13 (2021) 1624. https://doi.org/10.3390/nu13051624.

[32]

R. Pugliese, M. Bartolomei, C. Bollati, et al., Gel-forming of self-assembling peptides functionalized with food bioactive motifs modulate DPP-IV and ACE inhibitory activity in human intestinal Caco-2 cells, Biomedicines 10 (2022) 330. https://doi.org/10.3390/biomedicines10020330.

[33]

C. Lammi, C. Bollati, S. Ferruzza, et al., Soybean-and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum, Nutrients 10 (2018) 1082. https://doi.org/10.3390/nu10081082.

[34]

R.K.D. Bravo, M.R.N. Angelia, L.Y.C. Uy, et al., Isolation, purification and characterization of the antibacterial, antihypertensive and antioxidative properties of the bioactive peptides in the purified and proteolyzed major storage protein of pigeon pea (Cajanus cajan) seeds, Food Chem. 4 (2022) 100062. https://doi.org/10.1016/j.fochms.2021.100062.

[35]

M.S. Coelho, R.A.M. Soares-Freitas, J.A.G. Arêas, et al., Peptides from chia present antibacterial activity and inhibit cholesterol synthesis, Plant Foods Hum. Nutr. 73 (2018) 101-107. https://doi.org/10.1007/s11130-018-0668-z.

[36]

M.U. Khan, M. Pirzadeh, C.Y. Förster, et al., Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives, Biomolecules 8 (2018) 110. https://doi.org/10.3390/biom8040110.

[37]

A. Christopher, J.P. Bartkowski, T. Haverda, Portraits of veganism: a comparative discourse analysis of a second-order subculture, Societies 8 (2018) 55. https://doi.org/10.3390/soc8030055.

[38]

M. García, P. Puchalska, C. Esteve, et al., Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities, Talanta 106 (2013) 328-349. https://doi.org/10.1016/j.talanta.2012.12.041.

[39]

M. Carbonaro, A. Nucara, Legume proteins and peptides as compounds in nutraceuticals: a structural basis for dietary health effects, Nutrients 14 (2022) 1188. https://doi.org/10.3390/nu14061188.

[40]
Y. Maphosa, V.A. Jideani, The role of legumes in human nutrition in M.C. Hucda (Ed.), Functional food-improve health through adequate food, IntechOpen, 2017, pp. 103-121. https://doi.org/10.5772/intechopen.69127.
[41]

I.F. Bolarinwa, M.F.A. Al-Ezzi, I.E. Carew, et al., Nutritional value of legumes in relation to human health: a review, Adv. J. Food Sci. Technol. 17 (2019) 72-85. https://doi.org/10.19026/ajfst.17.6032.

[42]

N.S. Affrifah, R.D. Phillips, F.K. Saalia, Cowpeas: nutritional profile, processing methods and products—a review, Legum Sci. 4 (2021) e131. https://doi.org/10.1002/leg3.131.

[43]

M.R. Marques, R.A.M.S. Freitas, A.C.C. Carlos, et al., Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles, Food Chem. 168 (2015) 288-293. https://doi.org/10.1016/j.foodchem.2014.07.049.

[44]

M. Silva, B. Philadelpho, J. Santos, et al., IAF, QGF, and QDF peptides exhibit cholesterol-lowering activity through a statin-like HMG-CoA reductase regulation mechanism: in silico and in vitro approach, Int. J. Mol. Sci. 22 (2021) 11067. https://doi.org/10.3390/ijms222011067.

[45]

M.B.d.C. e Silva, C.A. da Cruz Souza, B.O. Philadelpho, et al., In vitro and in silico studies of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitory activity of the cowpea Gln-Asp-Phe peptide, Food Chem. 259 (2018) 270-277. https://doi.org/10.1016/j.foodchem.2018.03.132.

[46]

M.R. Marques, G.G. Fontanari, D.C. Pimenta, et al., Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity, Food Res. Int. 77 (2015) 43-48. https://doi.org/10.1016/j.foodres.2015.04.020.

[47]

J.R. da Silva, M.B.d.C. e Silva, B.O. Philadelpho, et al., PyrGF and GSTLN peptides enhance pravastatin’s inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme, Food Biosci. 44 (2021) 101451. https://doi.org/10.1016/j.fbio.2021.101451.

[48]

J. Alsina, F. Albericio, Solid‐phase synthesis of C-terminal modified peptides, Pept. Sci. 71 (2003) 454-477. https://doi.org/10.1002/bip.10492.

[49]

I. Cruz-Chamorro, G. Santos-Sánchez, A.I. Álvarez-López, et al., Pleiotropic biological effects of Lupinus spp. protein hydrolysates, Trends Food Sci. Technol. 133 (2023) 244-266. https://doi.org/10.1016/j.tifs.2023.02.011.

[50]

C. Lammi, C. Zanoni, G.M. Scigliuolo, et al., Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2 cell line, J. Agric. Food Chem. 62 (2014) 7151-7159. https://doi.org/10.1021/jf500795b.

[51]

C. Lammi, G. Aiello, G. Vistoli, et al., A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein, J. Funct. Foods 24 (2016) 297-306. https://doi.org/10.1016/j.jff.2016.04.017.

[52]

C. Lammi, C. Bollati, D. Lecca, et al., Lupin peptide T9 (GQEQSHQDEGVIVR) modulates the mutant PCSK9D374Y pathway: in vitro characterization of its dual hypocholesterolemic behavior, Nutrients 11 (2019) 1665. https://doi.org/10.3390/nu11071665.

[53]

C. Lammi, J. Sgrignani, G. Roda, et al., Inhibition of PCSK9D374Y/LDLR protein-protein interaction by computationally designed T9 lupin peptide, ACS Med. Chem. Lett. 10 (2018) 425-430. https://doi.org/10.1021/acsmedchemlett.8b00464.

[54]

C. Lammi, C. Zanoni, A. Arnoldi, et al., YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation, J. Food Biochem. 42 (2018) e12524. https://doi.org/10.1111/jfbc.12524.

[55]

C. Zanoni, G. Aiello, A. Arnoldi, et al., Investigations on the hypocholesterolaemic activity of LILPKHSDAD and LTFPGSAED, two peptides from lupin β-conglutin: focus on LDLR and PCSK9 pathways, J. Funct. Foods 32 (2017) 1-8. https://doi.org/10.1016/j.jff.2017.02.009.

[56]

C. Lammi, G. Aiello, C. Bollati, et al., Trans-epithelial transport, metabolism and biological activity assessment of the multi-target lupin peptide LILPKHSDAD (P5) and its metabolite LPKHSDAD (P5-Met), Nutrients 13 (2021) 863. https://doi.org/10.3390/nu13030863.

[57]

C. Lammi, G. Aiello, L. Dellafiora, et al., Assessment of the multifunctional behavior of lupin peptide P7 and its metabolite using an integrated strategy, J. Agric. Food Chem. 68 (2020) 13179-13188. https://doi.org/10.1021/acs.jafc.0c00130.

[58]

G. Santos-Sánchez, I. Cruz-Chamorro, A.I. Álvarez-Ríos, et al., Bioactive peptides from Lupin (Lupinus angustifolius) prevent the early stages of atherosclerosis in Western diet-fed ApoE-/- mice, J. Agric. Food Chem. 70 (2022) 8243-8253. https://doi.org/10.1021/acs.jafc.2c00809.

[59]

C. Chatterjee, S. Gleddie, C.W. Xiao, Soybean bioactive peptides and their functional properties, Nutrients 10 (2018) 1211. https://doi.org/10.3390/nu10091211.

[60]

V. Pak, M. Koo, T. Kasymova, et al., Isolation and identification of peptides from soy 11S-globulin with hypocholesterolemic activity, Chem. Nat. Compd. 41 (2005) 710-714. https://doi.org/10.1007/s10600-006-0017-6.

[61]

V. Pak, M. Koo, N. Lee, et al., Structure—activity relationships of the peptide Ile-Ala-Val-Pro and its derivatives revealed using the semi-empirical AM1 method, Chem. Nat. Compd. 41 (2005) 454-460. https://doi.org/10.1007/s10600-005-0176-x.

[62]

V.V. Pak, M. Koo, D.Y. Kwon, et al., Design of a highly potent inhibitory peptide acting as a competitive inhibitor of HMG-CoA reductase, Amino Acids 43 (2012) 2015-2025. https://doi.org/10.1007/s00726-012-1276-0.

[63]

C. Lammi, C. Zanoni, A. Arnoldi, IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway, J. Funct. Foods 14 (2015) 469-478. https://doi.org/10.1016/j.jff.2015.02.021.

[64]

V. Pak, M. Koo, D. Kwon, et al., Conformation analysis of Ile-Ala-Val-Pro peptide and its derivatives by circular dichroism, Chem. Nat. Compd. 40 (2004) 398-404. https://doi.org/10.1023/B:CONC.0000048257.95951.88

[65]

V.V. Pak, M.S. Koo, N.R. Lee, et al., Hypocholesterolemic soybean peptide (IAVP) inhibits HMG-CoA reductase in a competitive manner, Food Sci. Biotechnol. 14 (2005) 727-731.

[66]

V.V. Pak, M. Koo, M.J. Kim, et al., Modeling an active conformation for linear peptides and design of a competitive inhibitor for HMG-CoA reductase, J. Mol. Recognit. 21 (2008) 224-232. https://doi.org/10.1002/jmr.889.

[67]

C. Lammi, C. Zanoni, A. Arnoldi, et al., Two peptides from soy β-conglycinin induce a hypocholesterolemic effect in HepG2 Cells by a statin-like mechanism: comparative in vitro and in silico modeling studies, J. Agric. Food Chem. 63 (2015) 7945-7951. https://doi.org/10.1021/acs.jafc.5b03497.

[68]

M. Yoshikawa, H. Fujita, N. Matoba, et al., Bioactive peptides derived from food proteins preventing lifestyle-related diseases, Biofactors 12 (2000) 143-146. https://doi.org/10.1002/biof.5520120122.

[69]

A.K. Jukanti, P.M. Gaur, C. Gowda, et al., Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review, Br. J. Nutr. 108 (2012) S11-S26. https://doi.org/10.1017/S0007114512000797.

[70]

L.M. Real Hernandez, E. Gonzalez de Mejia, Enzymatic production, bioactivity, and bitterness of chickpea (Cicer arietinum) peptides, Compr. Rev. Food Sci. Food Saf. 18 (2019) 1913-1946. https://doi.org/10.1111/1541-4337.12504.

[71]

W. Shi, T. Hou, D. Guo, et al., Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat, J. Funct. Foods 54 (2019) 136-145. https://doi.org/10.1016/j.jff.2019.01.001.

[72]

J. Jiao, Q.Y. Gai, X. Wang, et al., Effective production of phenolic compounds with health benefits in pigeon pea[Cajanus cajan (L.) Millsp.] hairy root cultures, J. Agric. Food Chem. 68 (2020) 8350-8361. https://doi.org/10.1021/acs.jafc.0c02600.

[73]

M.K. Adenekan, G.J. Fadimu, L.A. Odunmbaku, et al., Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates, Food Sci. Nutr. 6 (2018) 146-152. https://doi.org/10.1002/fsn3.539.

[74]

V. Kumar, P. Sharma, H. Bairagya, et al., Inhibition of human 3-hydroxy-3-methylglutaryl CoA reductase by peptides leading to cholesterol homeostasis through SREBP2 pathway in HepG2 cells, Biochim. Biophys. Acta-Proteins Proteomics. 1867 (2019) 604-615. https://doi.org/10.1016/j.bbapap.2019.04.002.

[75]

C. Alasalvar, S.K. Chang, B. Bolling, et al., Specialty seeds: nutrients, bioactives, bioavailability, and health benefits: a comprehensive review, Compr. Rev. Food Sci. Food Saf. 20 (2021) 2382-2427. https://doi.org/10.1111/1541-4337.12730.

[76]

J.C. Callaway, Hempseed as a nutritional resource: an overview, Euphytica 140 (2004) 65-72. https://doi.org/10.1007/s10681-004-4811-6.

[77]

G. Santos-Sánchez, A.I. Álvarez-López, E. Ponce-España, et al., Hempseed (Cannabis sativa) protein hydrolysates: a valuable source of bioactive peptides with pleiotropic health-promoting effects, Trends Food Sci. Technol. 127 (2022) 303-318. https://doi.org/10.1016/j.tifs.2022.06.005.

[78]

G. Aiello, C. Lammi, G. Boschin, et al., Exploration of potentially bioactive peptides generated from the enzymatic hydrolysis of hempseed proteins, J. Agric. Food Chem. 65 (2017) 10174-10184. https://doi.org/10.1021/acs.jafc.7b03590.

[79]

C. Zanoni, G. Aiello, A. Arnoldi, et al., Hempseed peptides exert hypocholesterolemic effects with a statin-like mechanism, J. Agric. Food Chem. 65 (2017) 8829-8838. https://doi.org/10.1021/acs.jafc.7b02742.

[80]

S.V. Palombini, T. Claus, S.A. Maruyama, et al., Evaluation of nutritional compounds in new amaranth and quinoa cultivars, Food Sci. Technol. 33 (2013) 339-344. https://doi.org/10.1590/S0101-20612013005000051.

[81]
N. Singh, P. Singh, K. Shevkani, et al. Amaranth: potential source for flour enrichment. In: R. Victor, R.R. Watson, Flour and breads and their fortification in health and disease prevention, Elsevier, 2019, pp. 123-135. https://doi.org/10.1016/B978-0-12-814639-2.00010-1.
[82]

R.A.M. Soares, S. Mendonça, L.Í.A. De Castro, et al., Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity, Int. J. Mol. Sci. 16 (2015) 4150-4160. https://doi.org/10.3390/ijms16024150.

[83]

B. Kulczyński, J. Kobus-Cisowska, M. Taczanowski, et al., The chemical composition and nutritional value of chia seeds—current state of knowledge, Nutrients 11 (2019) 1242. https://doi.org/10.3390/nu11061242.

[84]

I.M. Prados, J. Orellana, M.L. Marina, et al., Identification of peptides potentially responsible for in vivo hypolipidemic activity of a hydrolysate from olive seeds, J. Agric. Food Chem. 68 (2020) 4237-4244. https://doi.org/10.1021/acs.jafc.0c01280.

[85]

A. Heres, L. Mora, F. Toldrá, Inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase enzyme by dipeptides identified in dry-cured ham, Food Production, Processing and Nutrition 3 (2021) 1-14. https://doi.org/10.1186/s43014-021-00058-w.

[86]

V.V. Pak, S.H. Kim, M. Koo, et al., Peptide design of a competitive inhibitor for HMG-CoA reductase based on statin structure, J. Pept. Sci. 84 (2006) 586-594. https://doi.org/10.1002/bip.20580.

[87]

A. Virginia, H. Rachmawati, C. Riani, et al., Study of HMG-CoA reductase inhibition activity of the hydrolyzed product of snakehead fish (Channa striata) skin collagen with 50 kDa collagenase from Bacillus licheniformis F11.4, Sci. Pharm. 84 (2016) 81-88. https://doi.org/10.3797/scipharm.ISP.2015.01.

[88]

D.R. Rinto, S. Yasni, M.T. Suhartono, Novel HMG-CoA reductase inhibitor peptide from Lactobacillus acidophilus isolated from Indonesian fermented food bekasam, J. Pharm. Chem. Biol. Sci. 5 (2017) 195-204.

[89]

S. Sun, W. Wang, N. Wang, et al., HPP and SGQR peptides from silkworm pupae protein hydrolysates regulated biosynthesis of cholesterol in HepG2 cell line, J. Funct Foods 77 (2021) 104328. https://doi.org/10.1016/j.jff.2020.104328.

[90]

F. Fatchiyah, S.C. Natasia, Inhibition potency of HMGR enzyme against hypercholesterolemia by bioactive peptides of CSN1S2 protein from caprine milk, AIP Conf. 2021 (2018) 070014. https://doi.org/10.1063/1.5062812.

[91]

M. Amigo-Benavent, A. Clemente, S. Caira, et al., Use of phytochemomics to evaluate the bioavailability and bioactivity of antioxidant peptides of soybean conglycinin, Electrophoresis 35 (2014) 1582-1589. https://doi.org/10.1002/elps.201300527.

[92]

G. Aiello, S. Ferruzza, G. Ranaldi, et al., Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell, J. Funct. Foods 45 (2018) 363-370. https://doi.org/10.1016/j.jff.2018.04.023.

[93]

A.L. Amaral, E.S. Ferreira, M.A. Silva, et al., The vicilin protein (Vigna radiata L.) of mung bean as a functional food: evidence of “in vitro” hypocholesterolemic activity, Nutr. Food Sci. 47 (2017) 907-916. https://doi.org/10.1108/NFS-05-2017-0089.

Food Science and Human Wellness
Pages 3083-3094
Cite this article:
Santos-Sánchez G, Álvarez-López AI, Ponce-España E, et al. Food-derived peptides with inhibitory capacity for HMG-CoA reductase activity: a potential nutraceutical for hypercholesterolemia. Food Science and Human Wellness, 2024, 13(6): 3083-3094. https://doi.org/10.26599/FSHW.2023.9250001

1320

Views

216

Downloads

2

Crossref

1

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 22 November 2022
Revised: 12 June 2023
Accepted: 16 June 2023
Published: 18 December 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return