Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ferroptosis is a novel form of cell death driven by iron-dependent lipid peroxidation and it is implicated in various diseases, such as liver disease, acute kidney injury, cardiovascular disease, neurodegenerative disease and cancer. Lipid-based reactive oxygen species (ROS), particularly lipid hydroperoxides in the cellular membrane can lead to membrane disruption and cell death mediated by ferroptosis. There are three necessary stages involving in the process of lipid peroxidation regulation in ferroptosis, including the synthesis of membrane phospholipids, initiation of lipid peroxidation and clearance of lipid peroxides. In this review, we summarized the molecular modulation mechanisms of lipid peroxidation in ferroptosis from the above three stages, as well as various ferroptosis modulators targeting lipid peroxidation, including commonly used products, natural bioactive compounds and selenocompounds. Collectively, these findings suggest the vital role of lipid peroxidation in ferroptosis, and targeting lipid peroxidation in ferroptosis is potential to treat ferroptosis-associated diseases.
B.R. Stockwell, K.M. Lemberg, M.R. Lamprecht, et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell 149 (2012) 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042.
S.J. Dixon, B.R. Stockwell, The role of iron and reactive oxygen species in cell death, Nat. Chem. Biol. 10 (2013) 9-17. https://doi.org/10.1038/nchembio.1416.
J. Finaud, G. Lac, E. Filaire, Oxidative stress relationship with exercise and training review, Sports Med. 36 (2006) 327-358. https://doi.org/10.2165/00007256-200636040-00004.
Y.C. Chen, C.W. Yang, T.F. Chan, et al., Cryptocaryone promotes ROS-dependent antiproliferation and apoptosis in ovarian cancer cells, Cells 11 (2022) 641-659. https://doi.org/10.3390/cells11040641.
S. Hoffmann, M. Orlando, E. Andrzejak, et al., Light-activated ROS production induces synaptic autophagy, J. Neurosci. 39 (2019) 2163-2183. https://doi.org/10.1523/JNEUROSCI.1317-18.2019.
M.A. Deragon, W.D. Mccaig, P.S. Patel, et al., Mitochondrial ros prime the hyperglycemic shift from apoptosis to necroptosis, Cell Death Discov. 6 (2020) 132-143. https://doi.org/10.1038/s41420-020-00370-3.
H. Jiang, C. Niu, Y. Guo, et al., Wedelolactone induces apoptosis and pyroptosis in retinoblastoma through promoting ROS generation, Int. Immunopharmacol. 111 (2022) 108855-108865. https://doi.org/10.1016/j.intimp.2022.108855.
R. Skouta, S.J. Dixon, J. Wang, et al., Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models, J. Am. Chem. Soc. 136 (2014) 4551-4556. https://doi.org/10.1021/ja411006a.
A. Negre-Salvayre, N. Auge, V. Ayala, et al., Pathological aspects of lipid peroxidation, Free Radic. Res. 44 (2010) 1125-1171. https://doi.org/10.3109/10715762.2010.498478.
W.S. Yang, R. Sriramaratnam, M.E. Welsch, et al., Regulation of ferroptotic cancer cell death by GPX4, Cell 156 (2014) 317-331. https://doi.org/10.1016/j.cell.2013.12.010.
J. Lee, M. Nam, H.Y. Son, et al., Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 32433-32442. https://doi.org/10.1073/pnas.2006828117/-/DCSupplemental.
X. Ma, L. Xiao, L. Liu, et al., Cd36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability, Cell Metab. 33 (2021) 1001-1012. https://doi.org/10.1016/j.cmet.2021.02.015.
W.S. Yang, B.R. Stockwell, Ferroptosis: death by lipid peroxidation, Trends Cell Biol. 26 (2016) 165-176. https://doi.org/10.1016/j.tcb.2015.10.014.
V.E. Kagan, G. Mao, F. Qu, et al., Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis, Nat. Chem. Biol. 13 (2017) 81-90. https://doi.org/10.1038/nchembio.2238.
S. Doll, B. Proneth, Y.Y. Tyurina, et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol. 13 (2017) 91-98. https://doi.org/10.1038/nchembio.2239.
S.J. Dixon, G.E. Winter, L.S. Musavi, et al., Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death, ACS Chem. Biol. 10 (2015) 1604-1609. https://doi.org/10.1021/acschembio.5b00245.
P. Liao, W. Wang, W. Wang, et al., CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4, Cancer Cell 40 (2022) 365-378. https://doi.org/10.1016/j.ccell.2022.02.003.
H. Feng, B.R. Stockwell, Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 16 (2018) e2006203-e2006217. https://doi.org/10.1371/journal.pbio.2006203.
M.M. Gaschler, B.R. Stockwell, Lipid peroxidation in cell death, Biochem. Biophys. Cereal Res. Commun. 482 (2017) 419-425. https://doi.org/10.1016/j.bbrc.2016.10.086.
L. Chang, S. Chiang, S. Chen, et al., Heme oxygenase-1 mediates bay 11-7085 induced ferroptosis, Cancer Lett. 416 (2018) 124-137. https://doi.org/10.1016/j.canlet.2017.12.025.
R. Fernández-Acosta, C. Iriarte-Mesa, D. Alvarez-Alminaque, et al., Novel iron oxide nanoparticles induce ferroptosis in a panel of cancer cell lines, Molecules 27 (2022) 3970-3982. https://doi.org/10.3390/molecules27133970.
S. Wang, J. Luo, Z. Zhang, et al., Iron and magnetic: new research direction of the ferroptosis-based cancer therapy, Am. J. Cancer Res. 8 (2018) 1933-1946.
Q. Chen, X. Ma, L. Xie, et al., Iron-based nanoparticles for mr imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment, Nanoscale 13 (2021) 4855-4870. https://doi.org/10.1039/D0NR08757B.
H.L. Bonkovsky, Q. Jawaid, K. Tortorelli, et al., Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis, J. Hepatol. 31 (1999) 421-429. https://doi.org/10.1016/S0168-8278(99)80032-4.
J.E. Nelson, L. Wilson, E.M. Brunt, et al., Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease, Hepatology 53 (2011) 448-457. https://doi.org/10.1002/hep.24038.
H. Zhang, E. Zhang, H. Hu, Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies, Biomedicines 9 (2021) 1660-1673. https://doi.org/10.3390/biomedicines9111660.
N. Degregorio-Rocasolano, O. Martí-Sistac, J. Ponce, et al., Iron-loaded transferrin (tf) is detrimental whereas ironfree tf confers protection against brain ischemia by modifying blood tf saturation and subsequent neuronal damage, Redox Biol. 15 (2018) 143-158. https://doi.org/10.1016/j.redox.2017.11.026.
J.Z. Haeggström, C.D. Funk, Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease, Chem. Rev. 111 (2011) 5866-5898.
W.S. Yang, K.J. Kim, M.M. Gaschler, et al., Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) E4966-E4975. https://doi.org/10.1073/pnas.1603244113.
J.A. Ackermann, K. Hofheinz, M.M. Zaiss, et al., The double-edged role of 12/15-lipoxygenase duringinflammation and immunity, BBA-MOL Cell Biol. L. 4 (2017) 371-381. https://doi.org/10.1016/j.bbalip.2016.07.014.
S.E. Wenzel, Y.Y. Tyurina, J. Zhao, et al., Pebp1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals, Cell 171 (2017) 628- 641. https://doi.org/10.1016/j.cell.2017.09.044.
Y. Ou, S. Wang, D. Li, et al., Activation of sat1 engages polyamine metabolism with p53-mediated ferroptotic responses, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) E6806-E6812. https://doi.org/10.1073/pnas.1607152113.
Y. Zou, H. Li, E.T. Graham, et al., Cytochrome p450 oxidoreductase contributes tophospholipid peroxidation in ferroptosis, Nat. Chem. Biol. 16 (2020) 302-309. https://doi.org/10.1038/s41589-020-0472-6.
B. Yan, Y. Ai, Q. Sun, et al., Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1, Mol. Cell 81 (2021) 355-369. https://doi.org/10.1016/j.molcel.2020.11.024.
R. Brigelius-Flohé, M. Maiorino, Glutathione peroxidases, Biochim. Biophysi Acta Gen. Subj. 2013 (2013) 3289-3303. https://doi.org/10.1016/j.bbagen.2012.11.020.
B. Frei, M.C. Kim, B.N. Ames, Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations, Proc. Natl. Acad. Sci. U.S.A. 87 (1990) 4879-4883. https://doi.org/10.1073/pnas.87.12.4879.
S. Nishizawa, H. Araki, Y. Ishikawa, et al., Low tumor glutathione level as a sensitivity marker for glutamate-cysteine ligase inhibitors, Oncol. Lett. 15 (2018) 8735-8743. https://doi.org/10.3892/ol.2018.8447.
P. Koppula, L. Zhuang, B. Gan, Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy, Protein Cell 12 (2021) 599-620. https://doi.org/10.1007/s13238-020-00789-5.
X. Liu, K. Olszewski, Y. Zhang, et al., Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer, Nat. Cell Biol. 22 (2020) 476- 486. https://doi.org/10.1038/s41556-020-0496-x.
M. Gao, J. Yi, J. Zhu, et al., Role of mitochondria in ferroptosis, Mol. Cell 73 (2019) 354-363. https://doi.org/10.1016/j.molcel.2018.10.042.
Q. Hu, Y. Zhang, H. Lou, et al., GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis, Cell Death Dis. 12 (2021) 706-714. https://doi.org/10.1038/s41419-021-04008-9.
J.K. Eaton, L. Furst, R.A. Ruberto, et al., Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles, Nat. Chem. Biol. 16 (2020) 497-506. https://doi.org/10.1038/s41589-020-0501-5.
K. Shimada, R. Skouta, A. Kaplan, et al., Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis, Nat. Chem. Biol. 12 (2016) 497-503. https://doi.org/10.1038/nchembio.2079.
L. Yang, X. Chen, Q. Yang, et al., Broad spectrum deubiquitinase inhibition induces both apoptosis and ferroptosis in cancer cells, Front. Oncol. 10 (2020) 949-963. https://doi.org/10.3389/fonc.2020.00949.
M. Maiorino, F.F. Chu, F. Ursini, et al., Phospholipid hydroperoxide glutathione peroxidase is the 18-kDa selenoprotein expressed in human tumor cell lines, J. Biol. Chem. 266 (1991) 7728-7732. https://doi.org/10.1016/S0021-9258(20)89509-X.
I. Ingold, C. Berndt, S. Schmitt, et al., Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis, Cell 172 (2018) 409- 422. https://doi.org/10.1016/j.cell.2017.11.048.
Y. Yao, Z. Chen, H. Zhang, et al., Selenium-GPX4 axis protects follicular helper T cells from ferroptosis, Nat. Immunol. 22 (2021) 1127-1139. https://doi.org/10.1038/s41590-021-00996-0.
I. Alim, J.T. Caulfield, Y. Chen, et al., Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke, Cell 177 (2019) 1262-1279. https://doi.org/10.1016/j.cell.2019.03.032.
X. Chen, C. Yu, R. Kang, et al., Cellular degradation systems in ferroptosis, Cell Death Differ. 28 (2021) 1135-1148. https://doi.org/10.1038/s41418-020-00728-1.
Z. Wu, Y. Geng, X. Lu, et al., Chaperone-mediated autophagy is involved in the execution of ferroptosis, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 2996-3005. https://doi.org/10.1073/pnas.1819728116.
V.S. Viswanathan, M.J. Ryan, H.D. Dhruv, et al., Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway, Nature 547 (2017) 453-457. https://doi.org/10.1038/nature23007.
K. Zheng, Y. Dong, R. Yang, et al., Regulation of ferroptosis by bioactive phytochemicals: implications for medical nutritional therapy, Pharmacol. Res. 168 (2021) 105580-105595. https://doi.org/10.1016/j.phrs.2021.105580.
K. Bersuker, J.M. Hendricks, Z. Li, et al., The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis, Nature 575 (2019) 688-692. https://doi.org/10.1038/s41586-019-1705-2.
S. Doll, F.P. Freitas, R. Shah, et al., FSP1 is a glutathione-independent ferroptosis suppressor, Nature 575 (2019) 693-698. https://doi.org/10.1038/s41586-019-1707-0.
P. Koppula, G. Lei, Y. Zhang, et al., A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers, Nat. Commun. 13 (2022) 2206-2221. https://doi.org/10.1038/s41467-022-29905-1.
N. Emmanuel, H. Li, J. Chen, et al., FSP1, a novel KEAP1 Nrf2 target gene regulatingferroptosis and radioresistan, Oncotarget. 13 (2022) 1136-1139. https://doi.org/10.18632/oncotarget.28301.
C. Mao, X. Liu, Y. Zhang, et al., DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer, Nature 593 (2021) 586-590. https://doi.org/10.1038/s41586-021-03539-7.
S. Zhang, L. Kang, X. Dai, et al., Manganese induces tumor cell ferroptosis through type-Ⅰ IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenase, Free Radical Bio Med. 193 (2022) 202-212. https://doi.org/10.1016/j.freeradbiomed.2022.10.004.
B. Thny, G. Auerbach, N. Blau, Tetrahydrobiopterin biosynthesis, regeneration and functions, Biochem. J. 347 (2000) 1-16.
E. Werner, Tetrahydrobiopterin: biochemistry and pathophysiology, Biochem. J. 438 (2011) 397-414. https://doi.org/10.1042/BJ20110293.
V.A.N. Kraft, C.T. Bezjian, S. Pfeiffer, et al., GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling, ACS Cent. Sci. 6 (2020) 41-53. https://doi.org/10.1021/acscentsci.9b01063.
J. Xue, C. Yu, W. Sheng, et al., The Nrf2/GCH1/BH4 axis ameliorates radiation-induced skin injury by modulating the ROS cascade, J. Invest. Dermatol. 137 (2017) 2059-2068. https://doi.org/10.1016/j.jid.2017.05.019.
Y. Jiang, J. Zhao, R. Li, et al., CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis, J. Exp. Clin. Cancer Res. 41 (2022) 307-326. https://doi.org/10.1186/s13046-022-02518-8.
E. Mishima, J. Ito, Z. Wu, et al., A non-canonical vitamin K cycle is a potent ferroptosis suppressor, Nature 608 (2022) 778-783. https://doi.org/10.1038/s41586-022-05022-3.
B. Kolbrink, F.A. von Samson-Himmelstjerna, M.L. Messtorff, et al., Vitamin K1 inhibits ferroptosis and counteracts a detrimental effect of phenprocoumon in experimental acute kidney injury, Cell. Mol. Life Sci. 79 (2022) 387-400. https://doi.org/10.1007/s00018-022-04416-w.
J.P. Friedmann Angeli, M. Schneider, B. Proneth, et al., Inactivation of the ferroptosis regulator GPX4 triggers acute renal failure in mice, Nat. Cell Biol. 16 (2014) 1180-1191. https://doi.org/10.1038/ncb3064.
H. Chen, L. Cao, K. Han, et al., Patulin disrupts SLC7A11-cystine-cysteine-GSH antioxidant system and promotes renal cell ferroptosis both in vitro and in vivo, Food. Chem. Toxicol. 166 (2022) 113255-113264. https://doi.org/10.1016/j.fct.2022.113255.
Y. Cao, Y. Li, C. He, et al., Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage, Neurosci. Bull. 37 (2021) 535-549. https://doi.org/10.1007/s12264-020-00620-5.
G. Miotto, M. Rossetto, M.L. Di Paolo, et al., Insight into the mechanism of ferroptosis inhibition by ferrostatin-1, Redox Biol. 28 (2020) 101328. https://doi.org/10.1016/j.redox.2019.101328.
A. Jelinek, L. Heyder, M. Daude, et al., Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis, Free. Radic. Biol. Med. 117 (2018) 45-57. https://doi.org/10.1016/j.freeradbiomed.2018.01.019.
F. Yao, J. Peng, E. Zhang, et al., Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma, Cell Death Differ. 30 (2022) 69-81. https://doi.org/10.1038/s41418-022-01046-4.
T. Eleftheriadis, G. Pissas, G. Filippidis, et al., Reoxygenation induces reactive oxygen species production and ferroptosis in renal tubular epithelial cells by activating aryl hydrocarbon receptor, Mol. Med. Rep. 23 (2021) 1-1. https://doi.org/10.3892/mmr.2020.11679.
G. Feng, C.D. Byrne, G. Targher, et al., Ferroptosis and metabolic dysfunction-associated fatty liver disease: is there a link? Liver Int: Official J. IASL. 42 (2022) 1496-1502. https://doi.org/10.1111/liv.15163.
K. Hosohata, T. Harnsirikarn, S. Chokesuwattanaskul, Ferroptosis: a potential therapeutic target in acute kidney injury, Int. J. Mol. Sci. 23 (2022) 6583-6593. https://doi.org/10.3390/ijms23126583.
X. Fang, H. Ardehali, J. Min, et al., The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease, Nat. Rev. Cardiol. 4 (2022) 1-17. https://doi.org/10.1038/s41569-022-00735-4.
X. Yang, N.K. Kawasaki, J. Min, et al., Ferroptosis in heart failure, J. Mol. Cell Cardiol. 173 (2022) 141-153. https://doi.org/10.1016/j.yjmcc.2022.10.004.
C.O. Reichert, F.A. de Freitas, J. Sampaio-Silva, et al., Ferroptosis mechanisms involved in neurodegenerative diseases, Int. J. Mol. Sci. 21 (2020) 8765-8791. https://doi.org/10.3390/ijms21228765.
Y. Zhang, H. Tan, J.D. Daniels, et al., Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model, Cell Chem Biol. 26 (2019) 623-633. https://doi.org/10.1016/j.chembiol.2019.01.008.
A. Sugiyama, T. Ohta, M. Obata, et al., xCT inhibitor sulfasalazine depletes paclitaxel-resistant tumor cells through ferroptosis in uterine serous carcinoma, Oncol. Lett. 20 (2020) 2689-2700. https://doi.org/10.3892/ol.2020.11813.
W.T. Xuan, Z.Y. Yong, Y.R. Ji, et al., Neuroprotection of p53 against glutamate oxidative damage by inhibiting ferroptosis, Chinese Pharmacol Bull. 35 (2019) 654-660. https://doi.org/10.1248/bpb.b15-00048.
S. Yuan, C. Wei, G. Liu, et al., Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway, Cell Prolif. 55 (2022) 1-15. https://doi.org/10.1111/cpr.13158.
Z. Li, H. Dai, X. Huang, et al., Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma, Acta Pharmacol. Sin. 42 (2021) 301-310. https://doi.org/10.1038/s41401-020-0478-3.
R. Kong, N. Wang, W. Han, et al., IFNγ-mediated repression of system xc-drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells, J. Leukoc. Biol. 110 (2021) 301-314. https://doi.org/10.1002/JLB.3MA1220-815RRR.
R.P. Abrams, W.L. Carroll, K.A. Woerpel, Five-membered ring peroxide selectively initiates ferroptosis in cancer cells, Acs Chem. Biol. 11 (2016) 1305-1312. https://doi.org/10.1021/acschembio.5b00900.
D. Moosmayer, A. Hilpmann, J. Hoffmann, et al., Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162, Acta Crystallogr D Biol. Crystallogr. 77 (2021) 237-248. https://doi.org/10.1107/S2059798320016125.
L. Zhou, J. Chen, R. Li, et al., Metal-polyphenol-network coated prussian blue nanoparticles for synergistic ferroptosis and apoptosis via triggered gpx4 inhibition and concurrent in situ bleomycin toxification, Small 17 (2021) e2103919. https://doi.org/10.1002/smll.202103919.
Y. Sun, N. Berleth, W. Wu, et al., Fin56-induced ferroptosis is supported by autophagy-mediated gpx4 degradation and functions synergistically with mtor inhibition to kill bladder cancer cells, Cell Death Dis. 12 (2021) 1028-1041. https://doi.org/10.1038/s41419-021-04306-2.
X. Yao, R. Xie, Y. Cao, et al., Simvastatin induced ferroptosis for triple-negative breast cancer therapy, J. Nanobiotechnol. 19 (2021) 311-324. https://doi.org/10.1186/s12951-021-01058-1.
Y.A. Kung, H.J. Chiang, M.L. Li, et al., Acyl-coenzyme a synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via ferroptosis, Mbio. 13 (2022) e271721-e271737. https://doi.org/10.1128/mbio.02717-21.
Y. Ren, S. Li, Z. Song, et al., The regulatory roles of polysaccharides and ferroptosis-related phytochemicals in liver diseases, Nutrients 14 (2022) 2303-2323. https://doi.org/10.3390/nu14112303.
R. Yu, Y. Zhou, S. Shi, et al., Icariside ii induces ferroptosis in renal cell carcinoma cells by regulating the mir-324-3p/gpx4 axis, Phytomedicine (Stuttgart) 102 (2022) 154182-154190. https://doi.org/10.1016/j.phymed.2022.154182.
Z.X. Wang, J. Ma, X.Y. Li, et al., Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor eb and reactive oxygen species-dependent ferroptosis, Br. J. Pharmacol. 178 (2021) 1133-1148. https://doi.org/10.1111/bph.15350.
Y. Wang, F. Quan, Q. Cao, et al., Quercetin alleviates acute kidney injury by inhibiting ferroptosis, J. Adv. Res. 28 (2021) 231-243. https://doi.org/10.1016/j.jare.2020.07.007.
Y. Huang, H. Wu, Y. Hu, et al., Puerarin attenuates oxidative stress and ferroptosis via AMPK/PGC1α/Nrf2 pathway after subarachnoid hemorrhage in rats, Antioxidants. 11 (2022) 1259-1275. https://doi.org/10.3390/antiox11071259.
L. Probst, J. Dachert, B. Schenk, et al., Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death, Biochem. Pharmacol. 140 (2017) 41-52. https://doi.org/10.1016/j.bcp.2017.06.112.
C. Dai, H. Li, Y. Wang, et al., Inhibition of oxidative stress and alox12 and nf-κb pathways contribute to the protective effect of baicalein on carbon tetrachloride-induced acute liver injury, Antioxidants. 10 (2021) 976-993. https://doi.org/10.3390/antiox10060976.
B. Yuan, F. Liao, Z. Shi, et al., Dihydroartemisinin inhibits the proliferation, colony formation and induces ferroptosis of lung cancer cells by inhibiting prim2/slc7a11 axis, Oncotargets Ther. 13 (2020) 10829-10840. https://doi.org/10.2147/OTT.S248492.
M. Chang, L. Tsai, K. Nakagawa-Goto, et al., Phyto-sesquiterpene lactones det and detd-35 induce ferroptosis in vemurafenib sensitive and resistant melanoma via gpx4 inhibition and metabolic reprogramming, Pharmacol. Res. 178 (2022) 106148-106164. https://doi.org/10.1016/j.phrs.2022.106148.
B. Cvetanova, M. Li, C. Yang, et al., Sesquiterpene lactone deoxyelephantopin isolated from Elephantopus scaber and its derivative DETD-35 suppress BRAFV600E mutant melanoma lung metastasis in mice, Int. J. Mol. Sci. 22 (2021) 3226-3251. https://doi.org/10.3390/ijms22063226.
Y. Wen, H. Chen, L. Zhang, et al., Glycyrrhetinic acid induces oxidative/nitrative stress and drives ferroptosis through activating nadph oxidases and inos, and depriving glutathione in triple-negative breast cancer cells, Free. Radic. Biol. Med. 173 (2021) 41-51. https://doi.org/10.1016/j.freeradbiomed.2021.07.019.
X. Ma, H. Chen, L. Cao, et al., 18β-glycyrrhetinic acid protects neuronal cells from ferroptosis through inhibiting labile iron accumulation and preventing coenzyme q10 reduction, Biochem. Biophys. Res. Commun. 635 (2022) 57-64. https://doi.org/10.1016/j.bbrc.2022.10.017.
F.G. Zhai, Q.C. Liang, Y.Y. Wu, et al., Red ginseng polysaccharide exhibits anticancer activity through gpx4 downregulation induced ferroptosis, Pharm. Biol. 60 (2022) 909-914. https://doi.org/10.1080/13880209.2022.2066139.
Du X, J. Zhang, L. Liu, et al., A novel anticancer property of lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells, J. Zhejiang Univ-Sc B. 23 (2022) 286-299. https://doi.org/10.1631/jzus.B2100748.
J. Li, X. Wang, R. Zhou, et al., Polygonatum cyrtonema Hua polysaccharides protect bv2 microglia relief oxidative stress and ferroptosis by regulating nrf2/ho-1 pathway, Molecules 27 (2022) 7088-7105. https://doi.org/10.3390/molecules27207088.
Y. Chen, J. Wang, J. Li, et al., Astragalus polysaccharide prevents ferroptosis in a murine model of experimental colitis and human caco-2 cells via inhibiting Nrf2/HO-1 pathway, Eur. J. Pharmacol. 911 (2021) 174518-174527. https://doi.org/https://doi.org/10.1016/j.ejphar.2021.174518.
G. Greco, M. Schnekenburger, E. Catanzaro, et al., Discovery of sulforaphane as an inducer of ferroptosis in u-937 leukemia cells: expanding its anticancer potential, Cancers 14 (2021) 76-91. https://doi.org/10.3390/cancers14010076.
X. Zhao, Z. Liu, J. Gao, et al., Inhibition of ferroptosis attenuates busulfan-induced oligospermia in mice, Toxicology 440 (2020) 152489-152496. https://doi.org/10.1016/j.tox.2020.152489.
M. Jin, C. Shi, T. Li, et al., Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system, Biomed. Pharmacother. 129 (2020) 110282-110288. https://doi.org/10.1016/j.biopha.2020.110282.
X. Liu, D. Wei, R. Li, Capsaicin induces ferroptosis of nsclc by regulating slc7a11/gpx4 signaling in vitro, Sci. Rep. 12 (2022) 1-7. https://doi.org/10.1038/s41598-022-16372-3.
D. Li, B. Liu, Y. Fan, et al., Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis, Br. J. Pharmacol. 178 (2021) 1182-1199. https://doi.org/10.1111/bph.15364.
J. Hu, W. Gu, N. Ma, et al., Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the nrf2 signalling pathway, Br. J. Pharmacol. 179 (2022) 3991-4009. https://doi.org/10.1111/bph.15834.
H. Chen, H. Tang, W. Hsu, et al., Vulnerability of triple-negative breast cancer to saponin formosanin c-induced ferroptosis, Antioxidants 11 (2022) 298-323. https://doi.org/10.3390/antiox11020298.
Y. Zhou, J. Yang, C. Chen, et al., Polyphyllin Ⅲ-induced ferroptosis in mda-mb-231 triple-negative breast cancer cells can be protected against by klf4-mediated upregulation of xct, Front. Pharmacol. 12 (2021) 670224-670237. https://doi.org/10.3389/fphar.2021.670224.
Y. Wang, Q. Chen, C. Shi, et al., Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress, Mol. Med. Rep. 20 (2019) 4081-4090. https://doi.org/10.3892/mmr.2019.10660.
K. Zhu, X. Zhu, S. Liu, et al., Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the hmgb1/gpx4 pathway, Oxidative Med. Cell. Longev. 2022 (2022) 8438528-8438546. https://doi.org/10.1155/2022/8438528.
J. Huang, G. Chen, J. Wang, et al., Platycodin d regulates high glucose-induced ferroptosis of hk-2 cells through glutathione peroxidase 4 (gpx4), Bioengineered. 13 (2022) 6627-6637. https://doi.org/10.1080/21655979.202 2.2045834.
X. Wang, S. Xu, L. Zhang, et al., Vitamin c induces ferroptosis in anaplastic thyroid cancer cells by ferritinophagy activation, Biochem. Biophys. Res. Commun. 551 (2021) 46-53. https://doi.org/10.1016/j.bbrc.2021.02.126.
K. Cheng, Y. Huang, C. Wang, 1,25(oh)2d3 inhibited ferroptosis in zebrafish liver cells (zfl) by regulating keap1-nrf2-gpx4 and nf-κb-hepcidin axis, Int. J. Mol. Sci. 22 (2021) 11334-11351. https://doi.org/10.3390/ijms222111334.
X. Zhang, S. Wu, C. Guo, et al., Vitamin e exerts neuroprotective effects in pentylenetetrazole kindling epilepsy via suppression of ferroptosis, Neurochem. Res. 47 (2022) 739-747. https://doi.org/10.1007/s11064-021-03483-y.
L. Magtanong, P. Ko, M. To, et al., Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state, Cell Chem Biol. 26 (2019) 420- 432. https://doi.org/10.1016/j.chembiol.2018.11.016.
Z. Xia, Y. Li, R. Li, et al., Supercritical co2 extraction of fermented soybean lipids against erastin-induced ferroptosis in rat pheochromocytoma cells, Food Chem. 377 (2022) 132051-132061. https://doi.org/10.1016/j.foodchem.2022.132051.
F. Xie, C. Wu, W. Lai, et al., The osteoprotective effect of Herba epimedii (HEP) (hep) extract in vivo and in vitro, Evid.-Based Complement Altern. Med. 2 (2005) 353-361. https://doi.org/10.1093/ecam/neh101.
A. Hassan, E.F. Abo, A.M. Abdel-Aziz, Investigating the potential protective effects of natural product quercetin against imidacloprid-induced biochemical toxicity and dna damage in adults rats, Toxicol. Rep. 6 (2019) 727-735. https://doi.org/10.1016/j.toxrep.2019.07.007.
X. Zeng, Z. Du, X. Ding, et al., Protective effects of dietary flavonoids against pesticide-induced toxicity: a review, Trends Food Sci. Technol. 109 (2021) 271-279. https://doi.org/10.1016/j.tifs.2021.01.046.
D.H. Kim, H. Khan, H. Ullah, et al., Microrna targeting by quercetin in cancer treatment and chemoprotection, Pharmacol. Res. 147 (2019) 104346. https://doi.org/10.1016/j.phrs.2019.104346.
P. Asgharian, A.P. Tazekand, K. Hosseini, et al., Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets, Cancer Cell Int. 22 (2022) 257-276. https://doi.org/10.1186/s12935-022-02677-w.
A. Linkermann, R. Skouta, N. Himmerkus, et al., Synchronized renal tubular cell death involves ferroptosis, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 16836-16841. https://doi.org/10.1073/pnas.1415518111.
D. Martin-Sanchez, O. Ruiz-Andres, J. Poveda, et al., Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI, J. Am. Soc. Nephrol. 28 (2017) 218-229. https://doi.org/10.1681/ASN.2015121376.
B.R. Stockwell, J.P. Friedmann Angeli, H. Bayir, et al., Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease, Cell 171 (2017) 273-285. https://doi.org/10.1016/j.cell.2017.09.021.
J.I. Leu, M.E. Murphy, D.L. George, Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 8390-8396. https://doi.org/10.1073/pnas.1821277116.
J.B. Lee, R.K. Hite, S.M. Hamdan, et al., DNA primase acts as a molecular brake in DNA replication, Nature 439 (2006) 621-624. https://doi.org/10.1038/nature04317.
A. Murtazina, A.G. Ruiz, Y. Jimenez-Martinez, et al., Anti-cancerous potential of polysaccharides derived from wheat cell culture, Pharmaceutics 14 (2022) 1100-1126. https://doi.org/10.3390/pharmaceutics14051100.
Y. Liu, H. Li, Z. Zheng, et al., Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/MTOR pathway, Int. J. Biol. Macromol. 212 (2022) 257-274. https://doi.org/10.1016/j.ijbiomac.2022.05.023.
W. Ma, S. Wei, W. Peng, et al., Antioxidant effect of polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice, Biomed. Res. Int. 2021 (2021) 1-8.
T. Hirschhorn, B.R. Stockwell, The development of the concept of ferroptosis, Free Radic. Biol. Med. 133 (2019) 130-143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043.
C. Fimognari, P. Hrelia, Sulforaphane as a promising molecule for fighting cancer, Mutat. Res.-Rev. Mutat. 635 (2007) 90-104. https://doi.org/10.1016/j.mrrev.2006.10.004.
W.Y. Choi, B.T. Choi, W.H. Lee, et al., Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells, Biomed. Pharmacother. 62 (2008) 637-644. https://doi.org/10.1016/j.biopha.2008.01.001.
T. Sharma, V. Airao, N. Panara, et al., Solasodine protects rat brain against ischemia/reperfusion injury through its antioxidant activity, Eur. J. Pharmacol. 725 (2014) 40-46. https://doi.org/10.1016/j.ejphar.2014.01.005.
L. Lecanu, A.I. Hashim, A. Mccourty, et al., The naturally occurring steroid solasodine induces neurogenesis in vitro and in vivo, Neuroscience 183 (2011) 251-264. https://doi.org/10.1016/j.neuroscience.2011.03.042.
Y.W. Zhuang, C.E. Wu, J.Y. Zhou, et al., Solasodine inhibits human colorectal cancer cells through suppression of the akt/glycogen synthase kinase-3β/β-catenin pathway, Cancer Sci. 108 (2017) 2248-2264. https://doi.org/10.1111/cas.13354.
C. Cui, X. Wen, M. Cui, et al., Synthesis of solasodine glycoside derivatives and evaluation of their cytotoxic effects on human cancer cells, Drug Discov. Ther. 6 (2012) 9-17. https://doi.org/10.5582/ddt.2012.v6.1.9.
B.E. Cham, T.R. Chase, Solasodine rhamnosyl glycosides cause apoptosis in cancer cells. Do they also prime the immune system resulting in long-term protection against cancer, Planta Med. 78 (2012) 349-353. https://doi.org/10.1055/s-0031-1298149.
A. Mussa, R.A. Mohd Idris, N. Ahmed, et al., High-dose vitamin C for cancer therapy, Pharmaceuticals 15 (2022) 711-743. https://doi.org/10.3390/ph15060711.
T.L. Pop, C. Sîrbe, G. Benţa, et al., The role of vitamin D and vitamin D binding protein in chronic liver diseases, Int. J. Mol. Sci. 23 (2022) 10705-10722. https://doi.org/10.1016/j.mam.2007.01.004.
R. Ricciarelli, F. Argellati, M.A. Pronzato, et al., Vitamin E and neurodegenerative diseases, Mol. Aspects. Med. 28 (2007) 591-606. https://doi.org/10.1016/j.mam.2007.01.004.
A. Aguilera-Mendez, D. Boone-Villa, R. Nieto-Aguilar, et al., Role of vitamins in the metabolic syndrome and cardiovascular disease, Pflug Arch. Eur. J. Phy. 474 (2022) 117-140. https://doi.org/10.1007/s00424-021-02619-x.
M. Di Tano, F. Raucci, C. Vernieri, et al., Synergistic effect of fasting-mimicking diet and vitamin C against kras mutated cancers, Nat. Commun. 11 (2020) 2332-2342. https://doi.org/10.1038/s41467-020-16243-3.
L.J. Hoffer, M. Levine, S. Assouline, et al., Phase I clinical trial of I.V. ascorbic acid in advanced malignancy, Ann. Oncol. 19 (2008) 1969-1974. https://doi.org/10.1093/annonc/mdn377.
Q. Chen, M.G. Espey, A.Y. Sun, et al., Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo, Proc. Nat. Acad. Sci. U.S.A. 104 (2007) 8749-8754. https://doi.org/10.1073/pnas.0702854104.
J. Du, S.M. Martin, M. Levine, et al., Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer, Clin. Cancer Res. 16 (2010) 509-520. https://doi.org/10.1158/1078-0432.CCR-09-1713.
H. Wakabayashi, H. Matsumoto, K. Hashimoto, et al., Inhibition of iron/ascorbate-induced lipid peroxidation by an n-termin peptide of bovine lactoferrin and its acylated derivatives, Biosci. Biotechnol. Biochem. 63 (1999) 955-957. https://doi.org/10.1007/s11130-009-0150-z.
M.M. Baakdah, A. Tsopmo, Identification of peptides, metal binding and lipid peroxidation activities of HPLC fractions of hydrolyzed oat bran proteins, J. Food Sci. Tech. Mys. 53 (2016) 3593-3601. https://doi.org/10.1007/s13197-016-2341-6.
H. Chen, H. Zhang, L. Cao, et al., Glucose limitation sensitizes cancer cells to selenite-induced cytotoxicity via SLC7A11-mediated redox collapse, Cancers 14 (2022) 345-351. https://doi.org/10.3390/cancers14020345.
J. Cui, M. Yan, X. Liu, et al., Inorganic selenium induces nonapoptotic programmed cell death in PC-3 prostate cancer cells associated with inhibition of glycolysis, J. Agric. Food. Chem. 67 (2019) 10637-10645. https://doi.org/10.1021/acs.jafc.9b03875.
X. Lu, E. Zhang, S. Yin, et al., Methylseleninic acid prevents patulin-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress and inactivation of p53 and MAPKs, J. Agric. Food Chem. 65 (2017) 5299-5305. https://doi.org/10.1021/acs.jafc.7b01338.
J.P. Friedmann Angeli, M. Conrad, Selenium and GPX4, a vital symbiosis, Free. Radic. Biol. Med. 127 (2018) 153-159. https://doi.org/10.1016/j.freeradbiomed.2018.03.001.
H. Wu, Y. Luan, H. Wang, et al., Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of btbr mice by regulating the Nrf2/GPX4 pathway, Brain Res. Bull. 183 (2022) 38-48. https://doi.org/10.1016/j.brainresbull.2022.02.018.
Y. Chen, T. Zuliyaer, B. Liu, et al., Sodium selenite promotes neurological function recovery after spinal cord injury by inhibiting ferroptosis, Neural Regen. Res. 17 (2022) 2702-2709. https://doi.org/10.4103/1673-5374.339491.
K. Subburayan, F. Thayyullathil, S. Pallichankandy, et al., Superoxide-mediated ferroptosis in human cancer cells induced by sodium selenite, Transl. Oncol. 13 (2020) 100843-100862. https://doi.org/10.1016/j.tranon.2020.100843.
H. Hu, C. Jiang, T. Schuster, et al., Inorganic selenium sensitizes prostate cancer cells to trail-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway, Mol. Cancer Ther. 5 (2006) 1873-1882. https://doi.org/10.1158/1535-7163.MCT-06-0063.
H. Shen, W. Ding, C. Ong, Intracellular glutathione is a cofactor in methylseleninic acid-induced apoptotic cell death of human hepatoma HepG2 cells, Free Radical. Bio. Med. 33 (2002) 552-561. https://doi.org/10.1016/S0891-5849(02)00918-8.
J. Choi, E.H. Lee, H. Cho, et al., High-dose selenium induces ferroptotic cell death in ovarian cancer, Int. J. Mol. Sci. 24 (2023) 1918. https://doi.org/10.3390/ijms24031918.
W. Hu, C. Zhao, H. Hu, et al., Food sources of selenium and its relationship with chronic diseases, Nutrients 13 (2021) 1739-1761. https://doi.org/10.3390/nu13051739.
Q. Tuo, S. Masaldan, A. Southon, et al., Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury, Neurotherapeutics 18 (2021) 2682-2691. https://doi.org/10.1007/s13311-021-01111-9.
S. Ananth, S. Miyauchi, M. Thangaraju, et al., Selenomethionine (Se-Met) induces the cystine/glutamate exchanger SLC7A11 in cultured human retinal pigment epithelial (rpe) cells: implications for antioxidant therapy in aging retina, Antioxidants 10 (2021) 9-25. https://doi.org/10.3390/antiox10010009.
1995
Views
373
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).