AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Nutritional values, bioactive compounds and health benefits of purslane (Portulaca oleracea L.): a comprehensive review

Yanxi Lia,bLonggao Xiaoa,bHuan YanaMingyi WuaXiaojiang Haoa,c( )Haiyang Liua,c( )
State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Purslane is one of the most widely consumed green vegetable and medicinal plants around the world.

• Potential of purslane as alternative dietary supplement was focused.

• The bioactive compounds and health-promoting properties of purslane were comprehensively reviewed.

• The existing challenges of research and future perspective on purslane were further discussed.

Graphical Abstract

Abstract

Portulaca oleracea L., commonly known as purslane, is a worldwide weed species belonging to the family Portulacaceae and has been known as “Global Panacea”. As one of the most widely consumed green vegetables and medicinal plants around the world, it has recently been re-evaluated as a potential “new crop” due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid (α-linolenic acid), as well as a variety of nutrients and phytochemicals. Accordingly, emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory, anti-hyperglycemic, antioxidant, neuroprotective, and immunomodulatory. These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine. This review systematically summarizes the up-to-date research carried out on purslane, including the nutritional compositions, bioactive compounds, and health benefits it exerts as well as limitations, challenges, and future directions of research. Finally, we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment.

References

[1]

M. Iranshahy, B. Javadi, M. Iranshahi, et al., A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L, J. Ethnopharmacol. 205 (2017) 158-172. https://doi.org/10.1016/j.jep.2017.05.004.

[2]

R. Srivastava, V. Srivastava, A. Singh, Multipurpose benefits of an underexplored species purslane (Portulaca oleracea L.): a critical review, Environ. Manage. 72 (2021) 309-320. https://doi.org/10.1007/s00267-021-01456-z.

[3]
L. Donato-Capel, C.L. Garcia-Rodenas, E. Pouteau, et al., Food Structures, Digestion and Health, New Yorak, 2014.
[4]

B. Nemzer, F. Al-Taher, N. Abshiru, Extraction and natural bioactive molecules characterization in Spinach, Kale and Purslane: a comparative study, Molecules 26 (2021) 2515. https://doi.org/10.3390/molecules26092515.

[5]
Pharmacopoeia of the People’s Republic of China, 2020 ed., China Medical Science and Technology Press, Beijing, 2020.
[6]

L. Miao, H. Tao, Y. Peng, et al., The anti-inflammatory potential of Portulaca oleracea L. (purslane) extract by partial suppression on NF-kappaB and MAPK activation, Food Chem. 290 (2019) 239-245. https://doi.org/10.1016/j.foodchem.2019.04.005.

[7]

J.E. Park, J.S. Lee, H.A. Lee, et al., Portulaca oleracea L. extract enhances glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes, J. Med. Food. 21 (2018) 462-468. https://doi.org/10.1089/jmf.2017.4098.

[8]

M.D.P. Fernandez-Poyatos, E.J. Llorent-Martinez, A. Ruiz-Medina, Phytochemical composition and antioxidant activity of Portulaca oleracea: influence of the steaming cooking process, Foods 10 (2021) 94. https://doi.org/10.3390/foods10010094.

[9]

M.A. Alfwuaires, A.I. Algefare, E. Afkar, et al., Immunomodulatory assessment of Portulaca oleracea L. extract in a mouse model of colitis, Biomed. Pharmacother. 143 (2021) 112148. https://doi.org/10.1016/j.biopha.2021.112148.

[10]

S. Petropoulos, A. Karkanis, N. Martins, et al., Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices, Trends Food Sci. Technol. 55 (2016) 1-10. https://doi.org/10.1016/j.tifs.2016.06.010.

[11]

Y.X. Zhou, H.L. Xin, K. Rahman, et al., Portulaca oleracea L.: a review of phytochemistry and pharmacological effects, Biomed. Res. Int. 2015 (2015) 925631. https://doi.org/10.1155/2015/925631.

[12]

J. Jalali, M. Ghasemzadeh Rahbardar, Ameliorative effects of Portulaca oleracea L. (purslane) on the metabolic syndrome: a review, J. Ethnopharmacol. 299 (2022) 115672. https://doi.org/10.1016/j.jep.2022.115672.

[13]

Z. Ebrahimian, B.M. Razavi, S.A. Mousavi Shaegh, et al., Effects of Portulaca oleracea L. (purslane) on the metabolic syndrome: a review, Iran J. Basic Med. Sci. 25 (2022) 1275-1285. https://doi.org/10.22038/IJBMS.2022.63264.13967.

[14]

H. Fernandes Serra Moura, F. de Souza Dias, E.S.L. Beatriz Souza, et al., Evaluation of multielement/proximate composition and bioactive phenolics contents of unconventional edible plants from Brazil using multivariate analysis techniques, Food Chem. 363 (2021) 129995. https://doi.org/10.1016/j.foodchem.2021.129995.

[15]

R. Kongkachuichai, R. Charoensiri, K. Yakoh, et al., Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand, Food Chem. 173 (2015) 838-846. https://doi.org/10.1016/j.foodchem.2014.10.123.

[16]

P. Rajyalakshmi, K. Venkatalaxmi, K. Venkatalakshmamma, et al., Total carotenoid and beta-carotene contents of forest green leafy vegetables consumed by tribals of south India, Plant Foods Hum. Nutr. 56 (2001) 225-238. https://doi.org/10.1023/a:1011125232097.

[17]

S. Singh, D.R. Singh, K.M. Salim, et al., Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar Islands, Int. J. Food Sci. Nutr. 62 (2011) 765-773. https://doi.org/10.3109/09637486.2011.585961.

[18]

F. Shahidi, P. Ambigaipalan, Omega-3 polyunsaturated fatty acids and their health benefits, Annu. Rev. Food Sci. Technol. 9 (2018) 345-381. https://doi.org/10.1146/annurev-food-111317-095850.

[19]

B. Nemzer, F. Al-Taher, N. Abshiru, Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes, Food Chem. 320 (2020) 126621. https://doi.org/10.1016/j.foodchem.2020.126621.

[20]

A.P. Simopoulos, Omega-3 fatty acids and antioxidants in edible wild plants, Biol. Res. 37 (2004) 263-277. https://doi.org/10.4067/s0716-97602004000200013.

[21]

I. Oliveira, P. Valentão, R. Lopes, et al., Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems, Microchem. J. 92 (2009) 129-134. https://doi.org/10.1016/j.microc.2009.02.006.

[22]

S. Petropoulos, A. Karkanis, A. Fernandes, et al., Chemical composition and yield of six genotypes of common purslane (Portulaca oleracea L.): an alternative source of omega-3 fatty acids, Plant Foods Hum. Nutr. 70 (2015) 420-426. https://doi.org/10.1007/s11130-015-0511-8.

[23]

U.R. Palaniswamy, R.J. McAvoy, B.B. Bible, Stage of harvest and polyunsaturated essential fatty acid concentrations in Purslane (Portulaca oleraceae) leaves, J. Agric. Food Chem. 49 (2001) 3490-3493. https://doi.org/10.1021/jf0102113.

[24]

M. Noorbakhshnia, L. Karimi-Zandi, Portulaca oleracea L. prevents lipopolysaccharide-induced passive avoidance learning and memory and TNF-alpha impairments in hippocampus of rat, Physiol. Behav. 169 (2017) 69-73. https://doi.org/10.1016/j.physbeh.2016.11.027.

[25]

L.X. Liu, P. Howe, Y.F. Zhou, et al., Fatty acids and b-carotene in Australian purslane(Portulaca oleracea) varieties, J. Chromatogr. 893 (2000) 207-213. https://doi.org/https://doi.org/10.1016/S0021-9673(00)00747-0.

[26]

A.G. Pereira, M. Fraga-Corral, P. Garcia-Oliveira, et al., Culinary and nutritional value of edible wild plants from northern Spain rich in phenolic compounds with potential health benefits, Food Funct. 11 (2020) 8493-8515. https://doi.org/10.1039/d0fo02147d.

[27]

M.G. Dias, M.F.G.F.C. Camões, L. Oliveira, Carotenoids in traditional Portuguese fruits and vegetables, Food Chem. 113 (2009) 808-815. https://doi.org/10.1016/j.foodchem.2008.08.002.

[28]

M. Raju, S. Varakumar, R. Lakshminarayana, et al., Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables, Food Chem. 101 (2007) 1598-1605. https://doi.org/10.1016/j.foodchem.2006.04.015.

[29]

R. T. Correia, K. C. Borges, M. F. Medeiros, et al., Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues, Food Sci. Technol. Int. 18 (2012) 539-547. https://doi.org/10.1177/1082013211433077.

[30]

C. Martinez-Villaluenga, E. Penas, B. Hernandez-Ledesma, Pseudocereal grains: nutritional value, health benefits and current applications for the development of gluten-free foods, Food Chem. Toxicol. 137 (2020) 111178. https://doi.org/10.1016/j.fct.2020.111178.

[31]

L.H. Pan, J. Wang, X.Q. Ye, et al., Enzyme-assisted extraction of polysaccharides from Dendrobium chrysotoxum and its functional properties and immunomodulatory activity, LWT-Food Sci. Technol. 60 (2015) 1149-1154. https://doi.org/10.1016/j.lwt.2014.10.004.

[32]

I. Khlusov, E. Avdeeva, V. Shupletsova, et al., Comparative in vitro evaluation of antibacterial and osteogenic activity of polysaccharide and flavonoid fractions isolated from the leaves of Saussurea controversa, Molecules 24 (2019) 3680. https://doi.org/10.3390/molecules24203680.

[33]

J. Zhou, G. Xu, J. Yan, et al., Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice, J. Ethnopharmacol. 164 (2015) 229-238. https://doi.org/10.1016/j.jep.2015.02.026.

[34]

J. Zhang, H. Chen, L. Luo, et al., Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria, Carbohydr. Polym. 267 (2021) 118219. https://doi.org/10.1016/j.carbpol.2021.118219.

[35]

J.H. Xie, M.L. Jin, G.A. Morris, et al., Advances on bioactive polysaccharides from medicinal plants, Crit. Rev. Food Sci. Nutr. 56 (2016) 60-84. https://doi.org/10.1080/10408398.2015.1069255.

[36]

R. Zhao, X. Gao, Y.P. Cai, et al., Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo, Carbohydr. Polym. 96 (2013) 376-383. https://doi.org/10.1016/j.carbpol.2013.04.023.

[37]

H. Shen, G. Tang, G. Zeng, et al., Purification and characterization of an antitumor polysaccharide from Portulaca oleracea L, Carbohydr. Polym. 93 (2013) 395-400. https://doi.org/10.1016/j.carbpol.2012.11.107.

[38]

Y.P. Li, L.H. Yao, G.J. Wu, et al., Antioxidant activities of novel small-molecule polysaccharide fractions purified from Portulaca oleracea L, Food Sci. Biotechnol. 23 (2014) 2045-2052. https://doi.org/10.1007/s10068-014-0278-y.

[39]

Y. Bai, X. Zang, J. Ma, et al., Anti-diabetic effect of Portulaca oleracea L. polysaccharide and its mechanism in diabetic rats, Int. J. Mol. Sci. 17 (2016) 1201. https://doi.org/10.3390/ijms17081201.

[40]

Y.N. Georgiev, M.H. Ognyanov, H. Kiyohara, et al., Acidic polysaccharide complexes from purslane, silver linden and lavender stimulate Peyer’s patch immune cells through innate and adaptive mechanisms, Int. J. Biol. Macromol. 105 (2017) 730-740. https://doi.org/10.1016/j.ijbiomac.2017.07.095.

[41]

Q. Hu, Q. Niu, H. Song, et al., Polysaccharides from Portulaca oleracea L. regulated insulin secretion in INS-1 cells through voltage-gated Na(+) channel, Biomed. Pharmacother. 109 (2019) 876-885. https://doi.org/10.1016/j.biopha.2018.10.113.

[42]

S.M. Ayivi-Tosuh, J. Yang, Y. Yang, et al., Structure analysis of a non-esterified homogalacturonan isolated from Portulaca oleracea L. and its adjuvant effect in OVA-immunized mice, Int. J. Biol. Macromol. 177 (2021) 422-429. https://doi.org/10.1016/j.ijbiomac.2021.02.142.

[43]

E.S. Amin, Isolation of Portulaca oleracea (regla) mucilage and identification of its structure, Carbohydr. Res. 56 (1977) 123-128. https://doi.org/10.1016/S0008-6215(00)84243-3.

[44]

S. Wolf, G. Mouille, J. Pelloux, Homogalacturonan methyl-esterification and plant development, Mol. Plant. 2 (2009) 851-860. https://doi.org/10.1093/mp/ssp066.

[45]

W. Tang, D. Liu, Y. Li, et al., Structural characteristics of a highly branched and acetylated pectin from Portulaca oleracea L, Food Hydrocoll. 116 (2021) 106659. https://doi.org/10.1016/j.foodhyd.2021.106659.

[46]

C.X. Dong, K. Hayashi, J.B. Lee, et al., Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L., Chem. Pharm. Bull. 58 (2010) 507-510. https://doi.org/10.1248/cpb.58.507.

[47]

R. Zhao, T. Zhang, B. Ma, et al., Antitumor activity of Portulaca oleracea L. polysaccharide on heLa cells through inducing TLR4/NF-kappaB signaling, Nutr. Cancer 69 (2017) 131-139. https://doi.org/10.1080/01635581.2017.1248294.

[48]

X.D. Shi, J.Y. Yin, S.W. Cui, et al., Plant-derived glucomannans: sources, preparation methods, structural features, and biological properties, Trends Food Sci.Technol. 99 (2020) 101-116. https://doi.org/10.1016/j.tifs.2020.02.016.

[49]

B.R. Lichman, The scaffold-forming steps of plant alkaloid biosynthesis, Nat. Prod. Rep. 38 (2021) 103-129. https://doi.org/10.1039/d0np00031k.

[50]

B. Debnath, W.S. Singh, M. Das, et al., Role of plant alkaloids on human health: a review of biological activities, Mater. Today Chem. 9 (2018) 56-72. https://doi.org/10.1016/j.mtchem.2018.05.001.

[51]

J. Chen, Y.P. Shi, J.Y. Liu, Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography, J. Chromatogr. 1003 (2003) 127-132. https://doi.org/10.1016/s0021-9673(03)00786-6.

[52]

X. Liang, J. Tian, L. Li, et al., Rapid determination of eight bioactive alkaloids in Portulaca oleracea L. by the optimal microwave extraction combined with positive-negative conversion multiple reaction monitor (+/-MRM) technology, Talanta 120 (2014) 167-172. https://doi.org/10.1016/j.talanta.2013.11.067.

[53]

C.E. He, J. Wei, Y. Jin, et al., Bioactive components of the roots of Salvia miltiorrhizae: changes related to harvest time and germplasm line, Ind. Crops Prod. 32 (2010) 313-317. https://doi.org/10.1016/j.indcrop.2010.05.009.

[54]

W. Nantitanon, S. Yotsawimonwat, S. Okonogi, Factors influencing antioxidant activities and total phenolic content of guava leaf extract, LWT-Food Sci. Technol. 43 (2010) 1095-1103. https://doi.org/10.1016/j.lwt.2010.02.015.

[55]

L. Xiang, D. Xing, W. Wang, et al., Alkaloids from Portulaca oleracea L, Phytochemistry 66 (2005) 2595-2601. https://doi.org/10.1016/j.phytochem.2005.08.011.

[56]

Z.Z. Jiao, S. Yue, H.X. Sun, et al., Indoline amide glucosides from Portulaca oleracea: isolation, structure, and DPPH radical scavenging activity, J. Nat. Prod. 78 (2015) 2588-2597. https://doi.org/10.1021/acs.jnatprod.5b00524.

[57]

P. Wang, H. Sun, D. Liu, et al., Protective effect of a phenolic extract containing indoline amides from Portulaca oleracea against cognitive impairment in senescent mice induced by large dose of D-galactose/NaNO2, J. Ethnopharmacol. 203 (2017) 252-259. https://doi.org/10.1016/j.jep.2017.03.050.

[58]

Z. Yang, C. Liu, L. Xiang, et al., Phenolic alkaloids as a new class of antioxidants in Portulaca oleracea, Phytother. Res. 23 (2009) 1032-1035. https://doi.org/10.1002/ptr.2742.

[59]

D.Y. Liu, T. Shen, L. Xiang, Two antioxidant alkaloids from Portulaca oleracea L., Helv. Chim. Acta. 94 (2011) 497-501. https://doi.org/10.1002/hlca.201000250.

[60]

C. Zhao, C. Zhang, F. He, et al., Two new alkaloids from Portulaca oleracea L. and their bioactivities, Fitoterapia 136 (2019) 104166. https://doi.org/10.1016/j.fitote.2019.05.005.

[61]

X. Liu, H. Wu, X. Tao, et al., Two amide glycosides from Portulaca oleracea L. and its bioactivities, Nat. Prod. Res. 35 (2021) 2655-2659. https://doi.org/10.1080/14786419.2019.1660333.

[62]

S. Yue, Z.Z. Jiao, H.X. Sun, et al., A new tricyclic alkaloid from Portulaca oleracea L., Helv. Chim. Acta. 98 (2015) 961-966. https://doi.org/10.1002/hlca.201400374.

[63]

C.Q. Wang, G.Q. Yang, Betacyanins from Portulaca oleracea L. ameliorate cognition deficits and attenuate oxidative damage induced by D-galactose in the brains of senescent mice, Phytomedicine 17 (2010) 527-532. https://doi.org/10.1016/j.phymed.2009.09.006.

[64]

J.L. Tian, X. Liang, P.Y. Gao, et al., Two new alkaloids from Portulaca oleracea and their cytotoxic activities, J. Asian Nat. Prod. Res. 16 (2014) 259-264. https://doi.org/10.1080/10286020.2013.866948.

[65]

C. Zhao, Z. Ying, X. Tao, et al., A new lactam alkaloid from Portulaca oleracea L. and its cytotoxity, Nat. Prod. Res. 32 (2018) 1548-1553. https://doi.org/10.1080/14786419.2017.1385022.

[66]

R.R. Wei, Q.G. Ma, G.Y. Zhong, et al., Identification of benzisoquinolinone derivatives with cytotoxicities from the leaves of Portulaca oleracea, Z. Naturforsch. 74 (2019) 139-144. https://doi.org/10.1515/znc-2018-0151.

[67]

W. Xu, Z. Ying, X. Tao, et al., Two new amide alkaloids from Portulaca oleracea L. and their anticholinesterase activities, Nat. Prod. Res. 35 (2021) 3794-3800. https://doi.org/10.1080/14786419.2020.1739040.

[68]

F. Xiu, X. Li, W. Zhang, et al., A new alkaloid from Portulaca oleracea L. and its antiacetylcholinesterase activity, Nat. Prod. Res. 33 (2018) 2583-2590. https://doi.org/10.1080/14786419.2018.1460833.

[69]

X. Cui, Z. Ying, X. Ying, et al., Three new alkaloids from Portulaca oleracea L. and their bioactivities, Fitoterapia 154 (2021) 105020. https://doi.org/10.1016/j.fitote.2021.105020.

[70]

Y. Ma, X. Li, W. Zhang, et al., A trace alkaloid, oleraisoindole A from Portulaca oleracea L. and its anticholinesterase effect, Nat. Prod. Res. 35 (2021) 350-353. https://doi.org/10.1080/14786419.2019.1627356.

[71]

M. Song, Z. Ying, X. Ying, et al., Three novel alkaloids from Portulaca oleracea L. and their anti-inflammatory bioactivities, Fitoterapia 156 (2022) 105087. https://doi.org/10.1016/j.fitote.2021.105087.

[72]

J. Fu, H. Wang, C. Dong, et al., Water-soluble alkaloids isolated from Portulaca oleracea L, Bioorg. Chem. 113 (2021) 105023. https://doi.org/10.1016/j.bioorg.2021.105023.

[73]

T.Y. Jin, S.Q. Li, C.R. Jin, et al., Catecholic isoquinolines from Portulaca oleracea and their anti-inflammatory and β2-adrenergic receptor agonist activity, J. Nat. Prod. 81 (2018) 768-777. https://doi.org/10.1021/acs.jnatprod.7b00762.

[74]

N. Andarwulan, R. Batari, D.A. Sandrasari, et al., Flavonoid content and antioxidant activity of vegetables from Indonesia, Food Chem. 121 (2010) 1231-1235. https://doi.org/10.1016/j.foodchem.2010.01.033.

[75]

M. Spina, M. Cuccioloni, L. Sparapani, et al., Comparative evaluation of flavonoid content in assessing quality of wild and cultivated vegetables for human consumption, J. Sci. Food Agric. 88 (2008) 294-304. https://doi.org/10.1002/jsfa.3089.

[76]

S. Siriamornpun, M. Suttajit, Microchemical components and antioxidant activity of different morphological parts of thai wild purslane (Portulaca oleracea), Weed Sci. 58 (2017) 182-188. https://doi.org/10.1614/ws-d-09-00073.1.

[77]

H.B. Nayaka, R.L. Londonkar, M.K. Umesh, et al., Antibacterial attributes of apigenin, isolated from Portulaca oleracea L, Int. J. Bacteriol. 2014 (2014) 175851. https://doi.org/10.1155/2014/175851.

[78]

X. Yang, W. Zhang, X. Ying, et al., New flavonoids from Portulaca oleracea L. and their activities, Fitoterapia 127 (2018) 257-262. https://doi.org/10.1016/j.fitote.2018.02.032.

[79]

J. Yan, L.R. Sun, Z.Y. Zhou, et al., Homoisoflavonoids from the medicinal plant Portulaca oleracea, Phytochemistry 80 (2012) 37-41. https://doi.org/10.1016/j.phytochem.2012.05.014.

[80]

J.I. Lee, J.H. Oh, C.S. Kong, et al., Evaluation of anti-adipogenic active homoisoflavonoids from Portulaca oleracea, Z. Naturforsch 74 (2019) 265-273. https://doi.org/10.1515/znc-2018-0114.

[81]

X. Yang, Z. Ying, H. Liu, et al., A new homoisoflavone from Portulaca oleracea L. and its antioxidant activity, Nat. Prod. Res. 33 (2019) 3500-3506. https://doi.org/10.1080/14786419.2018.1484465.

[82]

J.E. Park, J.Y. Park, Y. Seo, et al., A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes, Int. J. Biol. Macromol. 123 (2019) 26-34. https://doi.org/10.1016/j.ijbiomac.2018.10.206.

[83]

J.E. Park, Y. Seo, J.S. Han, HM-chromanone, a component of Portulaca oleracea L., stimulates glucose uptake and glycogen synthesis in skeletal muscle cell, Phytomedicine 83 (2021) 153473. https://doi.org/10.1016/j.phymed.2021.153473.

[84]

J.E. Park, J.S. Han, HM-chromanone, a major homoisoflavonoid in Portulaca oleracea L., improves palmitate-induced insulin resistance by regulating phosphorylation of IRS-1 residues in L6 skeletal muscle cells, Nutrients 14 (2022) 3815. https://doi.org/10.3390/nu14183815.

[85]

J.E. Park, Y. Seo, J.S. Han, HM-chromanone isolated from Portulaca oleracea L. protects INS-1 pancreatic β cells against glucotoxicity-induced apoptosis, Nutrients 11 (2019) 404. https://doi.org/10.3390/nu11020404.

[86]

E. Kang, J.E. Park, Y. Seo, et al., (E)-5-hydroxy-7-methoxy-3-(2’-hydroxybenzyl)-4-chromanone isolated from Portulaca oleracea L. suppresses LPS-induced inflammation in RAW 264.7 macrophages by downregulating inflammatory factors, Immunopharmacol. Immunotoxicol. 43 (2021) 611-621. https://doi.org/10.1080/08923973.2021.1963271.

[87]

J.Y. Je, J.E. Park, Y. Seo, et al., HM-chromanone inhibits adipogenesis by regulating adipogenic transcription factors and AMPK in 3T3-L1 adipocytes, Eur. J. Pharmacol. 892 (2021) 173689. https://doi.org/10.1016/j.ejphar.2020.173689.

[88]

Y. Duan, Z. Ying, F. He, et al., A new skeleton flavonoid and a new lignan from Portulaca oleracea L. and their activities, Fitoterapia 153 (2021) 104993. https://doi.org/10.1016/j.fitote.2021.104993.

[89]

Y. Duan, Z. Ying, M. Zhang, et al., Two new homoisoflavones from Portulaca oleracea L. and their activities, Nat. Prod. Res. 36 (2022) 1765-1773. https://doi.org/10.1080/14786419.2020.1815742.

[90]

Y. Ma, Y. Bao, W. Zhang, et al., Four lignans from Portulaca oleracea L. and its antioxidant activities, Nat. Prod. Res. 34 (2020) 2276-2282. https://doi.org/10.1080/14786419.2018.1534852.

[91]

C. Wang, S. Guo, J. Tian, et al., Two new lignans with their biological activities in Portulaca oleracea L., Phytochem. Lett. 50 (2022) 95-99. https://doi.org/10.1016/j.phytol.2022.06.003.

[92]

W. Xu, J. Wang, B. Ju, et al., Seven compounds from Portulaca oleracea L. and their anticholinesterase activities, Nat. Prod. Res. 36 (2021) 2547-2553. https://doi.org/10.1080/14786419.2021.1916928.

[93]

J. Tian, Z. Ying, X. Lan, et al., Two new metabolites from Portulaca oleracea and their anti-inflammatory activities, Phytochem. Lett. 48 (2022) 114-119. https://doi.org/10.1016/j.phytol.2022.02.007.

[94]

S. Hu, W.C. Chai, L. Xu, et al., Catecholic alkaloid sulfonates and aromatic nitro compounds from Portulaca oleracea and screening of their anti-inflammatory and anti-microbial activities, Phytochemistry 181 (2021) 112587. https://doi.org/10.1016/j.phytochem.2020.112587.

[95]

L. Xu, X. Tao, Y. Gao, et al., Cytotoxicity of hydroxydihydrobovolide and its pharmacokinetic studies in Portulaca oleracea L. extract, Braz. J. Pharm. Sci. 53 (2017) e16093. https://doi.org/10.1590/s2175-97902017000216093.

[96]

Y. Gu, Z. Ying, X. Lan, et al., Two new esters from the aerial parts of Portulaca oleracea L. and their bioactivities, Phytochem. Lett. 44 (2021) 98-101. https://doi.org/10.1016/j.phytol.2021.06.009.

[97]

Q. Ji, G.Y. Zheng, W. Xia, et al., Inhibition of invasion and metastasis of human liver cancer HCCLM3 cells by portulacerebroside A, Pharm. Biol. 53 (2015) 773-780. https://doi.org/10.3109/13880209.2014.941505.

[98]

B. Wu, L. Yu, X. Wu, et al., New CuCl2-induced glucoside esters and other constituents from Portucala oleracea, Carbohydr. Res. 351 (2012) 68-73. https://doi.org/10.1016/j.carres.2012.01.012.

[99]

A.U. Ahmed, An overview of inflammation: mechanism and consequences, Front. Biol. 6 (2011) 274-281. https://doi.org/10.1007/s11515-011-1123-9.

[100]

A.S. Lee, J.S. Kim, Y.J. Lee, et al., Anti-TNF-alpha activity of Portulaca oleracea in vascular endothelial cells, Int. J. Mol. Sci. 13 (2012) 5628-5644. https://doi.org/10.3390/ijms13055628.

[101]

Y. Yan, W. Jiang, L. Liu, et al., Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome, Cell 160 (2015) 62-73. https://doi.org/10.1016/j.cell.2014.11.047.

[102]

X.H. Yang, Y.M. Yan, J.K. Li, et al., Protective effects of ethanol extract from Portulaca oleracea L on dextran sulphate sodium-induced mice ulcerative colitis involving anti inflammatory and antioxidant, Am. J. Transl. Res. 8(5) (2016) 2138-2148.

[103]

R. Kong, H. Luo, N. Wang, et al., Portulaca extract attenuates development of dextran sulfate sodium induced colitis in mice through activation of PPARγ, PPAR Res. 2018 (2018) 6079101. https://doi.org/10.1155/2018/6079101.

[104]

A. Jaafari, V. Baradaran Rahimi, N. Vahdati-Mashhadian, et al., Evaluation of the therapeutic effects of the hydroethanolic extract of Portulaca oleracea on surgical-induced peritoneal adhesion, Mediators Inflamm. 2021 (2021) 8437753. https://doi.org/10.1155/2021/8437753.

[105]

Y.Y. Lim, E.P.L. Quah, Antioxidant properties of different cultivars of Portulaca oleracea, Food Chem. 103 (2007) 734-740. https://doi.org/10.1016/j.foodchem.2006.09.025.

[106]

M.K. Uddin, A.S. Juraimi, M.E. Ali, et al., Evaluation of antioxidant properties and mineral composition of purslane (Portulaca oleracea L.) at different growth stages, Int. J. Mol. Sci. 13 (2012) 10257-10267. https://doi.org/10.3390/ijms130810257.

[107]

N. Erkan, Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L, Food Chem. 133 (2012) 775-781. https://doi.org/10.1016/j.foodchem.2012.01.091.

[108]

B. Chen, H. Zhou, W. Zhao, et al., Effects of aqueous extract of Portulaca oleracea L. on oxidative stress and liver, spleen leptin, PARalpha and FAS mRNA expression in high-fat diet induced mice, Mol. Biol. Rep. 39 (2012) 7981-7988. https://doi.org/10.1007/s11033-012-1644-6.

[109]

W.K. Chung, K. Erion, J.C. Florez, et al., Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD), Diabetologia 63 (2020) 1671-1693. https://doi.org/10.1007/s00125-020-05181-w.

[110]

B. Ahren, GLP-1 for type 2 diabetes, Exp. Cell Res. 317 (2011) 1239-1245. https://doi.org/10.1016/j.yexcr.2011.01.010.

[111]

H. Cho, K. Kim, D.J. Jang, et al., Effect of six Korean plants on glucagon like peptide-1 release, Food Sci. Biotechnol. 28 (2019) 1571-1576. https://doi.org/10.1007/s10068-019-00603-x.

[112]

J.H. Lee, J.E. Park, J.S. Han, Portulaca oleracea L. extract reduces hyperglycemia via PI3k/Akt and AMPK pathways in the skeletal muscles of C57BL/Ksj-db/db mice, J. Ethnopharmacol. 260 (2020) 112973. https://doi.org/10.1016/j.jep.2020.112973.

[113]

D. Yamazaki, H. Hitomi, A. Nishiyama, Hypertension with diabetes mellitus complications, Hypertens. Res. 41 (2018) 147-156. https://doi.org/10.1038/s41440-017-0008-y.

[114]

A.S. Lee, Y.J. Lee, S.M. Lee, et al., Portulaca oleracea ameliorates diabetic vascular inflammation and endothelial dysfunction in db/db mice, J. Evidence-Based Complementary Altern. Med. 2012 (2012) 741824. https://doi.org/10.1155/2012/741824.

[115]

G. Zheng, F. Mo, C. Ling, et al., Portulaca oleracea L. alleviates liver injury in streptozotocin-induced diabetic mice, Drug Des. Devel. Ther. 12 (2018) 47-55. https://doi.org/10.2147/DDDT.S121084.

[116]

S. Shafi, N. Tabassum, Study of ethanolic extract of Portulaca oleracea (whole plant) on blood glucose levels and body weight in streptozotocin induced diabetic rats, Int. Res. J. Pharm. 9 (2018) 71-76. https://doi.org/10.7897/2230-8407.09464.

[117]

J. Hou, X. Zhou, P. Wang, et al., An integrative pharmacology-based approach for evaluating the potential effects of purslane seed in diabetes mellitus treatment using UHPLC-LTQ-Orbitrap and TCMIP V2.0, Front. Pharmacol. 11 (2020) 593693. https://doi.org/10.3389/fphar.2020.593693.

[118]

M.I. El-Sayed, Effects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy, J. Ethnopharmacol. 137 (2011) 643-651. https://doi.org/10.1016/j.jep.2011.06.020.

[119]

F. Dehghan, R. Soori, K. Gholami, et al., Purslane (Portulaca oleracea) seed consumption and aerobic training improves biomarkers associated with atherosclerosis in women with type 2 diabetes (T2D), Sci. Rep. 6 (2016) 37819. https://doi.org/10.1038/srep37819.

[120]

L. Chen, G. Huang, The antiviral activity of polysaccharides and their derivatives, Int. J. Biol. Macromol. 115 (2018) 77-82. https://doi.org/10.1016/j.ijbiomac.2018.04.056.

[121]

S. Al-Quraishy, M.A. Dkhil, A.E. Abdel Moneim, Protective effects of Portulaca oleracea against rotenone mediated depletion of glutathione in the striatum of rats as an animal model of Parkinson’s disease, Pestic. Biochem. Physiol. 103 (2012) 108-114. https://doi.org/10.1016/j.pestbp.2012.04.005.

[122]

A.E. Abdel Moneim, M.A. Dkhil, S. Al-Quraishy, The potential role of Portulaca oleracea as a neuroprotective agent in rotenone-induced neurotoxicity and apoptosis in the brain of rats, Pestic. Biochem. Physiol. 105 (2013) 203-212. https://doi.org/10.1016/j.pestbp.2013.02.004.

[123]

R.A. Sinha, P. Khare, A. Rai, et al., Anti-apoptotic role of omega-3-fatty acids in developing brain: perinatal hypothyroid rat cerebellum as apoptotic model, Int. J. Dev. Neurosci. 27 (2009) 377-383. https://doi.org/10.1016/j.ijdevneu.2009.02.003.

[124]

T. Sumathi, J. Christinal, Neuroprotective effect of Portulaca oleraceae ethanolic extract ameliorates methylmercury induced cognitive dysfunction and oxidative stress in cerebellum and cortex of rat brain, Biol. Trace Elem. Res. 172 (2016) 155-165. https://doi.org/10.1007/s12011-015-0546-6.

[125]

M. Gleeson, Immune function in sport and exercise, J. Appl. Physiol. 103 (2007) 693-699. https://doi.org/10.1152/japplphysiol.00008.2007.

[126]

V.R. Askari, S.A. Rezaee, K. Abnous, et al., The influence of hydro-ethanolic extract of Portulaca oleracea L. on Th1/Th2 balance in isolated human lymphocytes, J. Ethnopharmacol. 194 (2016) 1112-1121. https://doi.org/10.1016/j.jep.2016.10.082.

[127]

E.S. Catap, M.J.L. Kho, M.R.R. Jimenez, In vivo nonspecific immunomodulatory and antispasmodic effects of common purslane (Portulaca oleracea Linn.) leaf extracts in ICR mice, J. Ethnopharmacol. 215 (2018) 191-198. https://doi.org/10.1016/j.jep.2018.01.009.

[128]

M. Yin, Y. Zhang, H. Li, Advances in research on immunoregulation of macrophages by plant polysaccharides, Front. Immunol. 10 (2019) 145. https://doi.org/10.3389/fimmu.2019.00145.

[129]

Y.G. Chen, Z.J. Shen, X.P. Chen, Evaluation of free radicals scavenging and immunity-modulatory activities of purslane polysaccharides, Int. J. Biol. Macromol. 45 (2009) 448-452. https://doi.org/10.1016/j.ijbiomac.2009.07.009.

[130]

R. Zhao, T. Zhang, H. Zhao, et al., Effects of Portulaca oleracea L. polysaccharides on phenotypic and functional maturation of murine bone marrow derived dendritic cells, Nutr. Cancer 67 (2015) 987-993. https://doi.org/10.1080/01635581.2015.1060352.

[131]

R. Zhao, X. Meng, G. Jia, et al., Oral pre-administration of purslane polysaccharides enhance immune responses to inactivated foot-and-mouth disease vaccine in mice, BMC Vet. Res. 15 (2019) 38. https://doi.org/10.1186/s12917-019-1782-3.

[132]

A.L. Harvey, R. Edrada-Ebel, R.J. Quinn, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discovery 14 (2015) 111-129. https://doi.org/10.1038/nrd4510.

[133]

K.B. Oh, I.M. Chang, K.J. Hwang, et al., Detection of antifungal activity in Portulaca oleracea by a single-cell bioassay system, Phytother. Res. 14 (2000) 329-332. https://doi.org/10.1002/1099-1573(200008)14:5<329::AID-PTR581>3.0.CO;2-5.

[134]

S.S.M. Soliman, M.H. Semreen, A.A. El-Keblawy, et al., Assessment of herbal drugs for promising anti-Candida activity, BMC Complement. Altern. Med. 17 (2017) 257. https://doi.org/10.1186/s12906-017-1760-x.

[135]

M.I. Tleubayeva, U.M. Datkhayev, M. Alimzhanova, et al., Component composition and antimicrobial activity of CO2 extract of Portulaca oleracea, growing in the Territory of Kazakhstan, Sci. World J. 2021 (2021) 1-10. https://doi.org/10.1155/2021/5434525.

[136]

Y. Zidan, S. Bouderbala, F. Djellouli, et al., Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves lecithin: cholesterol acyltransferase activity in rats fed enriched-cholesterol diet, Phytomedicine 21 (2014) 1504-1508. https://doi.org/10.1016/j.phymed.2014.07.010.

[137]

J.A. Nazeam, H.M. El-Hefnawy, G. Omran, et al., Chemical profile and antihyperlipidemic effect of Portulaca oleracea L. seeds in streptozotocin-induced diabetic rats, Nat. Prod. Res. 32 (2018) 1484-1488. https://doi.org/10.1080/14786419.2017.1353507.

[138]

C.J. Chen, W.Y. Wang, X.L. Wang, et al., Anti-hypoxic activity of the ethanol extract from Portulaca oleracea in mice, J. Ethnopharmacol. 124 (2009) 246-250. https://doi.org/10.1016/j.jep.2009.04.028.

[139]

S.I. Ali, M.M. Said, E.K. Mohammed Hassan, Prophylactic and curative effects of purslane on bile duct ligation-induced hepatic fibrosis in albino rats, Ann. Hepatol. 10 (2011) 340-346. https://doi.org/10.1016/s1665-2681(19)31547-9.

[140]

Y.S. Jung Hwan Oh, C.S. Kong, Anti-photoaging effects of solvent-partitioned fractions from Portulaca oleracea L. on UVB-stressed human keratinocytes, J. Food Biochem. 43 (2019) e12814. https://doi.org/10.1111/jfbc.12814.

[141]

S. Lee, K.H. Kim, C. Park, et al., Portulaca oleracea extracts protect human keratinocytes and fibroblasts from UV-induced apoptosis, Exp. Dermatol. 23 (2014) 13-17. https://doi.org/10.1111/exd.12396.

[142]

G.P. Asnani, J. Bahekar, C.R. Kokare, Development of novel pH-responsive dual crosslinked hydrogel beads based on Portulaca oleracea polysaccharide-alginate-borax for colon specific delivery of 5-fluorouracil, J. Drug Deliv. Sci. Technol. 48 (2018) 200-208. https://doi.org/10.1016/j.jddst.2018.09.023.

[143]

Q. Han, L. Huang, Y. Wang, et al., Platinum (Ⅱ)-coordinated Portulaca oleracea polysaccharides as metal-drug based polymers for anticancer study, Colloids Surf. B. Biointerfaces. 201 (2021) 111628. https://doi.org/10.1016/j.colsurfb.2021.111628.

[144]

B. Wang, X. Wang, Z. Xiong, et al., A review on the applications of traditional Chinese medicine polysaccharides in drug delivery systems, Chin. Med. 17 (2022) 12. https://doi.org/10.1186/s13020-021-00567-3.

[145]

S. Zhuang, K. Ming, N. Ma, et al., Portulaca oleracea L. polysaccharide ameliorates lipopolysaccharide-induced inflammatory responses and barrier dysfunction in porcine intestinal epithelial monolayers, J. Funct. Foods 91 (2022) 104997. https://doi.org/10.1016/j.jff.2022.104997.

[146]

Q. Hu, Y. Li, C. Liu, et al., Effects of polysaccharide from Portulaca oleracea L. on voltage-gated Na(+) channel of INS-1 cells, Biomed. Pharmacother. 101 (2018) 572-578. https://doi.org/10.1016/j.biopha.2018.02.136.

[147]

Y.H. Li, C.Y. Lai, M.C. Su, et al., Antiviral activity of Portulaca oleracea L. against influenza A viruses, J. Ethnopharmacol. 241 (2019) 112013. https://doi.org/10.1016/j.jep.2019.112013.

[148]

Y. Du, J. Liu, X. Li, et al., Flavonoids extract from Portulaca oleracea L. induce Staphylococcus aureus death by apoptosis-like pathway, Int. J. Food Prop. 20 (2017) S534-S542. https://doi.org/10.1080/10942912.2017.1300812.

[149]

M. Erkhembaatar, E.J. Choi, H.Y. Lee, et al., Attenuated RANKL-induced cytotoxicity by Portulaca oleracea ethanol extract enhances RANKL-mediated osteoclastogenesis, BMC Complement. Altern. Med. 15 (2015) 226. https://doi.org/10.1186/s12906-015-0770-9.

[150]

S. Noreen, I. Hussain, M.I. Tariq, et al., Portulaca oleracea L. as a prospective candidate inhibitor of hepatitis C virus NS3 serine protease, Viral Immunol. 28 (2015) 282-289. https://doi.org/10.1089/vim.2014.0079.

[151]

V. Baradaran Rahimi, V.R. Askari, Promising anti-melanogenic impacts of Portulaca oleracea on B16F1 murine melanoma cell line: an in-vitro vision, S. Afr. J. Bot. 142 (2021) 477-485. https://doi.org/10.1016/j.sajb.2021.07.033.

[152]

S. Jang, M.S. Lee, S.A. Kang, et al., Portulaca oleracea L. extract regulates hepatic cholesterol metabolism via the AMPK/MicroRNA-33/34a pathway in rats fed a high-cholesterol diet, Nutrients 14 (2022) 3330. https://doi.org/10.3390/nu14163330.

[153]

Y. He, H. Long, C. Zou, et al., Anti-nociceptive effect of Portulaca oleracea L. ethanol extracts attenuated zymosan-induced mouse joint inflammation via inhibition of Nrf2 expression, Innate Immun. 27 (2021) 230-239. https://doi.org/10.1177/1753425921994190.

[154]

H.G. Shi, X.F. Liu, G.S. Tang, et al., Ethanol extract of Portulaca oleracea L. reduced the carbon tetrachloride induced liver injury in mice involving enhancement of NF-κB activity, Am. J. Transl. Res. 6 (2014) 746-755.

[155]

A. Eidi, P. Mortazavi, J.Z. Moghadam, et al., Hepatoprotective effects of Portulaca oleracea extract against CCl4-induced damage in rats, Pharm. Biol. 53 (2014) 1042-1051. https://doi.org/10.3109/13880209.2014.957783.

[156]

J.Y. Qiao, H.W. Li, F.G. Liu, et al., Effects of Portulaca oleracea extract on acute alcoholic liver injury of rats, Molecules 24 (2019) 2887. https://doi.org/10.3390/molecules24162887.

[157]

W.Y. Wang, L.W. Dong, L. Jia, et al., Ethanol extract of Portulaca oleracea L. protects against hypoxia-induced neuro damage through modulating endogenous erythropoietin expression, J. Nutr. Biochem. 23 (2012) 385-391. https://doi.org/10.1016/j.jnutbio.2010.12.015.

[158]

H.X. Zhang, N.C. Yu, G.F. Huang, et al., Neuroprotective effects of purslane herb aquenous extracts against d-galactose induced neurotoxicity, Chem.-Biol. Interact. 170 (2007) 145-152. https://doi.org/10.1016/j.cbi.2007.07.009.

[159]

H. Tao, D.L. Ye, Y.L. Wu, et al., The protective effect of polysaccharide extracted from Portulaca oleracea L. against Pb-induced learning and memory impairments in rats, Int. J. Biol. Macromol. 119 (2018) 617-623. https://doi.org/10.1016/j.ijbiomac.2018.07.138.

[160]

A.N. Rashed, F.U. Afifi, A.M. Disi, Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1, J. Ethnopharmacol. 88 (2003) 131-136. https://doi.org/10.1016/s0378-8741(03)00194-6.

[161]

A.S. Lee, Y.J. Lee, S.M. Lee, et al., An aqueous extract of Portulaca oleracea ameliorates diabetic nephropathy through suppression of renal fibrosis and inflammation in diabetic db/db mice, Am. J. Chin. Med. 40 (2012) 495-510. https://doi.org/10.1142/S0192415X12500383.

[162]

F. Gong, F. Li, L. Zhang, et al., Hypoglycemic effects of crude polysaccharide from purslane, Int. J. Mol. Sci. 10 (2009) 880-888. https://doi.org/10.3390/ijms10030880.

[163]

A. Sharma, G. Kaithwas, M. Vijayakumar, et al., Antihyperglycemic and antioxidant potential of polysaccharide fraction from Portulaca oleracea seeds against streptozotocin-induced diabetes in rats, J. Food Biochem. 36 (2012) 378-382. https://doi.org/10.1111/j.1745-4514.2011.00547.x.

[164]

W.J. Lv, J.Y. Huang, S.P. Li, et al., Portulaca oleracea L. extracts alleviate 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice, Front. Nutr. 9 (2022) 986943. https://doi.org/10.3389/fnut.2022.986943.

[165]

X. Tian, Y. Ding, Y. Kong, et al., Purslane (Portulacae oleracea L.) attenuates cadmium-induced hepatorenal and colonic damage in mice: role of chelation, antioxidant and intestinal microecological regulation, Phytomedicine 92 (2021) 153716. https://doi.org/10.1016/j.phymed.2021.153716.

[166]

Y. Li, Y. Hu, S. Shi, et al., Evaluation of antioxidant and immuno-enhancing activities of purslane polysaccharides in gastric cancer rats, Int. J. Biol. Macromol. 68 (2014) 113-116. https://doi.org/10.1016/j.ijbiomac.2014.04.038.

[167]

U.R. Palaniswamy, B.B. Bible, R.J. McAvoy, Oxalic acid concentrations in Purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics, Sci. Hortic. 102 (2004) 267-275. https://doi.org/10.1016/j.scienta.2004.01.006.

[168]

M.H.U. Rehman, U. Saleem, B. Ahmad, et al., Phytochemical and toxicological evaluation of Zephyranthes citrina, Front. Pharmacol. 13 (2022) 1007310. https://doi.org/10.3389/fphar.2022.1007310.

[169]

J.W. Yun, S.H. Kim, Y.S. Kim, et al., A comprehensive study on in vitro and in vivo toxicological evaluation of Artemisia capillaris, Regul. Toxicol. Pharmacol. 88 (2017) 87-95. https://doi.org/10.1016/j.yrtph.2017.05.010.

Food Science and Human Wellness
Pages 2480-2501
Cite this article:
Li Y, Xiao L, Yan H, et al. Nutritional values, bioactive compounds and health benefits of purslane (Portulaca oleracea L.): a comprehensive review. Food Science and Human Wellness, 2024, 13(5): 2480-2501. https://doi.org/10.26599/FSHW.2022.9250203

3444

Views

733

Downloads

1

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 January 2023
Revised: 16 February 2023
Accepted: 14 March 2023
Published: 10 October 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return