Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Appropriate oral hygiene significantly reduces the possibility of oral infections. However, dental caries and periodontal diseases are major oral health issues causing chronic diseases due to poor oral health. Recently, herbal compounds have gained interest in maintaining oral health. Extracts of burdock root (Arctium), noni fruit (Morinda citrifolia), and neem leaf (Azadirachta indica) are now used as intracanal medicaments in endodontics and periodontics. Plectranthus amboinicus species and other plants produces essential oil like β-caryophyllene, p-cymene, and γ-terpinene can exhibit antibacterial activity; highlighting phytoconstituents plays a vital role in oral health. The COVID-19 pandemic highlighted the importance of hygiene and sanitization, to curb SARS-CoV-2. Oral cavity is among the gateways for virus entry into saliva. Saliva is a potential reservoir of SARS-CoV-2, and there is an increased risk of infection if there is any fissure in the mouth. This enables entry of virus into the vascular system through gingival or periodontal pocket, possibly reaching lung periphery then to lung vessels by interacting with endothelial surface receptors triggering pulmonary vasoconstriction and lung damage due to endothelial dysfunction. This review aims to draw attention to the possible route of SARS-CoV-2 infection via the oral cavity and the importance of oral hygiene against COVID-19.
C. Burton-Jeangros, S. Cullati, A. Sacker, et al., A life course perspective on health trajectories and transitions, Springer, 2015.
W. Marcenes, N.J. Kassebaum, E. Bernabé, et al., Global burden of oral conditions in 1990-2010: a systematic analysis, J. Dent. Res. 92 (2013) 592-597. http://doi.org/10.1177/0022034513490168.
M. Abbasi-Shavazi, E. Mansoorian, S. Jambarsang, et al., Predictors of oral health-related quality of life in 2-5 year-old children in the South of Iran, Health Qual Life Outcomes 18 (2020) 384. http://doi.org/10.1186/s12955-020-01587-7.
J. Zhang, K.C.M. Leung, D. Sardana, et al., Risk predictors of dental root caries: a systematic review, J. Dent. 89 (2019) 103166. http://doi.org/10.1016/j.jdent.2019.07.004.
A. Sheiham, R.G. Watt, The common risk factor approach: a rational basis for promoting oral health, Community Dent. Oral Epidemiol. 28 (2000) 399-406. http://doi.org/10.1034/j.1600-0528.2000.028006399.x.
R.G. Watt, A. Sheiham, Integrating the common risk factor approach into a social determinants framework, Community Dent. Oral Epidemiol. 40 (2012) 289-296. http://doi.org/10.1111/j.1600-0528.2012.00680.x.
E. Dalir Abdolahinia, S. Hajisadeghi, Z. Moayedi Banan, et al., Potential applications of medicinal herbs and phytochemicals in oral and dental health: status quo and future perspectives, Oral Dis. 29 (2023) 2468-2482. http://doi.org/10.1111/odi.14276.
G. Kumar, M. Jalaluddin, P. Rout, et al., Emerging trends of herbal care in dentistry, J. Clin. Diagn. Res. 7 (2013) 1827-1829. http://doi.org/10.7860/JCDR/2013/6339.3282.
D.J. Sinha, A.A. Sinha, Natural medicaments in dentistry, Ayu 35 (2014) 113-118. http://doi.org/10.4103/0974-8520.146198.
D.E. Uju, N.P. Obioma, Anticariogenic potentials of clove, tobacco and bitter kola, Asian Pac. J. Trop. Med. 4 (2011) 814-818. http://doi.org/10.1016/S1995-7645(11)60200-9.
G. Lloyd-Jones, S. Molayem, C.C. Pontes, et al., The COVID-19 pathway: a proposed oral-vascular-pulmonary route of SARS-CoV-2 infection and the importance of oral healthcare measures, J. Oral. Med. Dent. Res. 2 (2021) 1-25.
N. Murgolo, A.G. Therien, B. Howell, et al., SARS-CoV-2 tropism, entry, replication, and propagation: considerations for drug discovery and development, PLoS Pathog. 17 (2021) e1009225. http://doi.org/10.1371/journal.ppat.1009225.
N. Huang, P. Perez, T. Kato, et al., Integrated single-cell atlases reveal an oral SARS-CoV-2 infection and transmission axis, MedRxiv (2020) 2020-10. http://doi.org/10.1101/2020.10.26.20219089.
W. Sakaguchi, N. Kubota, T. Shimizu, et al., Existence of SARS-CoV-2 entry molecules in the oral cavity, Int. Mol. Sci. 21 (2020) 6000. http://doi.org/10.3390/ijms21176000.
Z. Badran, A. Gaudin, X. Struillou, et al., Periodontal pockets: a potential reservoir for SARS-CoV-2? Med. Hypotheses. 143 (2020) 109907. http://doi.org/10.1016/j.mehy.2020.109907.
B. Fernandes Matuck, M. Dolhnikoff, G.V.A. Maia, et al., Periodontal tissues are targets for Sars-Cov-2: a post-mortem study, J. Oral Microb. 13 (2021) 1848135. http://doi.org/10.1080/20002297.2020.1848135.
N. Huang, P. Pérez, T. Kato, et al., SARS-CoV-2 infection of the oral cavity and saliva, Nat. Med. 27 (2021) 892-903. https://doi.org/10.1038/s41591-021-01296-8.
J. Silva, C. Lucas, M. Sundaram, et al., Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality, MedRxiv (2021). https://doi.org/10.1101/2021.01.04.21249236.
E. Gherlone, E. Polizzi, G. Tetè, et al., Dentistry and covid-19 pandemic: operative indications post-lockdown, New Microbiol. 44 (2021) 1-11.
B. Feher, C. Wieser, T. Lukes, et al., The effect of the COVID-19 pandemic on patient selection, surgical procedures, and postoperative complications in a specialized dental implant clinic, J. Clin. Med. 11 (2022) 855. http://doi.org/10.3390/jcm11030855.
P. Cappare, R. D’Ambrosio, R. de Cunto, et al., The usage of an air purifier device with hepa 14 filter during dental procedures in covid-19 pandemic: a randomized clinical trial, Int. J. Environ. Res. Public Health, 19 (2022) 5139. http://doi.org/10.3390/ijerph19095139.
D.G.K. Hong, J.H. Oh, Recent advances in dental implants, Maxillofac. Plast. Reconstr. Surg. 39 (2017) 33. http://doi.org/10.1186/s40902-017-0132-2.
E.F. Cagidiaco, F. Carboncini, S. Parrini, et al., Functional implant prosthodontic score of a one-year prospective study on three different connections for single-implant restorations, J. Osseointegration 10 (2018) 130-135. https://doi.org/10.23805/jo.2018.10.04.04.
S. Tecco, M.G. Grusovin, S. Sciara, et al., The association between three attitude-related indexes of oral hygiene and secondary implant failures: a retrospective longitudinal study, Int. J. Dent. Hyg. 16 (2018) 372-379. http://doi.org/10.1111/idh.12300.
M.S. Block, Coronavirus disease 2019 may affect dental implant integration, J. Oral. Maxillofac. Surg. 79 (2021) 1197-1198. http://doi.org/10.1016/j.joms.2021.01.033.
B. D’Orto, E. Polizzi, M. Nagni, et al., Full arch implant-prosthetic rehabilitation in patients with type Ⅰ diabetes mellitus: retrospective clinical study with 10 year follow-up, Int. J. Environ. Res. Public Health 19 (2022). http://doi.org/10.3390/ijerph191811735.
R.K. Dubey, D.K. Gupta, A.K. Singh, Dental implant survival in diabetic patients; review and recommendations, Natl. J. Maxillofac. Surg. 4 (2013) 142-150. http://doi.org/10.4103/0975-5950.127642.
E.F. Gherlone, P. Capparé, R. Pasciuta, et al., Evaluation of resistance against bacterial microleakage of a new conical implant-abutment connection versus conventional connections: an in vitro study, New Microbiol. 39 (2016) 49-56.
D. Pallos, G.F. Ruivo, S.H. Ferrari-Junior, et al., Periodontal disease and detection of human herpesviruses in saliva and gingival crevicular fluid of chronic kidney disease patients, J. Periodontol. 91 (2020) 1139-1147. http://doi.org/10.1002/JPER.19-0583.
A. Contreras, H. Nowzari, J. Slots, Herpesviruses in periodontal pocket and gingival tissue specimens, Oral Microbiol. Immunol. 15 (2000) 15-18. http://doi.org/10.1034/j.1399-302x.2000.150103.x.
D. Musso, C. Roche, T.X. Nhan, et al., Detection of Zika virus in saliva, J. Clin. Viro. 68 (2015) 53-55. https://doi.org/10.1016/j.jcv.2015.04.021.
M. Matičić, M. Poljak, B. Kramar, et al., Proviral HIV-1 DNA in gingival crevicular fluid of HIV-1-infected patients in various stages of HIV disease, J. Dent. Res. 79 (2000) 1496-1501. https://doi.org/10.1177/00220345000790071101.
B. Parra, J. Slots, Detection of human viruses in periodontal pockets using polymerase chain reaction, Oral Microbiol. Immunol. 11 (1996) 289-293. https://doi.org/10.1111/j.1399-302x.1996.tb00183.x.
S. Gupta, R. Mohindra, P.K. Chauhan, et al., SARS-CoV-2 detection in gingival crevicular fluid, J. Dent. Res. 100 (2021) 187-193. https://doi.org/10.1177/0022034520970536.
P. Hujoel, B.A. White, R.I. García, et al., The dentogingival epithelial surface area revisited, J. Period. Res. 36 (2001) 48-55. https://doi.org/10.1034/j.1600-0765.2001.00011.x.
H.J. Wright, J.B. Matthews, I.L.C. Chapple, et al., Periodontitis associates with a type 1 IFN signature in peripheral blood neutrophils, J. Immunol. 181 (2008) 5775-5784. https://doi.org/10.4049/jimmunol.181.8.5775.
H.O. Ito, Infective endocarditis and dental procedures: evidence, pathogenesis, and prevention, J. Med. Invest. 53 (2006) 189-198. https://doi.org/10.2152/jmi.53.189.
X. Chen, E.B. Daliri, N. Kim, et al., Microbial etiology and prevention of dental caries: exploiting natural products to inhibit cariogenic biofilms, Pathogens. 9 (2020) 569. https://doi.org/10.3390/pathogens9070569.
N.B. Pitts, D.T. Zero, P.D. Marsh, et al., Dental caries, Nat. Rev. Dis. Primers 3 (2017) 17030. https://doi.org/10.1038/nrdp.2017.30.
M. Lu, S. Xuan, Z. Wang, Oral microbiota: a new view of body health, Food Sci. Hum. Wellness 8 (2019) 8-15. https://doi.org/10.1016/j.fshw.2018.12.001.
M.A. Razi, S. Qamar, A. Singhal, et al., Role of natural salivary defenses in the maintenance of healthy oral microbiota in children and adolescents, J. Family Med. Prim. Care 9 (2020) 1603. https://doi.org/10.4103/jfmpc.jfmpc_1134_19.
P. Marsh, E. Zaura, Dental biofilm: ecological interactions in health and disease, J. Clin. Period. 44 (2017) S12-S22. https://doi.org/10.1111/jcpe.12679.
C.P. Sim, S.G. Dashper, E.C. Reynolds, Oral microbial biofilm models and their application to the testing of anticariogenic agents, J. Dent. 50 (2016) 1-11. https://doi.org/10.1016/j.jdent.2016.04.010.
K. Yadav, S. Prakash, Dental caries: a microbiological approach, J. Clin. Infect. Dis. Pract. 2 (2017) 1-15. https://doi.org/10.4172/2476-213x.1000118.
H. van der Mei, E. Engels, J. de Vries, et al., Effects of amine fluoride on biofilm growth and salivary pellicles, Caries Res. 42 (2008) 19-27. https://doi.org/10.1159/000111746.
R.J. Lamont, H. Koo, G. Hajishengallis, The oral microbiota: dynamic communities and host interactions, Nat. Rev. Microbiol. 16 (2018) 745-759. https://doi.org/10.1038/s41579-018-0089-x.
A. Seminario, Z. Broukal, R. Ivancakova, Mutans streptococci and the development of dental plaque, Prague Med. Rep. 106 (2005) 349-358.
A.S. Widyarman, C.F. Theodorea, Effect of reuterin on dual-species biofilm in vitro of Streptococcus mutans and Veillonella parvula, J. Intern. Dental Medical Res. 12 (2019) 77-83.
K.S. Fakhruddin, H.C. Ngo, L.P. Samaranayake, Cariogenic microbiome and microbiota of the early primary dentition: a contemporary overview, Oral Dis. 25 (2019) 982-995. https://doi.org/10.1111/odi.12932.
J.F. Liu, C.L. Hsu, L.R. Chen, Correlation between salivary mutans streptococci, lactobacilli and the severity of early childhood caries, J. Dent. Sci. 14 (2019) 389-394. https://doi.org/10.1016/j.jds.2019.06.003.
J. Obata, K. Fujishima, E. Nagata, et al., Pathogenic mechanisms of cariogenic Propionibacterium acidifaciens, Arch. Oral. Biol. 105(2019) 46-51. https://doi.org/10.1016/j.archoralbio.2019.06.005.
W.H. Bowen, R.A. Burne, H. Wu, et al., Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments, Trends Microbiol. 26 (2018) 229-242. https://doi.org/10.1016/j.tim.2017.09.008.
B.T. Amaechi, L.M.A. Tenuta, A.P. Ricomini Filho, et al., Protocols to study dental caries in vitro: microbial caries models, Methods Mol. Biol. (2019) 357-368. https://doi.org/10.1007/978-1-4939-9012-2_32.
R.A. Ccahuana-Vásquez, J.A. Cury, S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization, Braz. Oral Res. 24 (2010) 135-141. https://doi.org/10.1590/s1806-83242010000200002.
A.M. Alshahrani, R.L. Gregory, In vitro cariostatic effects of cinnamon water extract on nicotine-induced Streptococcus mutans biofilm, BMC Complement. Med. Ther. 20 (2020) 45. https://doi.org/10.1186/s12906-020-2840-x.
Q. Zhang, S. Qin, Y. Huang, et al., Inhibitory and preventive effects of Lactobacillus plantarum FB-T9 on dental caries in rats, J. Oral Microbiol. 12 (2020) 1703883. https://doi.org/10.1080/20002297.2019.1703883.
S.R. Palmer, Z. Ren, G. Hwang, et al., Streptococcus mutans yidC1 and yidC2 impact cell envelope biogenesis, the biofilm matrix, and biofilm biophysical properties, J. Bacteriol. 201 (2019) e00396-00318. https://doi.org/10.1128/JB.00396-18.
Q. Zhang, B. Nijampatnam, Z. Hua, et al., Structure-based discovery of small molecule inhibitors of cariogenic virulence, Sci. Rep. 7 (2017) 5974. https://doi.org/10.1038/s41598-017-06168-1.
H. Elgamily, R. Safy, R. Makharita, Influence of medicinal plant extracts on the growth of oral pathogens Streptococcus mutans and Lactobacillus acidophilus: an in-vitro study, Open Access Maced. J. Med. Sci. 7 (2019) 2328. https://doi.org/10.3889/oamjms.2019.653.
N. Philip, S.J. Leishman, H. Bandara, et al., Polyphenol-rich cranberry extracts modulate virulence of Streptococcus mutans-Candida albicans biofilms implicated in the pathogenesis of early childhood caries, Pediatr. Dent. 41 (2019) 56-62.
A. Manome, Y. Abiko, J. Kawashima, et al., Acidogenic potential of oral Bifidobacterium and its high fluoride tolerance, Front. Microbiol. 10 (2019) 1099. https://doi.org/10.3389/fmicb.2019.01099.
A.L. do Rosário Palma, N. Domingues, P.P. de Barros, et al., Influence of Streptococcus mitis and Streptococcus sanguinis on virulence of Candida albicans: in vitro and in vivo studies, Folia Microbiol. 64 (2019) 215-222. https://doi.org/10.1007/s12223-018-0645-9.
A. Mira, E. Buetas, B. Rosier, et al., Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications, J. Oral Microb. 11 (2019) 1609838. https://doi.org/10.1080/20002297.2019.1609838.
M. Shu, L. Wong, J.H. Miller, et al., Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system, Arch. Oral Biol. 45 (2000) 27-40. https://doi.org/10.1016/s0003-9969(99)00111-9.
A.A. Balhaddad, A.A. Kansara, D. Hidan, et al., Toward dental caries: exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials, Bioact. Mater. 4 (2019) 43-55. https://doi.org/10.1016/j.bioactmat.2018.12.002.
C. Popova, V. Dosseva-Panova, V. Panov, Microbiology of periodontal diseases. a review, Biotechnol. Biotechnol. Equip. 27 (2013) 3754-3759. https://doi.org/10.5504/BBEQ.2013.0027.
M. Newman, S. Socransky, Predominant cultivable microbiota in periodontosis, J. Periodontal Res. 12 (1977) 120-128. https://doi.org/10.1111/j.1600-0765.1977.tb00114.x.
J. Slots, Subgingival microflora and periodontal disease, J. Clin. Period. 6 (1979) 351-382. https://doi.org/10.1111/j.1600-051x.1979.tb01935.x.
A. Choo, D.M. Delac, L.B. Messer, Oral hygiene measures and promotion: review and considerations, Aust. Dent. J. 46 (2001) 166-173. https://doi.org/10.1111/j.1834-7819.2001.tb00277.x.
N.C. Claydon, Current concepts in toothbrushing and interdental cleaning, Periodontol. 48 (2008) 10-22. https://doi.org/10.1111/j.1600-0757.2008.00273.x.
N. Shah, V.P. Mathur, V. Jain, et al., Association between traditional oral hygiene methods with tooth wear, gingival bleeding, and recession: a descriptive cross-sectional study, Indian J. Dent. Res. 29 (2018) 150. https://doi.org/10.4103/ijdr.IJDR_651_16.
M. Kumar, S. Prakash, Radha, et al., Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health, Antioxidants (Basel) 10 (2021) 1061. http://doi.org/10.3390/antiox10071061.
A. Nordin, A.B. Saim, R. Ramli, et al., Miswak and oral health: an evidence-based review, Saudi. J. Biol. Sci. 27 (2020) 1801-1810. http://doi.org/10.1016/j.sjbs.2020.05.020.
A.S. Malik, M.S. Shaukat, A.A. Qureshi, et al., Comparative effectiveness of chewing stick and toothbrush: a randomized clinical trial, N. Am. J. Med. Sci. 6 (2014) 333-337. http://doi.org/10.4103/1947-2714.136916.
S. Elavarasu, P. Abinaya, S. Elanchezhiyan, et al., Evaluation of anti-plaque microbial activity of Azadirachta indica (neem oil) in vitro: a pilot study, J. Pharm. Bioallied. Sci. 4 (2012) S394-396. http://doi.org/10.4103/0975-7406.100299.
D. Naik, M. Giri, R. Nagarajappa, et al., Commercially available toothpaste in India, Indian J. Forensic Med. Toxicol. 14 (2020) 12978. http://doi.org/10.37506/ijfmt.v14i4.12978.
P. Axelsson, B. Nyström, J. Lindhe, The long-term effect of a plaque control program on tooth mortality, caries and periodontal disease in adults: results after 30 years of maintenance, J. Clinical Period. 31 (2004) 749-757. http://doi.org/10.1111/j.1600-051X.2004.00563.x.
L. Netuschil, R. Weiger, R. Preisler, et al., Plaque bacteria counts and vitality during chlorhexidine, meridol and listerine mouthrinses, Eur. J. Oral Sci. 103 (1995) 355-361. http://doi.org/10.1111/j.1600-0722.1995.tb01857.x.
I.H.N. Bassolé, H.R. Juliani, Essential oils in combination and their antimicrobial properties, Molecules 17 (2012) 3989-4006. https://doi.org/10.3390/molecules17043989.
L.C.D.C. Galvão, V.F. Furletti, S.M.F. Bersan, et al., Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects, Evid. Based Complement. Alternat. Med. 2012 (2012) 751435. https://doi.org/10.1155/2012/751435.
F. Bakkali, S. Averbeck, D. Averbeck, et al., Biological effects of essential oils–a review, Food Chem. Toxic. 46 (2008) 446-475. https://doi.org/10.1016/j.fct.2007.09.106.
R. de Cássia da Silveira e Sá, L.N. Andrade, D.P. de Sousa, A review on anti-inflammatory activity of monoterpenes, Molecules 18 (2013) 1227-1254. https://doi.org/10.3390/molecules18011227.
E. Pichersky, J.P. Noel, N. Dudareva, Biosynthesis of plant volatiles: nature’s diversity and ingenuity, Science 311 (2006) 808-811. https://doi.org/10.1126/science.1118510.
W.A. Bernardes, R. Lucarini, M.G. Tozatti, et al., Antibacterial activity of the essential oil from Rosmarinus offi cinalis and its major components against oral pathogens, Z. Naturforsch. C. J. Biosci. 65 (2010) 588-593. https://doi.org/10.1515/znc-2010-9-1009.
M. Botelho, R. dos Santos Araujo, J.G.M. da Costa, et al., Efficacy of a mouthrinse based on leaves of the neem tree (Azadirachta indica) in the treatment of patients with chronic gingivitis: a double-blind, randomized, controlled trial, J. Med. Plants Res. 2 (2008) 341-346.
H.R. Preus, O.C. Koldsland, A.M. Aass, et al., The plaque-and gingivitis-inhibiting capacity of a commercially available essential oil product. a parallel, split-mouth, single blind, randomized, placebo-controlled clinical study, Acta Odontol. Scand. 71 (2013) 1613-1619. https://doi.org/10.3109/00016357.2013.782506.
M. van Leeuwen, D. Slot, G. van der Weijden, The effect of an essential-oils mouthrinse as compared to a vehicle solution on plaque and gingival inflammation: a systematic review and meta-analysis, Int. J. Dent. Hyg. 12 (2014) 160-167. https://doi.org/10.1111/idh.12069.
F.P. Eduardo, L. Corrêa, D. Heller, et al., Salivary SARS-CoV-2 load reduction with mouthwash use: a randomized pilot clinical trial, Heliyon 7 (2021) e07346. http://doi.org/10.1016/j.heliyon.2021.e07346.
A.A. Khalil, U. ur Rahman, M.R. Khan, et al., Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives, RSC Adv. 7 (2017) 32669-32681. https://doi.org/10.1039/C7RA04803C
S. Hemaiswarya, M. Doble, Synergistic interaction of eugenol with antibiotics against gram negative bacteria, Phytomedicine 16 (2009) 997-1005. https://doi.org/10.1016/j.phymed.2009.04.006.
S.O. Oyedemi, A.I. Okoh, L.V. Mabinya, et al., The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli, African J. Biotechnol. 8 (2009).
B. Bakhshandeh, Z. Jahanafrooz, A. Abbasi, et al., Mutations in SARS-CoV-2; consequences in structure, function, and pathogenicity of the virus, Microb. Pathog. 154 (2021) 104831. https://doi.org/10.1016/j.micpath.2021.104831.
A. Escobar, M. Pérez, G. Romanelli, et al., Thymol bioactivity: a review focusing on practical applications, Arabian J. Chem. 13 (2020) 9243-9269. https://doi.org/10.1016/j.arabjc.2020.11.009.
S. Milovanovic, D. Markovic, A. Mrakovic, et al., Supercritical CO2-assisted production of PLA and PLGA foams for controlled thymol release, Mater. Sci. Eng. C 99 (2019) 394-404. https://doi.org/10.1016/j.msec.2019.01.106.
M.F. Nagoor Meeran, H. Javed, H.A. Taee, et al., Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development, Front. Pharmacol. 8 (2017) 380. https://doi.org/10.3389/fphar.2017.00380.
H. Ebrahimzadeh, Y. Yamini, F. Sefidkon, et al., Chemical composition of the essential oil and supercritical CO2 extracts of Zataria multiflora Boiss, Food Chem. 83 (2003) 357-361. https://doi.org/10.1016/S0308-8146(03)00096-7.
V. de Feo, M. Bruno, B. Tahiri, et al., Chemical composition and antibacterial activity of essential oils from Thymus spinulosus Ten. (Lamiaceae), J. Agric. Food Chem. 51 (2003) 3849-3853. https://doi.org/10.1021/jf021232f.
S.M. Nabavi, A. Marchese, M. Izadi, et al., Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy, Food Chem. 173 (2015) 339-347. https://doi.org/10.1016/j.foodchem.2014.10.042.
A. Tohidpour, M. Sattari, R. Omidbaigi, et al., Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA), Phytomedicine 17 (2010) 142-145. https://doi.org/10.1016/j.phymed.2009.05.007.
A. Kowalczyk, M. Przychodna, S. Sopata, et al., Thymol and thyme essential oil—new insights into selected therapeutic applications, Molecules 25 (2020) 4125. https://doi.org/10.3390/molecules25184125.
A. Elaissi, H. Medini, H. Marzouki, et al., Variation in volatile leaf oils of twelve Eucalyptus species harvested from Hajeb Layoun Arboreta (Tunisia), Chem. Biodivers. 7 (2010) 705-716. https://doi.org/10.1002/cbdv.200900169.
T.A. Souza, M.B.P. Lopes, A.S. Ramos, et al., Alpinia essential oils and their major components against Rhodnius nasutus, a vector of chagas disease, Sci. World J. 2018 (2018). https://doi.org/10.1155/2018/2393858.
M. Nogueira, S.G. Aquino, C.R. Junior, et al., Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages, Inflamm. Res. 63 (2014) 769-778. https://doi.org/10.1007/s00011-014-0749-x.
N.A. Thomsen, K.A. Hammer, T.V. Riley, et al., Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol, Int. J. Antimicrob. Ag. 41 (2013) 343-351. https://doi.org/10.1016/j.ijantimicag.2012.12.011.
C.F. Carson, B.J. Mee, T.V. Riley, Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy, Antimicrob. Agents Chemother. 46 (2002) 1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002..
W.R. Li, H.L. Li, Q.S. Shi, et al., The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi, Appl. Microbiol. Biotechnol. 100 (2016) 8865-8875. https://doi.org/10.1007/s00253-016-7692-4.
A. Straede, A. Corran, J. Bundy, et al., The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling, Yeast 24 (2007) 321-334. https://doi.org/10.1002/yea.1478.
U.P. Saxer, A. Stäuble, S.H. Szabo, et al., Effect of mouthwashing with tea tree oil on plaque and inflammation, Schweiz. Monatsschr. Zahnmed. 113 (2003) 985-996.
F. Maggi, M. Bramucci, C. Cecchini, et al., Composition and biological activity of essential oil of Achillea ligustica All. (Asteraceae) naturalized in central Italy: ideal candidate for anti-cariogenic formulations, Fitoterapia 80 (2009) 313-319. https://doi.org/10.1016/j.fitote.2009.04.004.
B. Rahman, S. Alkawas, E.A.A. Zubaidi, et al., Comparative antiplaque and antigingivitis effectiveness of tea tree oil mouthwash and a cetylpyridinium chloride mouthwash: a randomized controlled crossover study, Contemp. Clin. Dent. 5 (2014) 466. https://doi.org/10.4103/0976-237X.142813.
S.R. Varma, H. Sherif, A. Serafi, et al., The antiplaque efficacy of two herbal-based toothpastes: a clinical intervention, J. Int. Soc. Prev. Community Dent. 8 (2018) 21-27. https://doi.org/10.4103/jispcd.JISPCD_411_17.
B.H. Ali, H. Marrif, S.A. Noureldayem, et al., Some biological properties of curcumin: a review, Nat. Prod. Commun. 1 (2006). https://doi.org/10.1177/1934578X0600100613.
D. Eigner, D. Scholz, Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal, J. Ethnopharmacol. 67 (1999) 1-6. https://doi.org/10.1016/s0378-8741(98)00234-7.
K.L. Grant, C.D. Schneider, Alternative therapies, Am. J. Health-Syst. Pharm. 57 (2000) 1121-1122.
P. Tyagi, M. Singh, H. Kumari, et al., Bactericidal activity of curcumin I is associated with damaging of bacterial membrane, PLoS One 10 (2015) e0121313. https://doi.org/10.1371/journal.pone.0121313.
S. Kaur, N.H. Modi, D. Panda, et al., Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ–a structural insight to unveil antibacterial activity of curcumin, Eur. J. Med. Chem. 45 (2010) 4209-4214. https://doi.org/10.1016/j.ejmech.2010.06.015.
S.Y. Teow, K. Liew, S.A. Ali, et al., Antibacterial action of curcumin against Staphylococcus aureus: a brief review, J. Trop. Med. 2016 (2016) 2853045. https://doi.org/10.1155/2016/2853045.
D.G. Yun, D.G. Lee, Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli, Appl. Microbiol. Biotechnol. 100 (2016) 5505-5514. https://doi.org/10.1007/s00253-016-7415-x.
M. Sharma, R. Manoharlal, N. Puri, et al., Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans, Biosci. Rep. 30 (2010) 391-404. https://doi.org/10.1042/BSR20090151.
K. Neelofar, S. Shreaz, B. Rimple, et al., Curcumin as a promising anticandidal of clinical interest, Can. J. Microbiol. 57 (2011) 204-210. https://doi.org/10.1139/W10-117.
Y. Zhang, Y. Wang, X. Zhu, et al., Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & LM Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis, Microb. Pathog. 113 (2017) 396-402. https://doi.org/10.1016/j.micpath.2017.10.054.
M. Lopez, M. Hadisurya, R. Cornwall, Antimicrobial investigation and structure activity analysis of natural eugenol derivatives against several oral bacteria, J. Pharm. Biol. 5 (2019) 1.
M. Adil, K. Singh, P.K. Verma, et al., Eugenol-induced suppression of biofilm-forming genes in Streptococcus mutans: an approach to inhibit biofilms, J. Glob. Antimicrob. Resist. 2 (2014) 286-292. https://doi.org/10.1016/j.jgar.2014.05.006.
H. Miladi, T. Zmantar, B. Kouidhi, et al., Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria, Microb. Pathog. 112 (2017) 156-163. https://doi.org/10.1016/j.micpath.2017.09.057.
S.B. de Paula, T.F. Bartelli, V.D. Raimo, et al., Effect of eugenol on cell surface hydrophobicity, adhesion, and biofilm of Candida tropicalis and Candida dubliniensis isolated from oral cavity of HIV-infected patients, Evid. Based Complement. Alternat. Med. 2014 (2014) 505204. https://doi.org/10.1155/2014/505204.
T.H. Wang, S.M. Hsia, C.H. Wu, et al., Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms, PLoS One 11 (2016) e0163147. https://doi.org/10.1371/journal.pone.0163147.
M. Botelho, N.A.P. Nogueira, G.M. Bastos, et al., Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens, Braz. J. Med. Biol. Res. 40 (2007) 349-356. https://doi.org/10.1590/s0100-879x2007000300010.
R.D. de Castro, T.M.P.A. de Souza, L.M.D. Bezerra, et al., Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study, BMC Complement. Altern. Med. 15 (2015) 417. https://doi.org/10.1186/s12906-015-0947-2.
E.A.F. Bordini, C.C. Tonon, R.S. Francisconi, et al., Antimicrobial effects of terpinen-4-ol against oral pathogens and its capacity for the modulation of gene expression, Biofouling 34 (2018) 815-825. https://doi.org/10.1080/08927014.2018.1504926.
A.R. Bucci, L. Marcelino, R.K. Mendes, et al., The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens, World J. Microbiol. Biotechnol. 34 (2018) 1-9. https://doi.org/10.1007/s11274-018-2472-1.
G. Ramage, S. Milligan, D.F. Lappin, et al., Antifungal, cytotoxic, and immunomodulatory properties of tea tree oil and its derivative components: potential role in management of oral candidosis in cancer patients, Front. Microbiol. 3 (2012) 220. https://doi.org/10.3389/fmicb.2012.00220.
S. Izui, S. Sekine, K. Maeda, et al., Antibacterial activity of curcumin against periodontopathic bacteria, J. Periodontol. 87 (2016) 83-90. https://doi.org/10.1902/jop.2015.150260.
P.S. Mandroli, K. Bhat, An in-vitro evaluation of antibacterial activity of curcumin against common endodontic bacteria, J. Appl. Pharmaceutical Sci. 3 (2013) 106-108. https://doi.org/10.7324/JAPS.2013.31018.
J. Song, B. Choi, E.J. Jin, et al., Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins, Eur. J. Clin. Microbiol. Infect. Dis. 31 (2012) 1347-1352. https://doi.org/10.1007/s10096-011-1448-y.
M.C. Raja, V. Srinivasan, S. Selvaraj, et al., Versatile and synergistic potential of eugenol: a review, Pharm. Anal. Acta 6 (2015) 1-6. https://doi.org/10.4172/2153-2435.1000367.
J.K.R. da Silva, P.L.B. Figueiredo, K.G. Byler, et al., Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: an in-silico investigation, Int. J. Mol. Sci. 21 (2020) 3426. https://doi.org/10.3390/ijms21103426.
Y. Zhang, T.G. Kutateladze, Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2, Nat. Commun. 11 (2020) 2920. https://doi.org/10.1038/s41467-020-16779-4.
A.C. Walls, Y.J. Park, M.A. Tortorici, et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell 181 (2020) 281-292. https://doi.org/10.1016/j.cell.2020.02.058.
S.A. Kulkarni, S.K. Nagarajan, V. Ramesh, et al., Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein, J. Mol. Struct. 1221 (2020) 128823. https://doi.org/10.1016/j.molstruc.2020.128823.
R. Rolta, D. Salaria, P. Sharma, et al., Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: in silico approach, Curr. Pharmacol. Rep. 7 (2021) 135-149. https://doi.org/10.1007/s40495-021-00259-4.
L.A. Gonzalez-Paz, C.A. Lossada, L.S. Moncayo, et al., Theoretical molecular docking study of the structural disruption of the viral 3CL-protease of COVID19 induced by binding of capsaicin, piperine and curcumin part 1: a comparative study with chloroquine and hydrochloroquine two antimalaric drugs, Res. Square (2020). https://doi.org/10.21203/rs.3.rs-21206/v1.
S.Z. Moghadamtousi, H.A. Kadir, P. Hassandarvish, et al., A review on antibacterial, antiviral, and antifungal activity of curcumin, Biomed. Res. Int. 2014 (2014) 186864. https://doi.org/10.1155/2014/186864.
I. Dairaku, Y. Han, N. Yanaka, et al., Inhibitory effect of curcumin on IMP dehydrogenase, the target for anticancer and antiviral chemotherapy agents, Biosci. Biotechnol. Biochem. 74 (2010) 185-187. https://doi.org/10.1271/bbb.90568.
G.J. Nabel, S.A. Rice, D.M. Knipe, et al., Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells, Science 239 (1988) 1299-1302. https://doi.org/10.1126/science.2830675.
B.R. Cullen, W.C. Greene, Regulatory pathways governing HIV-1 replication, Cell 58 (1989) 423-426. https://doi.org/10.1016/0092-8674(89)90420-0.
C.J. Li, L.J. Zhang, B.J. Dezube, et al., Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication, Proc. Natl. Acad. Sci. U.S.A. 90 (1993) 1839-1842. https://doi.org/10.1073/pnas.90.5.1839.
S. Barthelemy, L. Vergnes, M. Moynier, et al., Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat, Res. Virol. 149 (1998) 43-52. https://doi.org/10.1016/s0923-2516(97)86899-9.
D.Y. Chen, J.H. Shien, L. Tiley, et al., Curcumin inhibits influenza virus infection and haemagglutination activity, Food Chem. 119 (2010) 1346-1351. https://doi.org/10.1016/j.foodchem.2009.09.011.
J. Sharifi-Rad, B. Salehi, P. Schnitzler, et al., Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn, Cell. Mol. Biol. 63 (2017) 42-47. https://doi.org/10.14715/cmb/2017.63.8.10.
V.K. Maurya, S. Kumar, A.K. Prasad, et al., Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor, Virusdisease 31 (2020) 179-193. https://doi.org/10.1007/s13337-020-00598-8.
A. Astani, J. Reichling, P. Schnitzler, Screening for antiviral activities of isolated compounds from essential oils, Evid. Based Complement. Alternat. Med. 2011 (2011) 253643. https://doi.org/10.1093/ecam/nep187.
S. Vimalanathan, J. Hudson, Anti-influenza virus activity of essential oils and vapors, Am. J. Essent. Oils Nat. Prod. 2 (2014) 47-53.
A.R. Wani, K. Yadav, A. Khursheed, et al., An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses, Microb. Pathog. 152 (2021) 104620. https://doi.org/10.1016/j.micpath.2020.104620.
T.F. Kubiça, S.H. Alves, R. Weiblen, et al., In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes, Braz. J. Microbiol. 45 (2014) 209-214. https://doi.org/10.1590/S1517-83822014005000030.
A. Garozzo, R. Timpanaro, B. Bisignano, et al., In vitro antiviral activity of Melaleuca alternifolia essential oil, Lett. Appl. Microbiol. 49 (2009) 806-808. https://doi.org/10.1111/j.1472-765X.2009.02740.x.
B.C. Mounce, T. Cesaro, L. Carrau, et al., Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding, Antiviral Res. 142 (2017) 148-157. https://doi.org/10.1016/j.antiviral.2017.03.014.
H. Jhun, H.Y. Park, Y. Hisham, et al., SARS-CoV-2 delta (B. 1.617. 2) variant: a unique T478K mutation in receptor binding motif (RBM) of spike gene, Immune Netw. 21 (2021) e32. https://doi.org/10.4110/in.2021.21.e32.
Y.K. Ratre, N. Kahar, L.V.K.S. Bhaskar, et al., Molecular mechanism, diagnosis, and potential treatment for novel coronavirus (COVID-19) a current literature review and perspective, 3 Biotech. 11 (2021) 1-24. https://doi.org/10.1007/s13205-021-02657-3.
S.W. Huang, S.F. Wang, SARS-CoV-2 entry related viral and host genetic variations: implications on COVID-19 severity, immune escape, and infectivity, Int. J. Mol. Sci. 22 (2021) 3060. https://doi.org/10.3390/ijms22063060.
R. Lu, X. Zhao, J. Li, et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395 (2020) 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8.
L. Bian, Q. Gao, F. Gao, et al., Impact of the delta variant on vaccine efficacy and response strategies, Expert Rev. Vaccines 20 (2021) 1201-1209. https://doi.org/10.1080/14760584.2021.1976153.
I. Alam, A. Radovanovic, R. Incitti, et al., CovMT: an interactive SARS-CoV-2 mutation tracker, with a focus on critical variants, Lancet Infect. Dis. 21 (2021) 602. https://doi.org/10.1016/S1473-3099(21)00078-5.
S. Choudhary, K. Sreenivasulu, P. Mitra, et al., Role of genetic variants and gene expression in the susceptibility and severity of COVID-19, Ann. Lab. Med. 41 (2021) 129-138. https://doi.org/10.3343/alm.2021.41.2.129.
M.Z. Salleh, J.P. Derrick, Z.Z. Deris, Structural evaluation of the spike glycoprotein variants on SARS-CoV-2 transmission and immune evasion, Int. J. Mol. Sci. 22 (2021) 7425. https://doi.org/10.3390/ijms22147425.
M. Moghaddar, R. Radman, I. Macreadie, Severity, pathogenicity and transmissibility of delta and lambda variants of SARS-CoV-2, toxicity of spike protein and possibilities for future prevention of COVID-19, Microorganisms 9 (2021) 2167. https://doi.org/10.3390/microorganisms9102167.
P. Baral, N. Bhattarai, M.L. Hossenn et al., Mutation-induced changes in the receptor-binding interface of the SARS-CoV-2 Delta variant B. 1.617. 2 and implications for immune evasion, Biochem. Biophys. Res. Commun. 574 (2021) 14-19. https://doi.org/10.1016/j.bbrc.2021.08.036.
C.J. Coke, B. Davison, N. Fields, et al., SARS-CoV-2 infection and oral health: therapeutic opportunities and challenges, J. Clin. Med. 10 (2021) 156. https://doi.org/10.3390/jcm10010156.
M.B. Majnooni, S. Fakhri, Y. Shokoohinia, et al., Phytochemicals: potential therapeutic interventions against coronavirus-associated lung injury, Front. Pharmacol. 11 (2020) 588467. https://doi.org/10.3389/fphar.2020.588467.
J.S. Mani, J.B. Johnson, J.C. Steel, et al., Natural product-derived phytochemicals as potential agents against coronaviruses: a review, Virus Res. 284 (2020) 197989. https://doi.org/10.1016/j.virusres.2020.197989.
D.H. Zhang, K.L. Wu, X. Zhang, et al., In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med. 18 (2020) 152-158. https://doi.org/10.1016/j.joim.2020.02.005.
J.K. Cho, M.J. Curtis-Long, K.H. Lee, et al., Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa, Bioorg. Med. Chem. 21 (2013) 3051-3057. https://doi.org/10.1016/j.bmc.2013.03.027.
S. Jo, S. Kim, D.H. Shin, et al., Inhibition of SARS-CoV 3CL protease by flavonoids, J. Enzyme Inhib. Med. Chem. 35 (2020) 145-151. https://doi.org/10.1080/14756366.2019.1690480.
J.Y. Park, H.J. Yuk, H.W. Ryu, et al., Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors, J. Enzyme Inhib. Med. Chem. 32 (2017) 504-515. https://doi.org/10.1080/14756366.2016.1265519.
J. Lung, Y.S. Lin, Y.H. Yang, et al., The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase, J. Med. Virol. 92 (2020) 693-697. https://doi.org/10.1002/jmv.25761.
Y.A. Haggag, N.E. El-Ashmawy, K.M. Okasha, Is hesperidin essential for prophylaxis and treatment of COVID-19 infection? Med. Hypotheses 144 (2020) 109957. https://doi.org/10.1016/j.mehy.2020.109957.
S. Alam, M.M.R. Sarker, S. Afrin, et al., Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: update on clinical trials and mechanism of actions, Front. Pharmacol. 12 (2021) 671498. https://doi.org/10.3389/fphar.2021.671498.
2364
Views
466
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).