Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease that threatens human health worldwide. The aim of this study was to detect the protective effect of a fermented Lentinus edodes extract containing α-glucan (FLA), in a concanavalin A (ConA)-induced AIH mouse model and to determine the underlying liver-protective mechanism. The results showed that compared with the model group, the level of proinflammatory cytokines in serum of FLA pretreated mice was significantly decreased, and the degree of inflammatory cell infiltration in liver, thymus and spleen was significantly reduced. Quantitative polymerase chain reaction, immunohistochemistry, and Western blotting showed that FLA pre-treatment inhibited the ConA-induced apoptosis of hepatocytes by down-regulating the expression of BAX and up-regulating the expression of BCL-2. Further research found that FLA may improve liver injury in mice by activating NRF2 signaling pathway and inhibiting TRAF6/NF-κB signaling pathway. Thus, FLA may improve liver injury in mice by shifting gut microbial composition to reduce the release of inflammatory cytokines in the serum and prevent the necrosis of hepatocytes. Up-regulation of NRF2 signaling pathway, down-regulation of TRAF6/NF-κB signaling pathway, and an increase in the relative abundance of Lactobacillus_johnsonii and Ligilactobacillus_murinus play a protective role in liver.
E. Theocharidou, M.A. Heneghan, Current and future perspectives in autoimmune hepatitis, Br. J. Hosp. Med. 79 (2018) 151-159. https://doi.org/10.12968/hmed.2018.79.3.151.
L.E. Buitrago-Molina, J. Dywicki, F. Noyan, et al., Splenectomy prior to experimental induction of autoimmune hepatitis promotes more severe hepatic inflammation, production of IL-17 and apoptosis, Biomedicines 9 (2021) 58. https://doi.org/10.3390/biomedicines9010058.
C. Xu, C. Zhang, J. Ji, et al., CD36 deficiency attenuates immune-mediated hepatitis in mice by modulating the proapoptotic effects of CXC chemokine ligand 10, Hepatology 67 (2018) 1943-1955. https://doi.org/10.1002/hep.29716.
M. Corrigan, G.M. Hirschfield, Y.H. Oo, et al., Autoimmune hepatitis: an approach to disease understanding and management, Br. Med. Bull. 114 (2015) 181-91. https://doi.org/10.1093/bmb/ldv021.
G.W. Liu, W.X. Zhao, J.M. Bai, et al., Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties, Biochem. Cell Biol. 99 (2021) 231-240. https://doi.org/10.1139/bcb-2020-0197.
D.H. El-Kashef, R.S. Abdelrahman, Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway, Toxicol. Appl. Pharmacol. 393 (2020) 114931. https://doi.org/10.1016/j.taap.2020.114931.
B.W. Ritz, Supplementation with active hexose correlated compound increases survival following infectious challenge in mice, Nutr. Rev. 66 (2008) 526-531. https://doi.org/10.1111/j.1753-4887.2008.00085.x.
M.S. Shin, H.J. Park, T. Maeda, et al., The effects of AHCC®, a standardized extract of cultured Lentinura edodes mycelia, on natural killer and T cells in health and disease: reviews on human and animal studies, J. Immunol. Research 2019 (2019) 3758576. https://doi.org/10.1155/2019/3758576.
Y. Masuda, Y. Nakayama, A. Tanaka, et al., Antitumor activity of orally administered maitake α-glucan by stimulating antitumor immune response in murine tumor, PLoS ONE 12 (2017) e0173621. https://doi.org/10.1371/journal.pone.0173621.
H. Hoshi, Y. Yagi, H. Iijima, et al., Isolation and characterization of a novel immunomodulatory alpha-glucan-protein complex from the mycelium of Tricholoma matsutake in basidiomycetes, J. Agric. Food Chem. 53 (2005) 8948-8956. https://doi.org/10.1021/jf0510743.
M. Gao, J.J. Zhang, G. Liu, Effect of diphenyl dimethyl bicarboxylate on concanavalin A-induced liver injury in mice, Liver Int. 25 (2005) 904-912. https://doi.org/10.1111/j.1478-3231.2005.01140.x.
S.A. El-Sawy, A.M. El-Shafey, H.A. El-Bahrawy, Effect of dimethyl diphenyl bicarboxylate on normal and chemically-in-jured liver, East Mediterr Health J. 8 (2002) 95-104.
J.H. Kim, Y.J. Mun, H.J. Chun, et al., Effect of biphenyl dimethyl dicarboxylate on the humoral immunosuppression by ethanol, Int. J. Immunopharmacol. 22 (2000) 905-913. https://doi.org/10.1016/s0192-0561(00)00053-9.
H. Sun, G.T. Liu, Chemopreventive effect of dimethyl dicarboxylate biphenyl on malignant transformation of WB-F344 rat liver epithelial cells, Acta Pharmacol. Sin. 26 (2005) 1339-1344. https://doi.org/10.1111/j.1745-7254.2005.00208.x.
H.Y. Yao, Z. Fan, H.L. Cheng, et al., Recent development of thermoelectric polymers and composites, Macromol. Rapid Commun. 39 (2018) e1700727. https://doi.org/10.1002/marc.201700727.
L.M. Wang, Y.C. Liu, Z.M. Zhang, et al., Polymer composites-based thermoelectric materials and devices, Composites Part B: Engineering 122 (2017) 145-155. https://doi.org/10.1016/j.compositesb.2017.04.019.
H.C. Chen, H.W. Jiao, Y. Cheng, et al., In vitro and in vivo immunomodulatory activity of okra (Abelmoschus esculentus L.) polysaccharides, J. Med. Food 19 (2016) 253-265. https://doi.org/10.1089/jmf.2015.3513.
H.M. An, Y.L. Tan, S.P. Tan, et al., Smoking and serum lipid profiles in schizophrenia, Neurosci. Bull 32 (2016) 383-388. https://doi.org/10.1007/s12264-016-0022-0.
G.J. Quinlan, G.S. Martin, T.W. Evans, Albumin: biochemical properties and therapeutic potential, Hepatology 41 (2015) 1211-1219. https://doi.org/10.1002/hep.20720.
T.C. Lo, M.W. Kang, B.C. Wang, et al., Glycosyl linkage characteristics and classifications of exo-polysaccharides of some regionally different strains of Lentinula edodes by amplified fragment length polymorphism assay and cluster analysis, Anal. Chim. Acta 592 (2017) 146-153. https://doi.org/10.1016/j.aca.2007.04.021.
L. Sun, C.H. Wang, Q.J. Shi, et al., Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities, Int. J. Biol. Macromol. 45 (2009) 42-47. https://doi.org/10.1016/j.ijbiomac.2009.03.013.
L.Q. Sun, L. Wang, Y. Zhou, Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum, Carbohydr. Polym. 87 (2012) 1206-1210. https://doi.org/10.1016/j.carbpol.2011.08.097.
A.J. Czaja, D.K. Freese, American Association for the Study of Liver Disease, Diagnosis and treatment of autoimmune hepatitis, Hepatology 36 (2002) 479-497. https://doi.org/10.1053/jhep.2002.34944.
E.L. Krawitt, Autoimmune hepatitis, N. Engl. J. Med. 354 (2006) 54-66. https://doi.org/10.1056/NEJMra050408.
A.J. Czaja, Understanding the pathogenesis of autoimmune hepatitis, Am. J. Gastroenterol. 96 (2001) 1224-1231. https://doi.org/10.1111/j.1572-0241.2001.03707.x.
D. Vergani, K. Choudhuri, D.P. Bogdanos, et al., Pathogenesis of autoimmune hepatitis, Clin. Liver Dis. 6 (2002) 727-737. https://doi.org/10.1016/s1089-3261(02)00018-1.
J.D. Hayes, A.T. Dinkova-Kostova, The Nrf2 regulatory network provides an interface between redox and intermediary metabolism, Trends Biochem. Sci. 39 (2014) 199-218. https://doi.org/10.1016/j.tibs.2014.02.002.
F. Sivandzade, S. Prasad, A. Bhalerao, et al., NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches, Redox Biol. 21 (2019) 101059. https://doi.org/10.1016/j.redox.2018.11.017.
J.D. Wardyn, A.H. Ponsford, C.M. Sanderson, Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways, Biochem. Soc. Trans. 43 (2015) 621-626. https://doi.org/10.1042/BST20150014.
M.P. Soares, M.P. Seldon, I.P. Gregoire, et al., Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation, J. Immunol. 172 (2004) 3553-3563. https://doi.org/10.4049/jimmunol.172.6.3553.
J.A. Clemens, D.T. Stephenson, E.B. Smalstig, et al., Global ischemia activates nuclear factor-kappa B in forebrain neurons of rats, Stroke 28 (1997) 1073-1080. https://doi.org/10.1161/01.str.28.5.1073.
R. Eskes, B. Antonsson, A. Osen-Sand, et al., Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions, J. Cell Biol. 143 (1998) 217-224. https://doi.org/10.1083/jcb.143.1.217.
S. Shimizu, M. Narita, Y. Tsujimoto, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399 (1999) 483-487. https://doi.org/10.1038/20959.
B. Antonsson, S. Montessuit, S. Lauper, et al., Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria, Biochem. J. 345 (2000) 271-278.
A.E. Abdel Moneim, Evaluating the potential role of pomegranate peel in aluminum-induced oxidative stress and histopathological alterations in brain of female rats, Biol. Trace Elem. Res. 150 (2012) 328-336. https://doi.org/10.1007/s12011-012-9498-2.
N.S. Younis, H.S. Elsewedy, T.M. Shehata, et al., Geraniol averts methotrexate-induced acute kidney injury via Keap1/Nrf2/HO-1 and MAPK/NF-κB pathways, Curr. Issues Mol. Biol. 43 (2021) 1741-1755. https://doi.org/10.3390/cimb43030123.
S.K. Niture, A.K. Jaiswal, Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis, J. Biol. Chem. 287 (2012) 9873-9886. https://doi.org/10.1074/jbc.M111.312694.
M.L. Qiao, J.Y. Luo, M.H. Yang, et al., Effect of Ferula ferulaeoides on growth and apoptosis of human gastric cancer MGC-803 transplantation tumor in nude mice, China Journal of Chinese Materia Medica 44 (2019) 2827-2834. https://doi.org/10.19540/j.cnki.cjcmm.20190401.401.
M. Moshrefi, A. Spotin, H.S. Kafil, et al., Tumor suppressor p53 induces apoptosis of host lymphocytes experimentally infected by Leishmania major, by activation of Bax and caspase-3: a possible survival mechanism for the parasite, Parasitol. Res. 116 (2017) 2159-2166. https://doi.org/10.1007/s00436-017-5517-8.
C. König, L.K. Hillert-Richter, N.V. Ivanisenko, et al., Pharmacological targeting of c-FLIPL and Bcl-2 family members promotes apoptosis in CD95L-resistant cells, Sci. Rep. 10 (2020) 20823. https://doi.org/10.1038/s41598-020-76079-1.
R. Hoetelmans, H.J. van Slooten, R. Keijzer, et al., Bcl-2 and Bax proteins are present in interphase nuclei of mammalian cells, Cell Death Differ. 7 (2000) 384-392. https://doi.org/10.1038/sj.cdd.4400664.
R.S. Akhtar, J.M. Ness, K.A. Roth, et al., Bcl-2family regulation of neuronal development and neurodegeneration, Biochim. Biophys. Acta. 1644 (2004) 189-203. https://doi.org/10.1016/j.bbamcr.2003.10.013.
S.Y. Lu, X.J. Wei, H.L. Zhang, et al., Protective effect of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione, isolated from Averrhoa carambola L., against Aβ1-42-induced apoptosis in SH-SY5Y cells by reversing Bcl-2/Bax ratio, Psychopharmacology 238 (2021) 193-200. https://doi.org/10.1007/s00213-020-05668-9.
J.U. Lee, R. Hosotani, M. Wada, et al., Role of Bcl-2 family proteins (Bax, Bcl-2 and Bcl-X) on cellular susceptibility to radiation in pancreatic cancer cells, Eur. J. Cancer 35 (1999) 1374-1380. https://doi.org/10.1016/s0959-8049(99)00134-3.
J.M. Zhou, Q.X. Zheng, Z. Chen, The Nrf2 pathway in liver diseases, Front. Cell Dev. Biol. 10 (2022) 826204. https://doi.org/10.3389/fcell.2022.826204.
D.S. El-Agamy, A.A. Shaaban, H.H. Almaramhy, et al., Pristimerin as a novel hepatoprotective agent against experimental autoimmune hepatitis, Front. Pharmacol. 9 (2018) 292. https://doi.org/10.3389/fphar.2018.00292.
L. Verstrepen, R. Beyaert, Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation, Biochem. Pharmacol. 92 (2014) 519-529. https://doi.org/10.1016/j.bcp.2014.10.017.
S.C. Sun, The non-canonical NF-κB pathway in immunity and inflammation, Nat. Rev. Immunol. 17 (2017) 545-558. https://doi.org/10.1038/nri.2017.52.
Y. Lee, I.Y. Lee, H.J. Yun, et al., BAT3 negatively regulates lipopolysaccharide-induced NF-κB signaling through TRAF6, Biochem. Biophys. Res. Commun. 478 (2016) 784-790. https://doi.org/10.1016/j.bbrc.2016.08.025.
H.D. Jang, H.Z. Hwang, H.S. Kim, et al., C-Cbl negatively regulates TRAF6-mediated NF-κB activation by promoting K48-linked polyubiquitination of TRAF6, Cell Mol. Biol. Lett. 24 (2019) 29. https://doi.org/10.1186/s11658-019-0156-y.
B.A. Abdel-Wahab, F.E.M. Ali, S.A. Alkahtani, et al., Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: role of NRF2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/BAX/BCL-2 signaling pathways, Immunopharmacol Immunotoxicol. 42 (2020) 493-503. https://doi.org/10.1080/08923973.2020.1811307.
X.Y. Yang, M.X. Zheng, M.L. Zhou, et al., Lentinan Supplementation Protects the gut-liver axis and prevents steatohepatitis: the role of gut microbiota involved, Front. Nutr. 8 (2022) 803691. https://doi.org/10.3389/fnut.2021.803691.
M. Llopis, A.M. Cassard, L. Wrzosek, et al., Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease, Gut 65 (2016) 830-839. https://doi.org/10.1136/gutjnl-2015-310585.
R. Lin, L. Zhou, J. Zhang, et al., Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis, Int. J. Clin. Exp. Pathol. 8 (2015) 5153-5160.
G.L. Zhang, R. Cui, Y.X. Kang, et al., Testosterone propionate activated the NRF2-ARE pathway in ageing rats and ameliorated the age-related changes in liver, Sci. Rep. 2019 (2019) 18619. https://doi.org/10.1038/s41598-019-55148-0.
M.C. Lu, J.A. Ji, Z.Y. Jiang, et al., The Keap1-NRF2-ARE pathway as a potential preventive and therapeutic target: an update, Med. Res. Rev. 36 (2016) 924-963. https://doi.org/10.1002/med.21396.
J. Li, J.F. Han, J. Lv, et al., Saikosaponin A-induced gut microbiota changes attenuate severe acute pancreatitis through the activation of KEAP1/NRF2-ARE antioxidant signaling, Oxid. Med. Cell. Longev. 2020 (2020) 9217219. https://doi.org/10.1155/2020/9217219.
W. C. Chiu, Y. L. Huang, Y. L. Chen, et al., Synbiotics reduce ethanol-induced hepatic steatosis and inflammation by improving intestinal permeability and microbiota in rats, Food Funct. 6 (2015) 1692-1700. https://doi.org/10.1039/c5fo00104h.
X. Pan, T. Wu, L. Zhang, et al., In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed fish, J. Appl. Microbiol. 105 (2008) 1623-1629. https://doi.org/10.1111/j.1365-2672.2008.03885.x.
J.M. Liu, Y.Y. Fu, H. Zhang, et al., The hepatoprotective effect of the probiotic Clostridium butyricum against carbon tetrachloride-induced acute liver damage in mice, FoodFunct. 8 (2017) 4042-4052. https://doi.org/10.1039/c7fo00355b.
N.M. Elsherbiny, M. Rammadan, E.A. Hassan, et al., Autoimmune hepatitis: shifts in gut microbiota and metabolic pathways among egyptian patients, Microorganisms 8 (2020) 1011. https://doi.org/10.3390/microorganisms8071011.
T. Liwinski, C. Casar, M.C. Ruehlemann, et al., A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis, Aliment. Pharmacol. Ther. 51 (2020) 1417-1428. https://doi.org/10.1111/apt.15754.
L. Ma, L.W. Zhang, J.G. Song, et al., Fecal microbiota transplantation controls progression of experimental autoimmune hepatitis in mice by modulating the TFR/TFH immune imbalance and intestinal microbiota composition, Front. Immunol. 12 (2021) 728723. https://doi.org/10.3389/fimmu.2021.728723.
869
Views
106
Downloads
4
Crossref
4
Web of Science
4
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).