AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Structural characterization of three acidic polysaccharides from Opuntia dillenii Haw. fruits and their protective effect against hydrogen peroxide-induced oxidative stress in Huh-7 cells

Rui Liua,b,1Fangxin Chua,b,1Zheng Yana,bHanqing Chena,b( )
School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China

1 These authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Show Author Information

Highlights

• Three novel acid polysaccharide fractions are isolated from Opuntia dillenii Haw. fruit.

• The compositions and structural features of OFPPs are characterized.

• The OFPPs can protect Huh-7 cells against oxidative stress induced by H2O2.

Graphical Abstract

Abstract

Three novel acidic polysaccharide fractions (OFPP-1, OFPP-2, OFPP-3) with different m olecular weights (803.7, 555.1 and 414.5 kDa) were isolated from the peeled Opuntia dillenii Haw. fruits by alkali-extraction, graded alcohol precipitation and column chromatography. Structural analysis indicated that OFPPs were pectic polysaccharides consisting of rhamnose, arabinose and galactose residues. The backbone of OFPP-1 consisted of a repeating unit →6-α-D-GalpA-(1→2)-α-L-Rhap-(1→ with T-α-D-GalpA-(1→6)-α-D-GalpA-(1→4)-α-D-Glcp-(1→, T-β-D-Xylp-(1→6)-α-D-GalpA-(1→4)-α-D-Glcp-(1→ or T-α-D-GalpA-(1→3)-α-L-Araf-(1→as the side chains. The backbone of OFPP-2 consisted of a disaccharide repeating unit →2)-α-L-Rhap-(1→4)-β-D-GalpA-(1→ with T-β-L-Araf-(1→ as the branches substituted at the O-4 position of →2,4)-α-L-Rhap-(1→. Whereas the backbone of OFPP-3 was →2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-β-L-Araf-(1→or →2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-GalpA-(1→, which was branched at the O-4 position of→2,4)-α-L-Rhap-(1→. Moreover, these three polysaccharide fractions could protect Huh -7 cells against H2O2-induced oxidative stress to different extents by decreasing the MDA content and increasing the SOD, CAT, GSH-Px activities and the GSH level in the Huh-7 cells. These results suggest that OFPPs have the potential to be used as natural antioxidants.

References

[1]

C.E. Aruwa, S.O. Amoo, T. Kudanga, Opuntia (Cactaceae) plant compounds, biological activities and prospects: a comprehensive review, Food Res. Int. 112 (2018) 328-344. https://doi.org/10.1016/j.foodres.2018.06.047.

[2]

F.J. Barba, P. Putnik, D. Bursać Kovačević, et al., Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: from preservation of beverage to valorization of by-products, Trends Food Sci. Technol. 67 (2017) 260-270. https://doi.org/10.1016/j.tifs.2017.07.012.

[3]

E.M. Díaz-Medina, E.M. Rodríguez-Rodríguez, C. Díaz-Romero, Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits, Food Chem. 103 (2007) 38-45. https://doi.org/10.1016/j.foodchem.2006.06.064.

[4]

J.A. Fernández-López, L. Almela, J.M. Obón, et al., Determination of antioxidant constituents in cactus pear fruits, Plant Food Hum. Nutr. 65(3) (2010) 253-259. https://doi.org/10.1007/s11130-010-0189-x.

[5]

H.K. Jeong, D. Lee, H.P. Kim, et al., Structure analysis and antioxidant activities of an amylopectin-type polysaccharide isolated from dried fruits of Terminalia chebula, Carbohydr. Polym. 211 (2019) 100-108. https://doi.org/10.1016/j.carbpol.2019.01.097.

[6]

M. Kaur, A. Kaur, R. Sharma, Pharmacological actions of Opuntia ficus indica: a review, J. Appl. Pharm. Sci. 2(7) (2012) 15-18. http://dx.doi.org/10.7324/JAPS.2012.2703.

[7]

P. Mena, M. Tassotti, L. Andreu, et al., Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis, Food Res. Int. 108 (2018) 301-308. https://doi.org/10.1016/j.foodres.2018.03.062.

[8]

O. Osorio-Esquivel, Alicia-Ortiz-Moreno, V.B. Álvarez, et al., Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits, Food Res. Int. 44 (2011) 2160-2168. https://doi.org/10.1016/j.foodres.2011.02.011.

[9]

U. Osuna-Martínez, J. Reyes-Esparza, L. Rodríguez-Fragoso, Cactus (Opuntia ficus-indica): a review on its antioxidants properties and potential pharmacological use in chronic diseases, Nat. Prod. Chem. Res. 2(6) (2014) 1000153. https://doi.org/10.4172/2329-6836.1000153.

[10]

E. Salehi, Z. Emam-Djomeh, G. Askari, et al., Opuntia ficus indica fruit gum: extraction, characterization, antioxidant activity and functional properties, Carbohydr. Polym. 206 (2019) 565-572. https://doi.org/10.1016/j.carbpol.2018.11.035.

[11]

L. Tesoriere, D. Butera, A.M. Pintaudi, et al., Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C, Am. J. Clin. Nutr. 80(2) (2004) 391-395. https://doi.org/10.1093/ajcn/80.2.391.

[12]

E.M. Yahia, C. Mondragon-Jacobo, Nutritional components and anti-oxidant capacity of ten cultivars and lines of cactus pear fruit (Opuntia spp.), Food Res. Int. 44 (2011) 2311-2318. https://doi.org/10.1016/j.foodres.2011.02.042.

[13]

D.M. Zou, M. Brewer, F. Garcia, et al., Cactus pear: a natural product in cancer chemoprevention, Nutr. J. 4(1) (2005) 25. https://doi.org/10.1186/1475-2891-4-25.

[14]

B.B. Liang, H.G. Liu, J.T. Cao, Antitumor effect of polysaccharides from cactus pear fruit in S180-bearing mice, Chin. J. Cancer. 27(6) (2008) 580-584. http://dx.chinadoi.cn/10.3321/j.issn:1000-467X.2008.06.005.

[15]

X.K. Zhong, X. Jin, F.Y. Lai, et al., Chemical analysis and antioxidant activities in vitro of polysaccharide extracted from Opuntia ficus indica Mill. cultivated in China, Carbohydr. Polym. 82(3) (2010) 722-727. https://doi.org/10.1016/j.carbpol.2010.05.042.

[16]

J. Gao, Y.L. Han, Z.Y. Jin, et al., Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats, Carbohydr. Polym. 124 (2015) 25-34. https://doi.org/10.1016/j.carbpol.2015.01.068.

[17]

H.G. Liu, Q.Y. Liang, H.L. Meng, et al., Hypoglycemic effect of cactus pear fruit polysaccharide extract on rats, J. Chin. Med. Mater. 33(2) (2010) 240-242. http://dx.chinadoi.cn/10.13863/j.issn1001-4454.2010.02.030.

[18]

N.M. Ammar, A.N.B. Singab, S.H. El-Ahmady, et al., Phytochemical and biological studies of some polysaccharides isolated from Aloe, Tamarindus, Opuntia and Citrus, JASMR 5(2) (2010) 141-152.

[19]

Q.Y. Liang, H.X. Huang, J.T. Cao, et al., Protective effects of Cactus fruit polysaccharide extract on vascular endothelial function of spontaneous hypertensive rats, J. Chin. Med. Mater. 34(7) (2011) 1104-1107. http://dx.chinadoi.cn/10.13863/j.issn1001-4454.2011.07.036. (In Chinese)

[20]

Y. Habibi, M. Mahrouz, M.R. Vignon, Isolation and structure characterization of a (4-O-methyl-D-glucurono)-D-xylan from the skin of Opuntia ficus-indica prickly pear fruits, J. Carbohydr. Chem. 22(5) (2003) 331-337. https://doi.org/10.1081/CAR-120023476.

[21]

Y. Habibi, A. Heyraud, M. Mahrouz, et al., Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits, Carbohydr. Res. 339(6) (2004) 1119-1127. https://doi.org/10.1016/j.carres.2004.02.005.

[22]

Y. Habibi, M. Mahrouz, M.F. Marais, et al., An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits, Carbohydr. Res. 339 (2004) 1201-1205. https://doi.org/10.1016/j.carres.2004.02.004.

[23]

Y. Habibi, M. Mahrouz, M.R. Vignon, Isolation and structural characterization of protopectin from the skin of Opuntia ficus-indica prickly pear fruits, Carbohydr. Polym. 60(2) (2005a) 205-213. https://doi.org/10.1016/j.carbpol.2005.01.001.

[24]

Y. Habibi, M. Mahrouz, M.R. Vignon, Arabinan-rich polysaccharides isolated and characterized from the endosperm of the seed of Opuntia ficus-indica prickly pear fruits, Carbohydr. Polym. 60(3) (2005b) 319-329. https://doi.org/10.1016/j.carbpol.2005.01.019.

[25]

O. Ishurd, F. Zgheel, M. Elghazoun, et al., A novel (1→4)-α-D-glucan isolated from the fruits of Opuntia ficus indica (L.) Miller, Carbohydr. Polym. 82(3) (2010) 848-853. https://doi.org/10.1016/j.carbpol.2010.06.006.

[26]

E.N. Makarova, E.G. Shakhmatov, Structural characteristics of oxalate-soluble polysaccharides from Norway spruce (Picea abies) foliage, Carbohydr. Polym. 246 (2020) 116544. https://doi.org/10.1016/j.carbpol.2020.116544.

[27]

Y.J. Sun, S.T. Hou, S. Song, et al., Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides, Int. J. Biol. Macromol. 112 (2018) 985-995. https://doi.org/10.1016/j.ijbiomac.2018.02.066.

[28]

Y.X. Wang, T. Zhang, Y. Xin, et al., Comprehensive evaluation of alkali-extracted polysaccharides from Agrocybe cylindracea: comparison on structural characterization, Carbohydr. Polym. 255 (2021) 117502. https://doi.org/10.1016/j.carbpol.2020.117502.

[29]

T. Hu, P. Wu, J.F. Zhan, et al., Structure variety and its potential effects on biological activity of tea polysaccharides, Food Sci. Human Wellness 11(3) 2022 587-597. https://doi.org/10.1016/j.fshw.2021.12.015.

[30]

Y. Zhang, Y. Zeng, Y.S. Cui, et al., Structural characterization, antioxidant and immunomodulatory activities of a neutral polysaccharide from Cordyceps militaris cultivated on hull-less barley, Carbohydr. Polym. 235 (2020) 115969. https://doi.org/10.1016/j.carbpol.2020.115969.

[31]

Y. Liu, Y.F. Ye, X.B. Hu, et al., Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra, Carbohydr. Polym. 265 (2021) 118081. https://doi.org/10.1016/j.carbpol.2021.118081.

[32]

J.J. Cao, Q.Q. Lv, B. Zhang, et al., Structural characterization and hepatoprotective activities of polysaccharides from the leaves of Toona sinensis (A. Juss) Roem, Carbohydr. Polym. 212 (2019) 89-101. https://doi.org/10.1016/j.carbpol.2019.02.031.

[33]

H.J. Yuan, L. Dong, Z.Y. Zhang, et al., Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis, Food Sci. Human Wellness 11 (2022) 1010-1017. https://doi.org/10.1016/j.fshw.2022.03.030.

[34]

L.B. Wang, L.Y. Li, J.Y. Gao, et al., Characterization, antioxidant and immunomodulatory effects of selenized polysaccharides from dandelion roots, Carbohydr. Polym. 260 (2021) 117796. https://doi.org/10.1016/j.carbpol.2021.117796.

[35]

Q.Q. Lv, J.J. Cao, R. Liu, et al., Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran, Food Chem. 341 (2021) 128218. https://doi.org/10.1016/j.foodchem.2020.128218.

[36]

X.Y. Peng, G. Wu, A.R. Zhao, et al., Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway, Life Sci. 247 (2020) 117439. https://doi.org/10.1016/j.lfs.2020.117439.

[37]

T. Rudtanatip, C. Pariwatthanakun, S. Somintara, et al., Structural characterization, antioxidant activity, and protective effect against hydrogen peroxide-induced oxidative stress of chemically degraded Gracilaria fisheri sulfated galactans, Int. J. Biol. Macromol. 206 (2022) 51-63. https://doi.org/10.1016/j.ijbiomac.2022.02.125.

[38]

J. Gao, L.Z. Lin, B.G. Sun, et al., A comparison study on polysaccharides extracted from Laminaria japonica using different methods: structural characterization and bile acid-binding capacity, Food Funct. 8 (2017) 3043-3052. https://doi.org/10.1039/C7FO00218A.

[39]

Z.B. Wang, J.J. Pei, H.L. Ma, et al., Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides, Carbohydr. Polym. 109 (2014) 49-55. https://doi.org/10.1016/j.carbpol.2014.03.057.

[40]

M.Q. Wu, W. Li, Y.L. Zhang, et al., Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate × Rosa rugosa waste, Carbohydr. Polym. 253 (2021) 117190. https://doi.org/10.1016/j.carbpol.2020.117190.

[41]

Y.K. Jiao, D.H. Hua, D. Huang, Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type Ⅱ diabetes, Food Funct. 9(7) (2018) 3997-4007. https://doi.org/10.1039/C8FO00790J.

[42]

L.B. Wang, F.C. Liu, A.X. Wang, et al., Purification, characterization and bioactivity determination of a novel polysaccharide from pumpkin (Cucurbita moschata) seeds, Food Hydrocoll. 66 (2017) 357-364. https://doi.org/10.1016/j.foodhyd.2016.12.003.

[43]

Y. Tang, Z.Y. Zhu, Y. Liu, et al., The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from rose buds, Food Funct. 9(4) (2018) 2300-2312. https://doi.org/10.1039/C8FO00206A.

[44]

L. Hu, R. Liu, T. Wu, et al., Structural properties of homogeneous polysaccharide fraction released from wheat germ by hydrothermal treatment, Carbohydr. Polym. 240 (2020) 116-238. https://doi.org/10.1016/j.carbpol.2020.116238.

[45]

Y.J. Wan, T. Hong, H.F. Shi, et al., Probiotic fermentation modifies the structures of pectic polysaccharides from carrot pulp, Carbohydr. Polym. 251 (2021) 117116. https://doi.org/10.1016/j.carbpol.2020.117116.

[46]

O.A. Patova, V.V. Smirnov, V.V. Golovchenko, Structural, rheological and antioxidant properties of pectins from Equisetum arvense L. and Equisetum sylvaticum L., Carbohydr. Polym. 209 (2019) 239-249. https://doi.org/10.1016/j.carbpol.2018.12.098.

[47]

F. Li, Y.L. Wei, L. Liang, et al., A novel low-molecular-mass pumpkin polysaccharide: structural characterization, antioxidant activity, and hypoglycemic potential, Carbohydr. Polym. 251 (2021) 117090. https://doi.org/10.1016/j.carbpol.2020.117090.

[48]

Y.S. Jing, L.J. Huang, W.J. Lv, et al., Structural characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immunomodulatory activity, J. Agric. Food Chem. 62(4) (2014) 902-911. https://doi.org/10.1021/jf404752c.

[49]

F. Di Lorenzo, A. Silipo, A. Molinaro, et al., The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: structure and skin repairing properties, Carbohydr. Polym. 157 (2017) 128-136. https://doi.org/10.1016/j.carbpol.2016.09.073.

[50]

W. Liu, Y.M. Liu, R. Zhu, et al., Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L, Carbohydr. Polym. 147 (2016) 114-124. https://doi.org/10.1016/j.carbpol.2016.03.087.

[51]

Y.M. Yang, Z.C. Qiu, L.Y. Li, et al., Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: a comparison, Carbohydr. Polym. 261 (2021) 117879. https://doi.org/10.1016/j.carbpol.2021.117879.

[52]

M.Q. Zhu, R.M. Huang, P. Wen, et al., Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels, Carbohydr. Polym. 254 (2021) 117371. https://doi.org/10.1016/j.carbpol.2020.117371.

[53]

G.J. Chen, Q.X. Yuan, M. Saeeduddin, et al., Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities, Carbohydr. Polym. 153 (2016) 663-678. https://doi.org/10.1016/j.carbpol.2016.08.022.

[54]

T.W. Guan, X.Y. Wei, P. Xu, et al., Comparison of structural and antioxidant activity of polysaccharide extracted from truffles, J. Food Sci. 87(7) (2022) 2999-3012. https://doi.org/10.1111/1750-3841.16207.

[55]

C.H. Cho, E.A. Kim, J. Kim, et al., N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid beta-induced neuronal oxidative damage in cortical neurons, Free Radic. Res. 50(6) (2016) 678-690. https://doi.org/10.3109/10715762.2016.1167277.

[56]

M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol. 24(10) (2014) R453-R462. https://doi.org/10.1016/j.cub.2014.03.034.

[57]

J. Wu, R.Z. Chen, L. Tan, et al., Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower, Carbohydr. Polym. 291 (2022) 119535. https://doi.org/10.1016/j.carbpol.2022.119535.

[58]

W. Tang, M.Y. Shen, J.H. Xie, et al., Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by H2O2, Carbohydr. Polym. 175 (2017) 538-546. https://doi.org/10.1016/j.carbpol.2017.08.018.

[59]

Y.H. Dong., C. Chun, Q. Huang, et al., Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity, Carbohydr. Polym. 256 (2021) 117516. https://doi.org/10.1016/j.carbpol.2020.117516.

[60]

L.X. Huang, M.Y. Shen, X.W. Zhang, et al., Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth, Carbohydr. Polym. 200 (2018) 191-199. https://doi.org/10.1016/j.carbpol.2018.07.087.

[61]

C. Li, Z.P. Dong, B. Zhang, et al., Structural characterization and immune enhancement activity of a novel polysaccharide from Moringa oleifera leaves, Carbohydr. Polym. 234 (2020) 115897. https://doi.org/10.1016/j.carbpol.2020.115897.

[62]

T.C.T. Lo, C.A. Chang, K.H. Chiu, et al., Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods, Carbohydr. Polym. 86 (2011) 320-327. https://doi.org/10.1016/j.carbpol.2011.04.056.

[63]

L.Q. Sun, C.H. Wang, Q.J. Shi, et al., Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities, Int. J. Biol. Macromol. 45(1) (2009) 42-47. https://doi.org/10.1016/j.ijbiomac.2009.03.013.

[64]

Y. Sun, X.Y. Zhou, Purification, initial characterization and immune activities of polysaccharides from the fungus, Polyporus umbellatus, Food Sci. Human Wellness 3(2) 2014 73-78. https://doi.org/10.1016/j.fshw.2014.06.002.

[65]

J.N. Wu, X.T. Chen, K. Qiao, et al., Purification, structural elucidation, and in vitro antitumor effects of novel polysaccharides from Bangia fuscopurpurea, Food Sci. Human Wellness 10(1) 2021 63-71. https://doi.org/10.1016/j.fshw.2020.05.003.

[66]

L.Y. Li, Z.C. Qiu, H.J. Dong, et al., Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: a comparison, Int. J. Biol. Macromol. 182 (2021) 187-196. https://doi.org/10.1016/j.ijbiomac.2021.03.177.

[67]

J.W. Sheng, Y.L. Sun, Antioxidant properties of different molecular weight polysaccharides from Athyrium multidentatum (Doll.) Ching, Carbohydr. Polym. 108 (2014) 41-45. https://doi.org/10.1016/j.carbpol.2014.03.011.

[68]

Z.W. Zhao, L. Wang, Y. Ruan, et al., Physicochemical properties and biological activities of polysaccharides from the peel of Dioscorea opposita Thunb. extracted by four different methods, Food Sci. Human Wellness 12(1) 2023 130-139. https://doi.org/10.1016/j.fshw.2022.07.031.

[69]

A.X. Luo, X.J. He, S.D. Zhou, et al., Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl, Carbohydr. Polym. 79 (2010) 1014-1019. https://doi.org/10.1016/j.carbpol.2009.10.033.

Food Science and Human Wellness
Pages 1929-1942
Cite this article:
Liu R, Chu F, Yan Z, et al. Structural characterization of three acidic polysaccharides from Opuntia dillenii Haw. fruits and their protective effect against hydrogen peroxide-induced oxidative stress in Huh-7 cells. Food Science and Human Wellness, 2024, 13(4): 1929-1942. https://doi.org/10.26599/FSHW.2022.9250160

1209

Views

194

Downloads

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 17 April 2023
Revised: 29 April 2023
Accepted: 10 May 2023
Published: 20 May 2024
© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return