Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mental disorders seriously affect people’s health and social stability. This Mendelian randomization (MR) study was designed to investigate the causal relationship between circulating vitamin C (VC) or 25-hydroxyvitamin D (25(OH)D) levels and mental disorders. The data used for the MR analysis were derived from the summary genome-wide association studies (GWAS) database for VC and 25(OH)D and from the FinnGen consortium for fourteen mental disorders. Based on the inverse variance weighted (IVW) method, we found a potential causal association between circulating VC and anxiety disorders (IVW:OR = 1.139, 95% CI: 1.023-1.269, P = 0.018). However, no causal association was found between VC or 25(OH)D and other mental disorders (P > 0.05). In the reverse MR analysis, individuals with Alzheimer’s disease was causally associated with higher concentrations of circulating VC (P = 0.012), while individuals with anxiety disorders had a negative association between the concentrations of 25(OH)D (P = 0.012). However, the current evidence does not support a causal relationship between VC or 25(OH)D and other mental disorders. In addition, there was no causal association between circulating VC and 25(OH)D (P > 0.05). Future studies are needed to confirm these findings and to elucidate the mechanisms of potential causality.
A. Lora, F. Hanna, D. Chisholm, Mental health service availability and delivery at the global level: an analysis by countries’ income level from WHO’s Mental Health Atlas 2014, Epidemiol Psychiatr Sci. (2017) 1-12. https://doi.org/10.1017/S2045796017000075.
M. Kumar, V. Nyongesa, M. Kagoya, et al., Mapping services at two Nairobi County primary health facilities: identifying challenges and opportunities in integrated mental health care as a Universal Health Coverage (UHC) priority. Ann. Gen. Psychiatry, 20 (2021) 37. https://doi.org/10.1186/s12991-021-00359-x.
M. Trøstheim, M. Eikemo, R. Meir, et al., Assessment of anhedonia in adults with and without mental illness: a systematic review and meta-analysis, JAMA Netw Open. 3 (2020) e2013233. https://doi.org/10.1001/jamanetworkopen.2020.13233.
J. Rehm, K.D. Shield, Global burden of disease and the impact of mental and addictive disorders, Curr. Psychiatry Rep. 21 (2019) 10. https://doi.org/10.1007/s11920-019-0997-0.
F. Charlson, M.V. Ommeren, A. Flaxman, et al., New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis, Lancet 394 (2019) 240-248. https://doi.org/10.1016/S0140-6736(19)30934-1.
E.A. Holmes, R.C. O’Connor, V.H. Perry, et al., Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science, Lancet Psychiatry. 7 (2020) 547-560. https://doi.org/10.1016/S2215-0366(20)30168-1.
O. Plana-Ripoll, C.B. Pedersen, Y. Holtz, et al., Exploring comorbidity within mental disorders among a danish national population, JAMA Psychiatry 76(3) 2019 259-270.
M Marshall, The hidden links between mental disorders, Nature 581 (2020) 19-21. https://doi.org/10.1001/jamapsychiatry.2018.3658.
M. Lindblad, P. Tveden-Nyborg J. Lykkesfeldt, Regulation of vitamin C homeostasis during deficiency, Nutrients 5 (2013) 2860-2879. https://doi.org/10.3390/nu5082860.
B. Moritz, A.E. Schmitz, A.L.S. Rodrigues, et al., The role of vitamin C in stress-related disorders, J. Nutr. Biochem. 85 (2020) 108459. https://doi.org/10.1016/j.jnutbio.2020.108459.
Y.F. Wang, X.J. Liu, L. Robitaille, et al., Effects of vitamin C and vitamin D administration on mood and distress in acutely hospitalized patients, Am. J. Clin. Nutr. 98 (2013) 705-711. https://doi.org/10.3945/ajcn.112.056366.
D. Plevin, C. Galletly, The neuropsychiatric effects of vitamin C deficiency: a systematic review, BMC Psychiatry. 20 (2020) 315. https://doi.org/10.1186/s12888-020-02730-w.
A. Sahraian, A. Ghanizadeh, F. Kazemeini, Vitamin C as an adjuvant for treating major depressive disorder and suicidal behavior, a randomized placebo-controlled clinical trial, Trials 16 (2015) 94. https://doi.org/10.1186/s13063-015-0609-1.
X.Y. Cui, J.J. McGrath, T.H.J. Burne, et al., Vitamin D and schizophrenia: 20 years on, Mol. Psychiatry. 26 (2021) 2708-2720. https://doi.org/10.1038/s41380-021-01025-0.
J.L. Zhu, W.W. Luo, X. Cheng, et al., Vitamin D deficiency and schizophrenia in adults: a systematic review and meta-analysis of observational studies, Psychiatry Res. 288 (2020) 112959. https://doi.org/10.1016/j.psychres.2020.112959.
J. Tsiglopoulos, N. Pearson, N. Mifsud, et al., The association between vitamin D and symptom domains in psychotic disorders: a systematic review, Schizophr. Res. 237 (2021) 79-92. https://doi.org/10.1016/j.schres.2021.08.001.
J. Adamson, J. Lally, F. Gaughran, et al., Correlates of vitamin D in psychotic disorders: a comprehensive systematic review, Psychiatry Res. 249 (2017) 78-85. https://doi.org/10.1016/j.psychres.2016.12.052.
J. Wei, G.H. Lei, L. Fu, et al., Association between dietary vitamin C intake and non-alcoholic fatty liver disease: a cross-sectional study among middle-aged and older adults, PLoS ONE 11 (2016) e0147985. https://doi.org/10.1371/journal.pone.0147985.
D. Jahn, D. Dorbath, S. Kircher, et al., Beneficial effects of vitamin D treatment in an obese mouse model of non-alcoholic steatohepatitis, Nutrients 11 (2019) 77. https://doi.org/10.3390/nu11010077.
W. Dong, C. Tian, Y. Jiao, et al., Multiple genome analyses reveal key genes in vitamin C and vitamin D synthesis and transport pathways are shared, Sci. Rep. 9 (2019) 16811. https://doi.org/10.1038/s41598-019-53074-9.
C.A. Emdin, A.V. Khera, S. Kathiresan, Mendelian randomization, JAMA, 318 (2017) 1925-1926. https://doi.org/10.1001/jama.2017.17219.
S. Burgess, S. G. Thompson, Mendelian randomization: methods for causal inference using genetic variants, Taylor & Francis Group, New York, 2015.
J.S. Zheng, J. Luan, E. Sofianopoulou, et al., Plasma vitamin C and type 2 diabetes: genome-wide association study and mendelian randomization analysis in european populations, Diabetes Care 44 (2021) 98-106. https://doi.org/10.2337/dc20-1328.
J.A. Revez, T. Lin, Z. Qiao, et al., Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration, Nat. Commun. 11 (2020) 1647. https://doi.org/10.1038/s41467-020-15421-7.
S.G Davey, G. Hemani, Mendelian randomization: genetic anchors for causal inference in epidemiological studies, Hum. Mol. Genet. 23 (2014) R89-R98. https://doi.org/10.1093/hmg/ddu328.
V.W. Skrivankova, R.C. Richmond, B.A.R. Woolf, et al., Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement, JAMA 326 (2021) 1614-1621. https://doi.org/10.1001/jama.2021.18236.
M.I. Kurki, J. Karjalainen, P. Palta, et al., FinnGen: unique genetic insights from combining isolated population and national health register data, medRxiv. 3 (2022) 22271360. https://doi.org/10.1101/2022.03.03.22271360.
N.M. Davies, M.V. Holmes, G.S. Davey, Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians, BMJ 362 (2018) k601. https://doi.org/10.1136/bmj.k601.
N. Papadimitriou, N. Dimou, K.K. Tsilidis, et al., Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis, Nat. Commun. 11 (2020) 597. https://doi.org/10.1038/s41467-020-14389-8.
S. Burgess, A. Butterworth, S.G. Thompson, Mendelian randomization analysis with multiple genetic variants using summarized data, Genet. Epidemiol. 37 (2013) 658-665. https://doi.org/10.1002/gepi.21758.
J. Bowden J, G.S. Davey, S. Burgess. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression, Int. J. Epidemiol. 44 (2015) 512-525. https://doi.org/10.1093/ije/dyv080.
J. Bowden, G.S. Davey, P.C. Haycock, et al., Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator, Genet. Epidemiol. 40 (2016) 304-314. https://doi.org/10.1002/gepi.21965.
Z.H. Zhu, F.T. Zhang, H. Hu, et al., Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets, Nat. Genet. 48 (2016) 481-487. https://doi.org/10.1038/ng.3538.
M. Verbanck, C.Y. Chen, B. Neale, et al., Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases, Nat. Genet. 50 (2018) 693-698. https://doi.org/10.1038/s41588-018-0099-7.
G. Hemani, J. Zheng, B. Elsworth, et al., The MR-Base platform supports systematic causal inference across the human phenome, eLife 7 (2018) e34408. https://doi.org/10.7554/eLife.34408.
G. Hemani, J. Bowden, G.S. Davey, Evaluating the potential role of pleiotropy in Mendelian randomization studies, Hum. Mol. Genet. 27 (2018) R195-R208. https://doi.org/10.1093/hmg/ddy163.
Z. Mazloom, M. Ekramzadeh, N. Hejazi, Efficacy of supplementary vitamins C and E on anxiety, depression and stress in type 2 diabetic patients: a randomized, single-blind, placebo-controlled trial, Pak. J. Biol. Sci. 16 (2013) 1597-1600. https://doi.org/10.3923/pjbs.2013.1597.1600.
B.D. Fletcher, J.A.M. Flett, S.R. Wickham, et al., Initial evidence of variation by ethnicity in the relationship between vitamin C status and mental states in young adults, Nutrients 13 (2021) 792. https://doi.org/10.3390/nu13030792.
G.G. Fillenbaum, M.N. Kuchibhatla, J.T. Hanlon, et al., Dementia and Alzheimer’s disease in community-dwelling elders taking vitamin C and/or vitamin E, Ann. Pharmacother. 39 (2005) 2009-2014. https://doi.org/10.1345/aph.1G280.
S.L. Gray, M.L. Anderson, P.K. Crane, et al., Antioxidant vitamin supplement use and risk of dementia or Alzheimer’s disease in older adults, J. Am. Geriatr. Soc. 56 (2008) 291-295. https://doi.org/10.1111/j.1532-5415.2007.01531.x.
J. Firth, S.B. Teasdale, K. Allott, et al., The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials, World Psychiatry 18 (2019) 308-324. https://doi.org/10.1002/wps.20672.
Y. Sharma, A. Popescu, C. Horwood, et al., Relationship between Vitamin C deficiency and cognitive impairment in older hospitalised patients: a cross-sectional study, Antioxidants. 11 (2022) 463. https://doi.org/10.3390/antiox11030463.
M. Amr, A. El-Mogy, T. Shams, et al., Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study, Nutr. J. 12 (2013) 31. https://doi.org/10.1186/1475-2891-12-31.
S.S.D. Lopes, B. Vellas, S. Elemans, et al., Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis, Alzheimers Dement. 10 (2014) 485-502. https://doi.org/10.1016/j.jalz.2013.05.1771.
M.C.D. Wilde, B. Vellas, E. Girault, et al., Lower brain and blood nutrient status in Alzheimer’s disease: results from meta-analyses, Alzheimers Dement. 3 (2017) 416-431. https://doi.org/10.1016/j.trci.2017.06.002.
D.A. Lawlor, R.M. Harbord, J.A. Sterne, et al., Mendelian randomization: using genes as instruments for making causal inferences in epidemiology, Stat. Med. 27 (2008) 1133-1163. https://doi.org/10.1002/sim.3034.
L. Wang, B. Gao, Y. Fan, et al., Mendelian randomization under the omnigenic architecture, Brief Bioinform. 22 (2021) bbab322. https://doi.org/10.1093/bib/bbab322.
V. Shivakumar, S.V. Kalmady, A.C. Amaresha, et al., Serum vitamin D and hippocampal gray matter volume in schizophrenia, Psychiatry Res. 233 (2015) 175-179. https://doi.org/10.1016/j.pscychresns.2015.06.006.
J.J. Cannell, Vitamin D and autism, what’s new? Rev. Endocr. Metab. Disord. 18 (2017) 183-193. https://doi.org/10.1007/s11154-017-9409-0.
A.M. Tolppanen, A. Sayers, W.D. Fraser, et al., The association of serum 25-hydroxyvitamin D3 and D2 with depressive symptoms in childhood: a prospective cohort study, J. Child Psychol. Psychiatry 53 (2012) 757-766. https://doi.org/10.1111/j.1469-7610.2011.02518.x.
D. Guzek, A. Kołota, K. Lachowicz, et al., Association between vitamin D supplementation and mental health in healthy adults: a systematic review, J. Clin. Med. 10 (2021) 5156. https://doi.org/10.3390/jcm10215156.
O.I. Okereke, C.F. Reynolds CF, D. Mischoulon, et al., Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: a randomized clinical trial, JAMA. 324 (2020) 471-480. https://doi.org/10.1001/jama.2020.10224.
L. Libuda, B.H. Laabs, C. Ludwig, et al., Vitamin D and the risk of depression: a causal relationship? Findings from a mendelian randomization study, Nutrients 11 (2019) 1085. https://doi.org/10.3390/nu11051085.
G. Ashdown-Franks, J. Firth, R. Carney, et al., Exercise as medicine for mental and substance use disorders: a meta-review of the benefits for neuropsychiatric and cognitive outcomes, Sports Med. 50 (2020) 151-170. https://doi.org/10.1007/s40279-019-01187-6.
M. Molendijk, P. Molero, F. Ortuño Sánchez-Pedreño, et al., Diet quality and depression risk: a systematic review and dose-response meta-analysis of prospective studies, J. Affect Disord. 226 (2018) 346-354. https://doi.org/10.1016/j.jad.2017.09.022.
S.B. Teasdale, P.B. Ward, K. Samaras, et al., Dietary intake of people with severe mental illness: systematic review and meta-analysis, Br. J. Psychiatry. 214 (2019) 251-259. https://doi.org/10.1192/bjp.2019.20.
1094
Views
180
Downloads
1
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).