Journal Home > Volume 13 , Issue 2

Resveratrol (RSV), as a functional food component extracted from natural plants, has been widely studied and recognized in preventing and treating various diseases, with major mechanisms including executing anti-inflammation and anti-oxidation functions, and improving mitochondrial quality. Chronic diseases as non-communicable diseases are mainly caused by multiple factors, such as physiological decline and dysfunction in the body, and have become a significant challenge on public health worldwide. It is worth noting that chronic diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), muscle atrophy, cardiovascular disease, obesity, and cancer are accompanied by abnormal mitochondrial function. Therefore, targeted regulation of mitochondria may be a meaningful way to prevent and treat chronic diseases. Increasing evidence has confirmed that RSV is actively involved in regulating mitochondria, and it has become an essential consideration to prevent and treat chronic diseases through targeting mitochondria and improving corresponding functions. In this article, current studies on RSV to optimize mitochondrial quality for preventing and alleviating chronic disease are systematically summarized, which can provide a theoretical reference for the development of functional foods or drugs to combat chronic diseases.


menu
Abstract
Full text
Outline
About this article

Resveratrol combats chronic diseases through enhancing mitochondrial quality

Show Author's information Weichu Taoa,1Hu Zhanga,1Xia Jiangb( )Ning Chena,( )
Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
The University Hospital of Wuhan Sports University, Wuhan 430079, China

1 These authors have contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Abstract

Resveratrol (RSV), as a functional food component extracted from natural plants, has been widely studied and recognized in preventing and treating various diseases, with major mechanisms including executing anti-inflammation and anti-oxidation functions, and improving mitochondrial quality. Chronic diseases as non-communicable diseases are mainly caused by multiple factors, such as physiological decline and dysfunction in the body, and have become a significant challenge on public health worldwide. It is worth noting that chronic diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), muscle atrophy, cardiovascular disease, obesity, and cancer are accompanied by abnormal mitochondrial function. Therefore, targeted regulation of mitochondria may be a meaningful way to prevent and treat chronic diseases. Increasing evidence has confirmed that RSV is actively involved in regulating mitochondria, and it has become an essential consideration to prevent and treat chronic diseases through targeting mitochondria and improving corresponding functions. In this article, current studies on RSV to optimize mitochondrial quality for preventing and alleviating chronic disease are systematically summarized, which can provide a theoretical reference for the development of functional foods or drugs to combat chronic diseases.

Keywords: Anti-oxidation, Resveratrol, Chronic disease, Functional food, Mitochondrial quality, Anti-inf lammation

References(149)

[1]

B.K. Kennedy, S.L. Berger, A. Brunet, et al., Geroscience: linking aging to chronic disease, Cell 159 (2014) 709-713. https://doi.org/10.1016/j.cell.2014.10.039.

[2]
World Health Organization, Noncommunicable diseases, 2022, availsble from: https://www.who.int/news-room/fact-sheets/detail/noncommunicablediseases.
[3]

C. Sharma, S. Kim, Y. Nam, et al., Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease, Int. J. Mol. Sci. 22 (2021). https://doi.org/10.3390/ijms22094850.

[4]

R. Wright, Mitochondrial dysfunction and Parkinson’s disease, Nat. Neurosci. 25 (2022) 2. https://doi.org/10.1038/s41593-021-00989-0.

[5]

C.J. Christian. G.M. Benian, Animal models of sarcopenia, Aging Cell. 19 (2020) e13223. https://doi.org/10.1111/acel.13223.

[6]

C.A. Stamerra, P. Di Giosia, P. Giorgini, et al., Mitochondrial dysfunction and cardiovascular disease: pathophysiology and emerging therapies, Oxid. Med. Cell Longev. 2022 (2022) 9530007. https://doi.org/10.1155/2022/9530007.

[7]

A.H. de Mello, A.B. Costa, J.D.G. Engel, et al., Mitochondrial dysfunction in obesity, Life Sci. 192 (2018) 26-32. https://doi.org/10.1016/j.lfs.2017.11.019.

[8]

K. Vasan, M. Werner, N.S. Chandel, Mitochondrial metabolism as a target for cancer therapy, Cell. Metab. 32 (2020) 341-352. https://doi.org/10.1016/j.cmet.2020.06.019.

[9]

J. Yang, W. Chen, B. Zhang, et al., Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis, Arch. Toxicol. 92 (2018) 1913-1923. https://doi.org/10.1007/s00204-018-2210-3.

[10]

A.L. Widlund, K. Baral, L.T. Dalgaard, et al., Functional mitochondria are important for the effect of resveratrol, Molecules 22 (2017). https://doi.org/10.3390/molecules22050847.

[11]

J. Burns, T. Yokota, H. Ashihara, et al., Plant foods and herbal sources of resveratrol, J. Agric. Food Chem. 50 (2002) 3337-3340. https://doi.org/10.1021/jf0112973.

[12]

M. Takaoka, Resveratrol, a new phenolic compound, from Veratrum grandiflorum, Nippon Kagaku Kaishi 60 (1939) 1090-1100.

[13]

T. Walle, Bioavailability of resveratrol, Ann. N. Y. Acad. Sci. 1215 (2011) 9-15. https://doi.org/10.1111/j.1749-6632.2010.05842.x.

[14]

D.J. Boocock, G.E. Faust, K.R. Patel, et al., Phase Ⅰ dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent, Cancer Epidemiol. Biomarkers Prev. 16 (2007) 1246-1252. https://doi.org/10.1158/1055-9965.Epi-07-0022.

[15]
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Safety of synthetic trans-resveratrol as a novel food pursuant to Regulation (EC) No 258/97, EFSA J.(2016) 4368. https://doi.org/10.2903/j.efsa.2016.4368.
DOI
[16]

Y.K. Okuda, Trans-resveratrol concentrations in berry skins and wines from grapes grown in Japan, Am. J. Enol. Vitic. 47 (1996) 93-99.

[17]

B. Farneti, D. Masuero, F. Costa, et al., Is there room for improving the nutraceutical composition of apple? J. Agric. Food Chem. 63 (2015) 2750-2759. https://doi.org/10.1021/acs.jafc.5b00291.

[18]

T.H. Sanders, R.W. McMichael, Jr..K.W. Hendrix, Occurrence of resveratrol in edible peanuts, J. Agric. Food Chem. 48 (2000) 1243-1246. https://doi.org/10.1021/jf990737b.

[19]

G. Chiva-Blanch, M. Urpi-Sarda, M. Rotchés-Ribalta, et al., Determination of resveratrol and piceid in beer matrices by solid-phase extraction and liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1218 (2011) 698-705. https://doi.org/10.1016/j.chroma.2010.12.012.

[20]

A.S. Ragab, J. Van Fleet, B. Jankowski, et al., Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.), J. Agric. Food Chem. 54 (2006) 7175-7179.

[21]

W.J. Hurst, J.A. Glinski, K.B. Miller, et al., Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products, J. Agric. Food Chem. 56 (2008) 8374-8378. https://doi.org/10.1021/jf801297w.

[22]

F.R. Jornayvaz, G.I. Shulman, Regulation of mitochondrial biogenesis, Essays Biochem. 47 (2010) 69-84. https://doi.org/10.1042/bse0470069.

[23]

W. Kühlbrandt, Structure and function of mitochondrial membrane protein complexes, BMC Biol. 13 (2015) 89. https://doi.org/10.1186/s12915-015-0201-x.

[24]

Y. Qi, L. Yan, C. Yu, et al., Structures of human mitofusin 1 provide insight into mitochondrial tethering, J. Cell. Biol. 215 (2016) 621-629. https://doi.org/10.1083/jcb.201609019.

[25]

Y.L. Cao, S. Meng, Y. Chen, et al., MFN1 structures reveal nucleotidetriggered dimerization critical for mitochondrial fusion, Nature 542 (2017) 372-376. https://doi.org/10.1038/nature21077.

[26]

Z. Song, M. Ghochani, J.M. McCaffery, et al., Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion, Mol. Biol. Cell. 20 (2009) 3525-3532. https://doi.org/10.1091/mbc.e09-03-0252.

[27]

A.M. van der Bliek, Q. Shen, S. Kawajiri, Mechanisms of mitochondrial fission and fusion, Cold Spring Harb. Perspect. Biol. 5 (2013). https://doi.org/10.1101/cshperspect.a011072.

[28]

T.B. Fonseca, Á. Sánchez-Guerrero, I. Milosevic, et al., Mitochondrial fission requires DRP1 but not dynamins, Nature 570 (2019) E34-e42. https://doi.org/10.1038/s41586-019-1296-y.

[29]

X.L. Shen, B. Zhang, R. Liang, et al., Central role of Nix in the autophagic response to ochratoxin A, Food Chem. Toxicol. 69 (2014) 202-209. https://doi.org/10.1016/j.fct.2014.04.017.

[30]

Q. Wang, W. Chen, B. Zhang, et al., Perfluorooctanoic acid induces hepatocellular endoplasmic reticulum stress and mitochondrial-mediated apoptosis in vitro via endoplasmic reticulum-mitochondria communication, Chem. Biol. Interact. 354 (2022) 109844. https://doi.org/10.1016/j.cbi.2022.109844.

[31]

Q. Zhang, W. Chen, B. Zhang, et al., Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A, Toxicology 450 (2021) 152681. https://doi.org/10.1016/j.tox.2021.152681.

[32]

V. Sorrentino, K.J. Menzies, J. Auwerx, Repairing mitochondrial dysfunction in disease, Annu. Rev. Pharmacol. Toxicol. 58 (2018) 353-389. https://doi.org/10.1146/annurev-pharmtox-010716-104908.

[33]

R.J. Youle, M. Karbowski, Mitochondrial fission in apoptosis, Nat. Rev. Mol. Cell. Biol. 6 (2005) 657-663. https://doi.org/10.1038/nrm1697.

[34]

M. Zhao, Y. Wang, L. Li, et al., Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance, Theranostics 11 (2021) 1845-1863. https://doi.org/10.7150/thno.50905.

[35]

R.J. Fisher, J.C. Chen, B.P. Sani, et al., A soluble mitochondrial ATP synthetase complex catalyzing ATP-phosphate and ATP-ADP exchange, Proc. Natl. Acad. Sci. U. S. A. 68 (1971) 2181-2184. https://doi.org/10.1073/pnas.68.9.2181.

[36]

W.X. Zong, J.D. Rabinowitz, E. White, Mitochondria and cancer, Mol. Cell. 61 (2016) 667-676. https://doi.org/10.1016/j.molcel.2016.02.011.

[37]

J. Johnson, E. Mercado-Ayon, Y. Mercado-Ayon, et al., Mitochondrial dysfunction in the development and progression of neurodegenerative diseases, Arch. Biochem. Biophys. 702 (2021) 108698. https://doi.org/10.1016/j.abb.2020.108698.

[38]

W. Wang, F. Zhao, X. Ma, et al., Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances, Mol. Neurodegener. 15 (2020) 30. https://doi.org/10.1186/s13024-020-00376-6.

[39]

Y. Luo, J. Ma, W. Lu, The significance of mitochondrial dysfunction in cancer, Int. J. Mol. Sci. 21 (2020). https://doi.org/10.3390/ijms21165598.

[40]

H.Y. Chiu, E.X.Y. Tay, D.S.T. Ong, et al., Mitochondrial dysfunction at the center of cancer therapy, Antioxid. Redox. Signal. 32 (2020) 309-330. https://doi.org/10.1089/ars.2019.7898.

[41]

J. Quadrilatero, Mitochondria: key modulators of skeletal muscle remodeling, Semin. Cell. Dev. Biol. 143 (2023) 1-2. https://doi.org/10.1016/j.semcdb.2022.10.004.

[42]

Z. Zeng, J. Liang, L. Wu, et al., Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control, Front. Physiol. 11 (2020) 583478. https://doi.org/10.3389/fphys.2020.583478.

[43]

Y. Liu, Y. Huang, C. Xu, et al., Mitochondrial dysfunction and therapeutic perspectives in cardiovascular diseases, Int. J. Mol. Sci. 23 (2022). https://doi.org/10.3390/ijms232416053.

[44]

C. Ma, J. Wang, F. Hong, et al., Mitochondrial dysfunction in rheumatoid arthritis, Biomolecules 12 (2022). https://doi.org/10.3390/biom12091216.

[45]

P. Deng, C.M. Haynes, Mitochondrial dysfunction in cancer: potential roles of ATF5 and the mitochondrial UPR, Semin Cancer Biol. 47 (2017) 43-49. https://doi.org/10.1016/j.semcancer.2017.05.002.

[46]

J.M. Perez Ortiz, R.H. Swerdlow, Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities, Br. J. Pharmacol. 176 (2019) 3489-3507. https://doi.org/10.1111/bph.14585.

[47]

M. Manczak, P. Mao, M.J. Calkins, et al., Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons, J. Alzheimers Dis. 20 (Suppl 2) (2010) S609-631. https://doi.org/10.3233/jad-2010-100564.

[48]

Y. Han, X. Chu, L. Cui, et al., Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems, Drug Deliv. 27 (2020) 502-518. https://doi.org/10.1080/10717544.2020.1745328.

[49]

K.W. Lange, S. Li, Resveratrol, pterostilbene, and dementia, Biofactors 44(2018) 83-90. https://doi.org/10.1002/biof.1396.

[50]

X. Kou, N. Chen, Resveratrol as a Natural autophagy regulator for prevention and treatment of Alzheimer's disease, Nutrients 9 (2017). https://doi.org/10.3390/nu9090927.

[51]

D. Porquet, C. Griñán-Ferré, I. Ferrer, et al., Neuroprotective role of transresveratrol in a murine model of familial Alzheimer's disease, J, Alzheimers Dis. 42 (2014) 1209-1220. https://doi.org/10.3233/jad-140444.

[52]

R.S. Khan, Z. Fonseca-Kelly, C. Callinan, et al., SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells, Front. Cell. Neurosci. 6 (2012) 63. https://doi.org/10.3389/fncel.2012.00063.

[53]

H. Wang, T. Jiang, W. Li, et al., Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease, Toxicol. Lett. 282 (2018) 100-108. https://doi.org/10.1016/j.toxlet.2017.10.021.

[54]

N. Varghese, S. Werner, A. Grimm, et al., Dietary mitophagy enhancer:a strategy for healthy brain aging? Antioxidants. 9 (2020). https://doi.org/10.3390/antiox9100932.

[55]

O.B. Tysnes, A. Storstein, Epidemiology of Parkinson's disease, J. Neural. Transm. 124 (2017) 901-905. https://doi.org/10.1007/s00702-017-1686-y.

[56]

K.W. Lange, Y. Nakamura, N. Chen, et al., Diet and medical foods in Parkinson’s disease, Food Sci. Human Wellness 8 (2019) 83-95.

[57]

S. Palle, P. Neerati, Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson's disease, Naunyn. Schmiedebergs Arch. Pharmacol. 391 (2018) 445-453. https://doi.org/10.1007/s00210-018-1474-8.

[58]

K. Peng, Y. Tao, J. Zhang, et al., Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity, Oxid. Med. Cell. Longev. 2016 (2016) 6705621. https://doi.org/10.1155/2016/6705621.

[59]

K.L. Lin, K.J. Lin, P.W. Wang, et al., Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy, Free Radic. Res. 52 (2018) 1371-1386. https://doi.org/10.1080/1 0715762.2018.1489128.

[60]

T.K. Lin, S.D. Chen, Y.C. Chuang, et al., Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy, Int. J. Mol. Sci. 15 (2014) 1625-1646. https://doi.org/10.3390/ijms15011625.

[61]

A.O. Adedara, A.D. Babalola, F. Stephano, et al., An assessment of the rescue action of resveratrol in parkin loss of function-induced oxidative stress in Drosophila melanogaster, Sci. Rep. 12 (2022) 3922. https://doi.org/10.1038/s41598-022-07909-7.

[62]

R. Zini, C. Morin, A. Bertelli, et al., Effects of resveratrol on the rat brain respiratory chain, Drugs Exp. Clin. Res. 25 (1999) 87-97.

[63]

Z. Wu, A. Wu, J. Dong, et al., Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson’s disease through activation of mitophagy, Exp. Gerontol. 113 (2018) 10-17. https://doi.org/10.1016/j.exger.2018.09.014.

[64]

W. Zeng, W. Zhang, F. Lu, et al., Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3β pathway in SN4741 cells, Neurosci. Lett. 637 (2017) 50-56. https://doi.org/10.1016/j.neulet.2016.11.054.

[65]

Y. Wu, X. Li, J.X. Zhu, et al., Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease, Neurosignals 19 (2011) 163-174. https://doi.org/10.1159/000328516.

[66]

V. Saini, L.Guada.D.R. Yavagal, Global epidemiology of stroke and access to acute ischemic stroke interventions, Neurology 97 (2021) S6-S16. https://doi.org/10.1212/wnl.0000000000012781.

[67]

Q. Ma, R. Li, L. Wang, et al., Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019, Lancet Public Health 6 (2021) e897-e906. https://doi.org/10.1016/s2468-2667(21)00228-0.

[68]

J. Gao, H. Wang, Y. Li, et al., Resveratrol attenuates cerebral ischaemia reperfusion injury via modulating mitochondrial dynamics homeostasis and activating AMPK-Mfn1 pathway, Int. J. Exp. Pathol. 100 (2019) 337-349. https://doi.org/10.1111/iep.12336.

[69]

S. Yousuf, F. Atif, M. Ahmad, et al., Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia, Brain Res. 1250 (2009) 242-253. https://doi.org/10.1016/j.brainres.2008.10.068.

[70]

R. Zini, C. Morin, A. Bertelli, et al., Resveratrol-induced limitation of dysfunction of mitochondria isolated from rat brain in an anoxiareoxygenation model, Life Sci. 71 (2002) 3091-3108. https://doi.org/10.1016/s0024-3205(02)02161-6.

[71]

N. Pineda-Ramírez, I. Alquisiras-Burgos, A. Ortiz-Plata, et al., Resveratrol activates neuronal autophagy through AMPK in the ischemic brain, Mol. Neurobiol. 57 (2020) 1055-1069. https://doi.org/10.1007/s12035-019-01803-6.

[72]

H.C. Chang, T.G. Chen, Y.T. Tai, et al., Resveratrol attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells, J. Cereb. Blood Flow Metab. 31 (2011) 842-854. https://doi.org/10.1038/jcbfm.2010.180.

[73]

R. Sebori, A. Kuno, R. Hosoda, et al., Resveratrol decreases oxidative stress by restoring mitophagy and improves the pathophysiology of dystrophindeficient MDX mice, Oxid. Med. Cell. Longev. 2018 (2018) 9179270. https://doi.org/10.1155/2018/9179270.

[74]

E.L. Robb, F. Moradi, L.A. Maddalena, et al., Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2, Biochem. Biophys. Res. Commun. 485 (2017) 249-254. https://doi.org/10.1016/j.bbrc.2017.02.102.

[75]

K. Higashida, S.H. Kim, S.R. Jung, et al., Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation, PLoS Biol. 11 (2013) e1001603. https://doi.org/10.1371/journal.pbio.1001603.

[76]

D. Wang, H. Sun, G. Song, et al., Resveratrol improves muscle atrophy by modulating mitochondrial quality control in STZ-induced diabetic mice, Mol. Nutr. Food Res. 62 (2018) e1700941. https://doi.org/10.1002/mnfr.201700941.

[77]

Y. Huang, X. Zhu, K. Chen, et al., Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway, Aging. 11 (2019) 2217-2240. https://doi.org/10.18632/aging.101910.

[78]

R.M. Pollack, N. Barzilai, V. Anghel, et al., Resveratrol improves vascular function and mitochondrial number but not glucose metabolism in older adults, J. Gerontol. A Biol. Sci. Med. Sci. 72 (2017) 1703-1709. https://doi.org/10.1093/gerona/glx041.

[79]

S.E. Alway, J.L. McCrory, K. Kearcher, et al., Resveratrol enhances exercise-induced cellular and functional adaptations of skeletal muscle in older men and women, J. Gerontol. A Biol. Sci. Med. Sci. 72 (2017) 1595-1606. https://doi.org/10.1093/gerona/glx089.

[80]

L. Motlagh Scholle, H. Schieffers, S. Al-Robaiy, et al., The effect of resveratrol on mitochondrial function in myoblasts of patients with the common m.3243A>G mutation, Biomolecules 10 (2020) 1103. https://doi.org/10.3390/biom10081103.

[81]

W.N. Wilson, B.L. Baumgarner, W.O. Watanabe, et al., Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder, Comp. Biochem. Physiol. A Mol. Integr. Physiol. 183 (2015) 27-35. https://doi.org/10.1016/j.cbpa.2014.12.014.

[82]

J.R. Jackson, M.J. Ryan. S.E. Alway, Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice, J. Gerontol. A Biol. Sci. Med. Sci. 66 (2011) 751-764. https://doi.org/10.1093/gerona/glr047.

[83]

C.C. Huang, C.C. Liu, J.P. Tsao, et al., Effects of oral resveratrol supplementation on glycogen replenishment and mitochondria biogenesis in exercised human skeletal muscle, Nutrients 12 (2020) 3721. https://doi.org/10.3390/nu12123721.

[84]

K.R. Polley, N. Jenkins, P. O'Connor, et al., Influence of exercise training with resveratrol supplementation on skeletal muscle mitochondrial capacity, Appl. Physiol. Nutr. Metab. 41 (2016) 26-32. https://doi.org/10.1139/apnm-2015-0370.

[85]

M.L. Rossetti, K.R. Dunlap, G. Salazar, et al., Systemic delivery of a mitochondria targeted antioxidant partially preserves limb muscle mass and grip strength in response to androgen deprivation, Mol. Cell. Endocrinol. 535 (2021) 111391. https://doi.org/10.1016/j.mce.2021.111391.

[86]

B.J. North, D.A. Sinclair, The intersection between aging and cardiovascular disease, Circ. Res. 110 (2012) 1097-1108. https://doi.org/10.1161/circresaha.111.246876.

[87]

M.J. Rossman, R.A. Gioscia-Ryan, Z.S. Clayton, et al., Targeting mitochondrial fitness as a strategy for healthy vascular aging, Clin. Sci. 134 (2020) 1491-1519. https://doi.org/10.1042/cs20190559.

[88]

X. Ren, L. Chen, J. Xie, et al., Resveratrol ameliorates mitochondrial elongation via Drp1/Parkin/PINK1 signaling in senescent-like cardiomyocytes, Oxid. Med. Cell. Longev. 2017 (2017) 4175353. https://doi.org/10.1155/2017/4175353.

[89]

M.S. Joshi, D. Williams, D. Horlock, et al., Role of mitochondrial dysfunction in hyperglycaemia-induced coronary microvascular dysfunction:protective role of resveratrol, Diab. Vasc. Dis. Res. 12 (2015) 208-216. https://doi.org/10.1177/1479164114565629.

[90]

C. Kalliora, I.D. Kyriazis, S.I. Oka, et al., Dual peroxisome-proliferatoractivated-receptor-α/γ activation inhibits SIRT1-PGC1α axis and causes cardiac dysfunction, JCI Insight 5 (2019). https://doi.org/10.1172/jci.insight.129556.

[91]

W.J. Fang, C.J. Wang, Y. He, et al., Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation, Acta Pharmacol. Sin. 39 (2018) 59-73. https://doi.org/10.1038/aps.2017.50.

[92]

P.K. Bagul, P.B. Katare, P. Bugga, et al., SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM, Cells 7 (2018) 235. https://doi.org/10.3390/cells7120235.

[93]

J. Diao, J. Wei, R. Yan, et al., Effects of resveratrol on regulation on UCP2 and cardiac function in diabetic rats, J. Physiol. Biochem. 75 (2019) 39-51. https://doi.org/10.1007/s13105-018-0648-7.

[94]

R. Wang, Y.Y. Liu, X.Y. Liu, et al., Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model, Cell. Physiol. Biochem. 34 (2014) 854-864. https://doi.org/10.1159/000366304.

[95]

M. Zheng, Y. Bai, X. Sun, et al., Resveratrol reestablishes mitochondrial quality control in myocardial ischemia/reperfusion injury through Sirt1/Sirt3-Mfn2-Parkin-PGC-1α pathway, Molecules 27 (2022). https://doi.org/10.3390/molecules27175545.

[96]

D. Yu, J. Xiong, Y. Gao, et al., Resveratrol activates PI3K/AKT to reduce myocardial cell apoptosis and mitochondrial oxidative damage caused by myocardial ischemia/reperfusion injury, Acta Histochem. 123 (2021) 151739. https://doi.org/10.1016/j.acthis.2021.151739.

[97]

Y. Ling, G. Chen, Y. Deng, et al., Polydatin post-treatment alleviates myocardial ischaemia/reperfusion injury by promoting autophagic flux, Clin. Sci. 130 (2016) 1641-1653. https://doi.org/10.1042/cs20160082.

[98]

T. Li, L. Chen, Y. Yu, et al., Resveratrol alleviates hypoxia/reoxygenation injury-induced mitochondrial oxidative stress in cardiomyocytes, Mol. Med. Rep. 19 (2019) 2774-2780. https://doi.org/10.3892/mmr.2019.9943.

[99]

A. Biala, E. Tauriainen, A. Siltanen, et al., Resveratrol induces mitochondrial biogenesis and ameliorates Ang Ⅱ-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes, Blood Press. 19 (2010) 196-205. https://doi.org/10.3109/08037051.2010.481808.

[100]

P. Zhang, Y. Li, Y. Du, et al., Resveratrol ameliorated vascular calcification by regulating Sirt-1 and Nrf2, Transplant. Proc. 48 (2016) 3378-3386. https://doi.org/10.1016/j.transproceed.2016.10.023.

[101]

E.D. Danz, J. Skramsted, N. Henry, et al., Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway, Free Radic. Biol. Med. 46 (2009) 1589-1597. https://doi.org/10.1016/j.freeradbiomed.2009.03.011.

[102]

V.W. Dolinsky, K.J. Rogan, M.M. Sung, et al., Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice, Am. J. Physiol. Endocrinol. Metab. 305 (2013) E243-253. https://doi.org/10.1152/ajpendo.00044.2013.

[103]

A. Kuno, R. Hosoda, R. Sebori, et al., Resveratrol ameliorates mitophagy disturbance and improves cardiac pathophysiology of dystrophin-deficient MDX mice, Sci. Rep. 8 (2018) 15555. https://doi.org/10.1038/s41598-018-33930-w.

[104]

Z. Ungvari, N. Labinskyy, P. Mukhopadhyay, et al., Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells, Am. J. Physiol. Heart Circ. Physiol. 297 (2009) H1876-1881. https://doi.org/10.1152/ajpheart.00375.2009.

[105]

A. Csiszar, N. Labinskyy, J.T. Pinto, et al., Resveratrol induces mitochondrial biogenesis in endothelial cells, Am. J. Physiol. Heart Circ. Physiol. 297 (2009) H13-20. https://doi.org/10.1152/ajpheart.00368.2009.

[106]

Y.G. Li, W. Zhu, J.P. Tao, et al., Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways, Biochem. Biophys. Res. Commun. 438 (2013) 270-276. https://doi.org/10.1016/j.bbrc.2013.07.042.

[107]

X. Zhou, M. Chen, X. Zeng, et al., Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells, Cell. Death Dis. 5 (2014) e1576. https://doi.org/10.1038/cddis.2014.530.

[108]

Z. Tong, Y. Xie, M. He, et al., VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury, Biomed. Pharmacother. 95 (2017) 77-83. https://doi.org/10.1016/j.biopha.2017.08.046.

[109]

Z. Liao, D. Liu, L. Tang, et al., Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury:involvement of VDAC1 downregulation, Mol. Nutr. Food Res. 59 (2015) 454-464. https://doi.org/10.1002/mnfr.201400730.

[110]

C. Li, Y. Tan, J. Wu, et al., Resveratrol improves BNIP3-related mitophagy and attenuates high-fat-induced endothelial dysfunction, Front. Cell Dev. Biol. 8 (2020) 796. https://doi.org/10.3389/fcell.2020.00796.

[111]

Y. Zhang, X.R. Li, L. Zhao, et al., DJ-1 preserving mitochondrial complex Ⅰ activity plays a critical role in resveratrol-mediated cardioprotection against hypoxia/reoxygenation-induced oxidative stress, Biomed. Pharmacother. 98 (2018) 545-552. https://doi.org/10.1016/j.biopha.2017.12.094.

[112]

J. Xi, H. Wang, R.A. Mueller, et al., Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore, Eur. J. Pharmacol. 604 (2009) 111-116. https://doi.org/10.1016/j.ejphar.2008.12.024.

[113]

M. Lagouge, C. Argmann, Z. Gerhart-Hines, et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha, Cell 127 (2006) 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013.

[114]

H. Zhang, J.L. Liang, Q.Y. Wu, et al., Swimming suppresses cognitive decline of HFD-induced obese mice through reversing hippocampal inflammation, insulin resistance, and BDNF level, Nutrients 14 (2022) 2432. https://doi.org/10.3390/nu14122432.

[115]

S. Li, C. Bouzar, C. Cottet-Rousselle, et al., Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase, Biochim. Biophys. Acta 1857 (2016) 643-652. https://doi.org/10.1016/j.bbabio.2016.03.009.

[116]

C.R. Ku, Y.H. Cho, Z.Y. Hong, et al., The effects of high fat diet and resveratrol on mitochondrial activity of brown adipocytes, Endocrinol. Metab. 31 (2016) 328-335. https://doi.org/10.3803/EnM.2016.31.2.328.

[117]

H. Zhang, J. Qin, J. Zheng, et al., Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion, J. Physiol. Biochem. 71 (2015) 121-131. https://doi.org/10.1007/s13105-015-0392-1.

[118]

L. Gimeno-Mallench, C. Mas-Bargues, M. Inglés, et al., Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice, Biomed. Pharmacother. 118 (2019) 109130. https://doi.org/10.1016/j.biopha.2019.109130.

[119]

J. Most, S. Timmers, I. Warnke, et al., Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial, Am. J. Clin. Nutr. 104 (2016) 215-227. https://doi.org/10.3945/ajcn.115.122937.

[120]

J.Y. Yang, M.A. Della-Fera, S. Rayalam, et al., Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin, Life Sci. 82 (2008) 1032-1039. https://doi.org/10.1016/j.lfs.2008.03.003.

[121]

W. Niu, H. Wang, B. Wang, et al., Resveratrol improves muscle regeneration in obese mice through enhancing mitochondrial biogenesis, J. Nutr. Biochem. 98 (2021) 108804. https://doi.org/10.1016/j.jnutbio.2021.108804.

[122]

G.A. Hawker, L.K. King, The burden of osteoarthritis in older adults, Clin. Geriatr. Med. 38 (2022) 181-192. https://doi.org/10.1016/j.cger.2021.11.005.

[123]

Y. He, Q. Ding, W. Chen, et al., LONP1 downregulation with ageing contributes to osteoarthritis via mitochondrial dysfunction, Free Radic. Biol. Med. 191 (2022) 176-190. https://doi.org/10.1016/j.freeradbiomed.2022.08.038.

[124]

S.A. Clayton, L. MacDonald, M. Kurowska-Stolarska, et al., Mitochondria as key players in the pathogenesis and treatment of rheumatoid arthritis, Front. Immunol. 12 (2021) 673916. https://doi.org/10.3389/fimmu.2021.673916.

[125]

H. Nakayama, T. Yaguchi, S. Yoshiya, et al., Resveratrol induces apoptosis MH7A human rheumatoid arthritis synovial cells in a sirtuin 1-dependent manner, Rheumatol. Int. 32 (2012) 151-157. https://doi.org/10.1007/s00296-010-1598-8.

[126]

M. Dave, M. Attur, G. Palmer, et al., The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production, Arthritis Rheumatol. 58 (2008) 2786-2797. https://doi.org/10.1002/art.23799.

[127]

J. Zhang, X. Song, W. Cao, et al., Autophagy and mitochondrial dysfunction in adjuvant-arthritis rats treatment with resveratrol, Sci. Rep. 6 (2016) 32928. https://doi.org/10.1038/srep32928.

[128]

J. Lu, Y. Zheng, J. Yang, et al., Resveratrol alleviates inflammatory injury and enhances the apoptosis of fibroblast-like synoviocytes via mitochondrial dysfunction and ER stress in rats with adjuvant arthritis, Mol. Med. Rep. 20 (2019) 463-472. https://doi.org/10.3892/mmr.2019.10273.

[129]

G. Yang, C.C. Chang, Y. Yang, et al., Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis, J. Agric. Food Chem. 66 (2018) 12953-12960. https://doi.org/10.1021/acs.jafc.8b05047.

[130]

H.S. Byun, J.K. Song, Y.R. Kim, et al., Caspase-8 has an essential role in resveratrol-induced apoptosis of rheumatoid fibroblast-like synoviocytes, Rheumatology. 47 (2008) 301-308. https://doi.org/10.1093/rheumatology/kem368.

[131]

P.R. van Ginkel, D. Sareen, L. Subramanian, et al., Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria, Clin. Cancer Res. 13 (2007) 5162-5169. https://doi.org/10.1158/1078-0432.Ccr-07-0347.

[132]

S. Kumar, E. Eroglu, J.A. Stokes, et al., Resveratrol induces mitochondriamediated, caspase-independent apoptosis in murine prostate cancer cells, Oncotarget 8 (2017) 20895-20908. https://doi.org/10.18632/oncotarget.14947.

[133]

M.E. Juan, U. Wenzel, H. Daniel, et al., Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells, J. Agric. Food Chem. 56 (2008) 4813-4818. https://doi.org/10.1021/jf800175a.

[134]

W. Zhang, X. Wang.T. Chen, Resveratrol induces mitochondria-mediated AIF and to a lesser extent caspase-9-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells, Mol. Cell. Biochem. 354 (2011) 29-37. https://doi.org/10.1007/s11010-011-0802-9.

[135]

S. Ben-Zichri, S. Rajendran, S.K. Bhunia, et al., Resveratrol carbon dots disrupt mitochondrial function in cancer cells, Bioconjug. Chem. 33 (2022) 1663-1671. https://doi.org/10.1021/acs.bioconjchem.2c00282.

[136]

D. Sareen, P.R. van Ginkel, J.C. Takach, et al., Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells, Invest. Ophthalmol. Vis. Sci. 47 (2006) 3708-3716. https://doi.org/10.1167/iovs.06-0119.

[137]

I.K. Lucas, H. Kolodziej, Trans-resveratrol induces apoptosis through ROS-triggered mitochondria-dependent pathways in a549 human lung adenocarcinoma epithelial cells, Planta Med. 81 (2015) 1038-1044. https://doi.org/10.1055/s-0035-1546129.

[138]

Y. Zhang, F. Yuan, P. Li, et al., Resveratrol inhibits HeLa cell proliferation by regulating mitochondrial function, Ecotoxicol. Environ. Saf. 241 (2022) 113788. https://doi.org/10.1016/j.ecoenv.2022.113788.

[139]

M. Takashina, S. Inoue, K. Tomihara, et al., Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells, Int. J. Oncol. 50 (2017) 787-797. https://doi.org/10.3892/ijo.2017.3859.

[140]

X. Zheng, B. Jia, X.T. Tian, et al., Correlation of reactive oxygen species levels with resveratrol sensitivities of anaplastic thyroid cancer cells, Oxid. Med. Cell Longev. 2018 (2018) 6235417. https://doi.org/10.1155/2018/6235417.

[141]

X. Ma, X. Tian, X. Huang, et al., Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in HepG2 cells, Mol. Cell. Biochem. 302 (2007) 99-109. https://doi.org/10.1007/s11010-007-9431-8.

[142]

M. Hao, Q. Tang, B. Wang, et al., Resveratrol suppresses bone cancer pain in rats by attenuating inflammatory responses through the AMPK/Drp1 signaling, Acta Biochim. Biophys. Sin. 52 (2020) 231-240. https://doi.org/10.1093/abbs/gmz162.

[143]

H. Wu, Y. Wang, C. Wu, et al., Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission, J. Agric. Food Chem. 64 (2016) 9356-9367. https://doi.org/10.1021/acs.jafc.6b04549.

[144]

A. Shaito, A.M. Posadino, N. Younes, et al., Potential adverse effects of resveratrol: a literature review, Int. J. Mol. Sci. 21 (2020). https://doi.org/10.3390/ijms21062084.

[145]

D. Zhang, J. Zhang, J. Zeng, et al., Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo, J. Biomed. Nanotechnol. 15 (2019) 288-300. https://doi.org/10.1166/jbn.2019.2682.

[146]

A. Malhotra, P. Nair, D.K. Dhawan, Premature mitochondrial senescence and related ultrastructural changes during lung carcinogenesis modulation by curcumin and resveratrol, Ultrastruct. Pathol. 36 (2012) 179-184. https://doi.org/10.3109/01913123.2011.652765.

[147]

X. Ou, Y. Chen, X. Cheng, et al., Potentiation of resveratrol-induced apoptosis by matrine in human hepatoma HepG2 cells, Oncol. Rep. 32 (2014) 2803-2809. https://doi.org/10.3892/or.2014.3512.

[148]

S.H. Jeong, T.M. Hanh, H.K. Kim, et al., HS-1793, a recently developed resveratrol analogue protects rat heart against hypoxia/reoxygenation injury via attenuating mitochondrial damage, Bioorg. Med. Chem. Lett. 23 (2013) 4225-4229. https://doi.org/10.1016/j.bmcl.2013.05.010.

[149]

N.Y. Jeong, Y.G. Yoon, J.H. Rho, et al., The novel resveratrol analog HS-1793-induced polyploid LNCaP prostate cancer cells are vulnerable to downregulation of Bcl-xL, Int. J. Oncol. 38 (2011) 1597-1604. https://doi.org/10.3892/ijo.2011.979.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 May 2023
Revised: 05 June 2023
Accepted: 14 June 2023
Published: 25 September 2023
Issue date: March 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32071176), the 14th Five-Year-Plan Advantageous and Characteristic Disciplines (Groups) of Colleges and Universities in Hubei Province for Exercise and Brain Science from Hubei Provincial Department of Education and the Chutian Scholar Program and Innovative Start-Up Foundation from Wuhan Sports University to Ning Chen.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return