Journal Home > Volume 13 , Issue 3

Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease (NAFLD). The effects of two strains of Limosilactobacillus mucosae on NAFLD were investigated in this study. Four-week-old male C57BL/6J mice were divided into 4 groups (n = 8 per group, Control, Model, FZJTZ26M3, FGSYC17L3). L. mucosae FZJTZ26M3 reduced the mice’s body weight, liver weight, and adipose tissue weight after 12 weeks of therapy. According to serum analysis, total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol significantly decreased after L. mucosae FZJTZ26M3 intervention. Liver pathology showed that L. mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice. Additionally, the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed, and the results indicated that L. mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism. Furthermore, the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae, which is linked to inflammation, but the relative abundance of a potential probiotic Akkermansia significantly increased after L. mucosae FZJTZ26M3 intervention. Generally, L. mucosae FZJTZ26M3 could be a candidate to prevent NAFLD.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Limosilactobacillus mucosae FZJTZ26M3 prevents NAFLD in mice through modulation of lipid metabolism and gut microbiota dysbiosis

Show Author's information Danting Danga,b,Bowen Lia,bMengfan Dinga,bR. Paul Rossc,dCatherine Stantonc,d,eJianxin Zhaoa,bBo Yanga,b,c( )Wei Chena,b,f
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
Teagasc Food Research Centre, Moorepark, Fermoy, Cork T12 YT20, Ireland
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Peer review under responsibility of Tsinghua University Press.

Abstract

Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease (NAFLD). The effects of two strains of Limosilactobacillus mucosae on NAFLD were investigated in this study. Four-week-old male C57BL/6J mice were divided into 4 groups (n = 8 per group, Control, Model, FZJTZ26M3, FGSYC17L3). L. mucosae FZJTZ26M3 reduced the mice’s body weight, liver weight, and adipose tissue weight after 12 weeks of therapy. According to serum analysis, total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol significantly decreased after L. mucosae FZJTZ26M3 intervention. Liver pathology showed that L. mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice. Additionally, the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed, and the results indicated that L. mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism. Furthermore, the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae, which is linked to inflammation, but the relative abundance of a potential probiotic Akkermansia significantly increased after L. mucosae FZJTZ26M3 intervention. Generally, L. mucosae FZJTZ26M3 could be a candidate to prevent NAFLD.

Keywords: Gut microbiota, Lipid metabolism, Probiotic, Limosilactobacillus mucosae, Nonalcoholic fatty liver disease (NAFLD)

References(51)

[1]

R. Loomba, A.J. Sanyal, The global NAFLD epidemic, Nat. Rev. Gastro. Hepat. 10 (2013) 686-690. https://doi.org/10.1038/nrgastro.2013.171.

[2]

Z.M. Younossi, A.B. Koenig, D. Abdelatif, et al., Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence,incidence, and outcomes, Hepatology 64 (2016) 73-84. https://doi.org/10.1002/hep.28431.

[3]

T.G. Cotter, M. Rinella, Nonalcoholic fatty liver disease 2020: the state of the disease, Gastroenterology 158 (2020) 1851-1864. https://doi.org/10.1053/j.gastro.2020.01.052.

[4]

R. Loomba, S.L. Friedman, G.I. Shulman, Mechanisms and disease consequences of nonalcoholic fatty liver disease, Cell 184 (2021) 2537-2564. https://doi.org/10.1016/j.cell.2021.04.015.

[5]

Y. Ge, B. Li, Y. Yang, et al., Oxidized pork induces disorders of glucose metabolism in mice, Mol. Nutr. Food Res. 65 (2021) e2000859. https://doi.org/10.1002/mnfr.202000859.

[6]

K.H. Saunders, D. Umashanker, L.I. Igel, et al., Obesity pharmacotherapy, Med. Clin. N. Am. 102 (2018) 135-148. https://doi.org/10.1016/j.mcna.2017.08.010.

[7]

N.Y. Lee, S.J. Yoon, D.H. Han, et al., Lactobacillus and Pediococcus ameliorate progression of non-alcoholic fatty liver disease through modulation of the gut microbiome, Gut Microbes 11 (2020) 882-899. http://doi.org/10.1080/19490976.2020.1712984.

[8]

J. Aron-Wisnewsky, C. Vigliotti, J. Witjes, et al., Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders, Nat. Rev. Gastro. Hepat. 17 (2020) 279-297. http://doi.org/10.1038/s41575-020-0269-9.

[9]

B. Li, B. Yang, X. Liu, et al., Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights, Cell. Mol. Life. Sci. 79 (2022) 470. http://doi.org/10.1007/s00018-022-04498-6.

[10]

M. Mouzaki, E.M. Comelli, B.M. Arendt, et al., Intestinal microbiota in patients with nonalcoholic fatty liver disease, Hepatology 58 (2013) 120-127. https://doi.org/10.1002/hep.26319.

[11]

K.T. Suk, D.J. Kim, Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease, Expert Rev. Gastroent. 13 (2019) 193-204. https://doi.org/10.1080/17474124.2019.1569513.

[12]

J. Yuan, C. Chen, J. Cui, et al., Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae, Cell Metab. 30 (2019) 675-688. https://doi.org/10.1016/j.cmet.2019.08.018.

[13]

S. Roos, F. Karner, L. Axelsson, et al., Lactobacillus mucosae sp nov., a new species with in vitro mucus-binding activity isolated from pig intestine, Int. J. Syst. Evol. Micr. 50 (2000) 251-258. http://doi.org/10.1099/00207713-50-1-251.

[14]

V.D. Valeriano, M.M. Parungao-Balolong, D.K. Kang, In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1, J. Appl. Microbiol. 117 (2014) 919-919. http://doi.org/10.1111/jam.12603.

[15]

J.C. Jiang, N.H. Feng, C.C. Zhang, et al., Lactobacillus reuteri A9 and Lactobacillus mucosae A13 isolated from Chinese superlongevity people modulate lipid metabolism in a hypercholesterolemia rat model, FEMS Microbiol. Lett. 366 (2019) 8. http://doi.org/10.1093/femsle/fnz254.

[16]

T.Y. Jiang, H. Wu, X. Yang, et al., Lactobacillus mucosae strain promoted by a high-fiber diet in genetic obese child alleviates lipid metabolism and modifies gut microbiota in ApoE−/− mice on a western diet, Microorganisms 8 (2020) 17. http://doi.org/10.3390/microorganisms8081225.

[17]

H.I. Kim, S.W. Yun, M.J. Han, et al., IL-10 expression-inducing gut bacteria alleviate high-fat diet-induced obesity and hyperlipidemia in mice, J. Microbiol. Biotechn. 30 (2020) 599-603. http://doi.org/10.4014/jmb.1912.12014.

[18]

L.E.E. London, A.H.S. Kumar, R. Wall, et al., Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice, J. Nutr. 144 (2014) 1956-1962. http://doi.org/10.3945/jn.114.191627.

[19]

Y. Jia, B. Yang, P. Ross, et al., Comparative genomics analysis of Lactobacillus mucosae from different niches, Genes 11 (2020) 20. http://doi.org/10.3390/genes11010095.

[20]

Y. Kang, X. Kang, H. Yang, et al., Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability, Pharmacol. Res. 175 (2022) 106020. http://doi.org/10.1016/j.phrs.2021.106020.

[21]

M. Galarraga, J. Campión, A. Muñoz-Barrutia, et al., Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections, J. Lipid. Res. 53 (2012) 2791-2796. http://doi.org/10.1194/jlr.D023788.

[22]

M. Ding, B. Yang, W.W.T. Khine, et al., The species-level composition of the fecal Bifidobacterium and Lactobacillus genera in Indonesian children differs from that of their mothers, Microorganisms 9 (2021) 1995. http://doi.org/10.3390/microorganisms9091995.

[23]

B. Yang, F. Zheng, C. Stanton, et al., Lactobacillus reuteri FYNLJ109L1 attenuating metabolic syndrome in mice via gut microbiota modulation and alleviating inflammation, Foods 10 (2021) 2081. http://doi.org/10.3390/foods10092081.

[24]

G. Wang, Y. Yu, E. Garcia-Gutierrez, et al., Lactobacillus acidophilus JCM 1132 strain and its mutant with different bacteriocin-producing behaviour have various in situ effects on the gut microbiota of healthy mice, Microorganisms 8 (2020) 49. https://doi.org/10.3390/microorganisms8010049.

[25]

R. Neda, P.A. Kern, Adipocytokines and the metabolic complications of obesity, J. Clin. Endocr. Metab. (2008) 64-73. http://doi.org/10.1210/jc.2008-1613.

[26]

T. Funahashi, T. Nakamura, I. Shimomura, et al., Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity, Internal Med. (Tokyo,Japan) 38 (1999) 202-206. http://doi.org/10.2169/internalmedicine.38.202.

[27]

B. Wang, Q. Kong, S. Cui, et al., Bifidobacterium adolescentis isolated from different hosts modifies the intestinal microbiota and displays differential metabolic and immunomodulatory properties in mice fed a high-fat diet,Nutrients 13 (2021) 1017. http://doi.org/10.3390/nu13031017.

[28]

P. Mota de Sá, A.J. Richard, H. Hang, et al., Transcriptional regulation of adipogenesis, Compr. Physiol. 7 (2017) 635-674. http://doi.org/10.1002/cphy.c160022.

[29]

S. Deweerdt, Microbiome: a complicated relationship status, Nature 508 (2014) S61-S63. http://doi.org/10.1038/508S61a.

[30]

A. Everard, V. Lazarevic, M. Derrien, et al., Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice, Diabetes 60 (2011) 2775-2786. http://doi.org/10.2337/db11-0227.

[31]

M. Raman, I. Ahmed, P.M. Gillevet, et al., Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease, Clin. Gastroenterol. H. 11 (2013) 868-875. https://doi.org/10.1016/j.cgh.2013.02.015.

[32]

L. Zhu, S.S. Baker, C. Gill, et al., Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH, Hepatology 57 (2013) 601-609. https://doi.org/10.1002/hep.26093.

[33]

J. Aron-Wisnewsky, C. Vigliotti, J. Witjes, et al., Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders, Nat. Rev. Gastro. Hepat. 17 (2020) 279-297. http://doi.org/10.1038/s41575-020-0269-9.

[34]

A. Zhuge, S. Li, P. Lou, et al., Longitudinal 16S rRNA sequencing reveals relationships among alterations of gut microbiota and nonalcoholic fatty liver disease progression in mice, Microbiol. Spectr. 10 (2022) e0004722. http://doi.org/10.1128/spectrum.00047-22.

[35]

A. Bilkova, H.K. Sepova, M. Bukovsky, et al., Antibacterial potential of lactobacilli isolated from a lamb, Vet. Med. 56 (2011) 319-324. http://doi.org/10.17221/1583-vetmed.

[36]

R. Teanpaisan, S. Piwat, G. Dahlén, Inhibitory effect of oral Lactobacillus against oral pathogens, Lett. Appl. Microbiol. 53 (2011) 452-459. http://doi.org/10.1111/j.1472-765X.2011.03132.x.

[37]

Y. Wang, J. Yang, W. Wang, et al., Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation, P. Natl. Acad. Sci. USA 117 (2020) 8431-8436. http://doi.org/10.1073/pnas.1916189117.

[38]

A. Yang, C. Lin, S. Liu, et al., Saccharomyces boulardii ameliorates non-alcoholic steatohepatitis in mice induced by a methionine-choline-deficient diet through gut-liver axis, Front. Microbiol. 13 (2022) 887728. http://doi.org/10.3389/fmicb.2022.887728.

[39]

Y. Chen, W. Guan, N. Zhang, et al., Lactobacillus plantarum Lp2 improved LPS-induced liver injury through the TLR-4/MAPK/NFκB and Nrf2-HO-1/CYP2E1 pathways in mice, Food. Nutr. Res. 66 (2022) 5459. http://doi.org/10.29219/fnr.v66.5459.

[40]

J.A. Molina-Tijeras, P. Diez-Echave, T. Vezza, et al., Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis, Pharmacol. Res. 167 (2021) 105471. https://doi.org/10.1016/j.phrs.2021.105471.

[41]

W. Geng, Y. Zhang, J. Yang, et al., Identification of a novel probiotic and its protective effects on NAFLD via modulating gut microbial community, J. Sci. Food. Agr. 102 (2022) 4620-4628. https://doi.org/10.1002/jsfa.11820.

[42]

C. Jiménez-Cortegana, A. García-Galey, M. Tami, et al., Role of leptin in non-alcoholic fatty liver disease, Biomedicines 9 (2021) 762. https://doi.org/10.3390/biomedicines9070762.

[43]

O.M. Farr, A. Gavrieli, C.S. Mantzoros, Leptin applications in 2015: what have we learned about leptin and obesity?, Curr. Opin. Endocrinol. 22 (2015) 353-359. https://doi.org/10.1097/med.0000000000000184.

[44]

C.A. Bradley, Metabolism: leptin’s role in starvation, Nat. Rev. Endocrinol. 14 (2018) 129. https://doi.org/10.1038/nrendo.2018.6.

[45]

H.Y. Lee, J.H. Park, S.H. Seok, et al., Human originated bacteria,Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice, BBA-Mol. Cell. Biol. L. 1761 (2006) 736-744. https://doi.org/10.1016/j.bbalip.2006.05.007.

[46]

S.K. Mungamuri, S.N. Sinha, Y. Javvadi, Understanding the alterations in lipid metabolism in NAFLD progression: currents trends and future directions, Crit. Rev. Oncog. 26 (2021) 35-39. http://10.1615/CritRevOncog.2020035839.

[47]

M. Tahri-Joutey, P. Andreoletti, S. Surapureddi, et al., Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα,Int. J. Mol. Sci. 22 (2021) 8969. http://doi.org/10.3390/ijms22168969.

[48]

J. Huang, C. Greyson, G. Schwartz, PPAR-γ as a therapeutic target in cardiovascular disease: evidence and uncertainty, J. Lipid Res. 53 (2012) 1738-1754. http://doi.org/10.1194/jlr.R024505.

[49]

C. Sergio, Z. Rossana Citlali, F. Mónica, et al., Lugol increases lipolysis through upregulation of PPAR-γ and downregulation of C/EBP-α in mature 3T3-L1 adipocytes, J. Nutr. Metab. 2020 (2020) 2302795. http://doi.org/10.1155/2020/2302795.

[50]

F.P. Kuhajda, G.V. Ronnett, Modulation of carnitine palmitoyltransferase-1 for the treatment of obesity, Curr. Opin. Invest. Dr. 8 (2007) 312-317.

[51]

N. Petrovic, T.B. Walden, I.G. Shabalina, et al., Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes, J. Biol. Chem. 285 (2010) 7153-7164. https://doi.org/10.1074/jbc.M109.053942.

File
fshw-13-3-1589_ESM.docx (689.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 October 2022
Revised: 10 November 2022
Accepted: 05 December 2022
Published: 08 February 2024
Issue date: May 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

Acknowledgment

This research was supported by the National Natural Science Foundation of China (32021005, 31820103010), 111 project (BP0719028), and the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return