Journal Home > Volume 13 , Issue 3

Peanut allergy is majorly related to severe food induced allergic reactions. Several food including cow’s milk, hen’s eggs, soy, wheat, peanuts, tree nuts (walnuts, hazelnuts, almonds, cashews, pecans and pistachios), f ish and shellf ish are responsible for more than 90% of food allergies. Here, we provide promising insights using a large-scale data-driven analysis, comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts, tree nuts (walnuts, almonds, cashews, pecans and pistachios) and soybean.Additionally, we have analysed the chemical compositions of peanuts in different processed form raw, boiled and dry-roasted. Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors (PPARs) and its isoform and their interaction with dietary lipids may have signif icant effect on allergic response. The results obtained from this study will direct future experimental and clinical studies to understand the role of dietary lipids and PPAR-isoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.


menu
Abstract
Full text
Outline
About this article

Data-driven analysis of chemicals, proteins and pathways associated with peanut allergy: from molecular networking to biological interpretation

Show Author's information Emmanuel Kemmlera,bJulian Braunb,c,dFlorent Fauchèreb,c,dSabine Dölle-Bierkeb,eKirsten Beyerb,fRobert Preissnera,bMargitta Wormb,ePriyanka Banerjeea,b,( )
Institute for Physiology, Charité – University Medicine Berlin, Berlin 10115, Germany
Member of the KFO339, FOOD@, Berlin 10115, Germany
Si-M / “Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin 10115, Germany
Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10115, Germany
Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10115, Germany
Pediatrics, Campus Virchow, Charité – University Medicine Berlin, Berlin 10115, Germany

Peer review under responsibility of Tsinghua University Press.

Abstract

Peanut allergy is majorly related to severe food induced allergic reactions. Several food including cow’s milk, hen’s eggs, soy, wheat, peanuts, tree nuts (walnuts, hazelnuts, almonds, cashews, pecans and pistachios), f ish and shellf ish are responsible for more than 90% of food allergies. Here, we provide promising insights using a large-scale data-driven analysis, comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts, tree nuts (walnuts, almonds, cashews, pecans and pistachios) and soybean.Additionally, we have analysed the chemical compositions of peanuts in different processed form raw, boiled and dry-roasted. Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors (PPARs) and its isoform and their interaction with dietary lipids may have signif icant effect on allergic response. The results obtained from this study will direct future experimental and clinical studies to understand the role of dietary lipids and PPAR-isoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.

Keywords: Fatty acids, Data analysis, Food allergy, Allergy informatics, Knowledge-graph, Peroxisome proliferator-activated receptors

References(58)

[1]

S.K. Sathe, C. Liu, V.D. Zaffran, Food allergy, Annu. Rev. Food Sci. Technol. 7(2016) 191-220. https://doi.org/10.1146/annurev-food-041715-033308.

[2]

J.H.M. van Bilsen, E. Sienkiewicz-Szłapka, D. Lozano-Ojalvo, et al., Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins, Clin. Transl. Allergy 7 (2017) 13. https://doi.org/10.1186/s13601-017-0152-0.

[3]

B.I. Nwaru, L. Hickstein, S.S. Panesar, et al., Prevalence of common food allergies in Europe: a systematic review and meta-analysis, Allergy 69 (2014) 992-1007. https://doi.org/10.1111/all.12423.

[4]

R. Bonku, J. Yu, Health aspects of peanuts as an outcome of its chemical composition, Food Sci. Hum. Wellness 9 (2020) 21-30. https://doi.org/10.1016/j.fshw.2019.12.005.

[5]

S.A. Bock, A. Muñoz-Furlong, H.A. Sampson, Further fatalities caused by anaphylactic reactions to food, 2001–2006, J. Allergy Clin. Immunol. 119(2007) 1016-1018. https://doi.org/10.1016/j.jaci.2006.12.622.

[6]

U. Radzikowska, A.O. Rinaldi, Z. Çelebi Sözener, et al., The influence of dietary fatty acids on immune responses, Nutrients 11 (2019) 2990. https://doi.org/10.3390/nu11122990.

[7]

J. Li, Y. Wang, L. Tang, et al., Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice, J. Allergy Clin. Immunol. 131 (2013) 442-450. https://doi.org/10.1016/j.jaci.2012.10.011.

[8]

M.S. Schjødt, G. Gürdeniz, B. Chawes, The metabolomics of childhood atopic diseases: a comprehensive pathway-specific review, Metabolites 10(2020) 511. https://doi.org/10.3390/metabo10120511.

[9]

E. Rinninella, M. Cintoni, P. Raoul, et al., Food components and dietary habits: keys for a healthy gut microbiota composition, Nutrients 11 (2019) 2393. https://doi.org/10.3390/nu11102393.

[10]

E. Patterson, R. Wall, G.F. Fitzgerald, et al., Health implications of high dietary omega-6 polyunsaturated fatty acids, J. Nutr. Metab. 2012 (2012) 539426. https://doi.org/10.1155/2012/539426.

[11]

X. Meng, Y. Wu, X. Wen, et al., Dietary linolenic acid increases sensitizing and eliciting capacities of cow’s milk whey proteins in BALB/c mice, Nutrients 14 (2022) 822. https://doi.org/10.3390/nu14040822.

[12]
European Food Safety Authority (EFSA). https://www.efsa.europa.eu/en.
[13]
Food and Nutrient Database for Dietary Studies (FNDDS). https://data.nal.usda.gov/dataset/food-and-nutrient-database-dietary-studies-fndds.
[14]
National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/.
[15]

N.K. Fukagawa, K. McKillop, P.R. Pehrsson, et al., USDA’s FoodData Central: what is it and why is it needed today? Am. J. Clin. Nutr. 115 (2022) 619-624. https://doi.org/10.1093/ajcn/nqab397.

[16]

A.P. Bento, A. Hersey, E. Félix, et al., An open source chemical structure curation pipeline using RDKit, J. Cheminform. 12 (2020) 51. https://doi.org/10.1186/s13321-020-00456-1.

[17]

UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Res. 49 (2021) D480-D489. https://doi.org/10.1093/nar/gkaa1100.

[18]

Q. Chen, L. Springer, B.O. Gohlke, et al., SuperTCM: a biocultural database combining biological pathways and historical linguistic data of Chinese Materia Medica for drug development, Biomed. Pharmacother. 144 (2021) 112315. https://doi.org/10.1016/j.biopha.2021.112315.

[19]

M. Kanehisa, Y. Sato, M. Kawashima, et al., KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res. 44 (2016) D457-D462. https://doi.org/10.1093/nar/gkv1070.

[20]

E. Szöcs, T. Stirling, E.R. Scott, et al., Webchem: an R package to retrieve chemical information from the web, J. Stat. Softw. 93(13) (2020) 1-17. https://doi.org/10.18637/jss.v093.i13.

[21]
[22]
Phenol-Explorer3.6. http://phenol-explorer.eu/.
[23]
Dr. Duke’s Phytochemical and Ethnobotanical Databases. https://phytochem.nal.usda.gov/phytochem/search.
[24]

M.K. Gilson, T. Liu, M. Baitaluk, et al., BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology, Nucleic Acids Res. 44 (2016) D1045-D1053. https://doi.org/10.1093/nar/gkv1072.

[25]
KEGG: Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/kegg/.
[26]

M. Gillespie, B. Jassal, R. Stephan, et al., The reactome pathway knowledgebase 2022, Nucleic Acids Res. 50 (2022) D687-D692. https://doi.org/10.1093/nar/gkab1028.

[27]

T. Jewison, Y. Su, F.M. Disfany, et al., SMPDB 2.0: big improvements to the small molecule pathway database, Nucleic Acids Res. 42 (2014) D478-D484. https://doi.org/10.1093/nar/gkt1067.

[28]

J. Nickel, B.O. Gohlke, J, Erehman, et al., SuperPred: update on drug classification and target prediction, Nucleic Acids Res. 42 (2014) W26-W31. https://doi.org/10.1093/nar/gku477.

[29]

P. Banerjee, A.O. Eckert, A.K. Schrey, et al., ProTox-Ⅱ: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46(W1) (2018) W257-W263. https://doi.org/10.1093/nar/gky318.

[30]

K. Gallo, A. Goede, R. Preissner, et al., SuperPred 3.0: drug classification and target prediction-a machine learning approach, Nucleic Acids Res. 50(2022) W726-W731. https://doi.org/10.1093/nar/gkac297.

[31]
H. Sun, M. Xia, C.P. Austin, et al., Paradigm shift in toxicity testing and modeling, AAPS J. 14 (2012) 473-480. https://doi.org/10.1208%2Fs12248-012-9358-1.
DOI
[32]
The R Project for Statistical Computing https://www.r-project.org/.
[33]
[34]

H. Wickham, M. Averick, J. Bryan, et al., Welcome to the Tidyverse, J. Open Source Softw. 4 (2019) 1686. https://doi.org/10.21105/joss.01686.

[35]
G. Woerly, K. Honda, M. Loyens, et al., Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation, J. Exp. Med. 198 (2003) 411-421. https://doi.org/10.1084%2Fjem.20021384.
DOI
[36]
R. Gosens, J. Zaagsma, H. Meurs, et al., Muscarinic receptor signaling in the pathophysiology of asthma and COPD, Respir. Res. 7 (2006) 73. https://doi.org/10.1186%2F1465-9921-7-73.
[37]
T. Zhang, Y. Shi, Y. Zhao, et al., Boiling and roasting treatment affecting the peanut allergenicity, Ann. Transl. Med. 6 (2018) 357. https://doi.org/10.21037%2Fatm.2018.05.08.
DOI
[38]

T. Zhang, Y. Shi, Y. Zhao, et al., Different thermal processing effects on peanut allergenicity, J. Sci. Food Agric. 99 (2019) 2321-2328. https://doi.org/10.1002/jsfa.9430.

[39]

M.S. Alkaltham, M.M. Özcan, N. Uslu, et al., Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans, J. Food Process. Preserv. 44(11)(2020) e14874. https://doi.org/10.1111/jfpp.14874.

[40]
M.G. del Moral, E. Martínez-Naves, The role of lipids in development of allergic responses, Immune Netw. 17 (2017) 133-143. https://doi.org/10.4110%2Fin.2017.17.3.133.
DOI
[41]
S.G. Wendell, C. Baffi, F. Holguin, Fatty acids, inflammation, and asthma, J. Allergy Clin. Immunol. 133 (2014) 1255-1264. https://doi.org/10.1016%2Fj.jaci.2013.12.1087.
DOI
[42]

L.E.M. Willemsen, Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment, Eur. J. Pharmacol. 785 (2016) 174-186. https://doi.org/10.1016/j.ejphar.2016.03.062.

[43]
M. Bublin, T. Eiwegger, H. Breiteneder, Do lipids influence the allergic sensitization process? J. Allergy Clin. Immunol. 134 (2014) 521-529. https://doi.org/10.1016%2Fj.jaci.2014.04.015.
DOI
[44]

M.A. Trak-Fellermeier, S. Brasche, G. Winkler, et al., Food and fatty acid intake and atopic disease in adults, Eur. Respir. J. 23 (2004) 575-582. https://doi.org/10.1183/09031936.04.00074404.

[45]

P. Kankaanpää, Y. Sütas, S. Salminen, et al., Dietary fatty acids and allergy, Ann. Med. 31 (1999) 282-287. https://doi.org/10.3109/07853899908995891.

[46]
G.V. Hopkins, S. Cochrane, D. Onion, et al., The role of lipids in allergic sensitization: a systematic review, Front. Mol. Biosci. 9 (2022) 832330. https://doi.org/10.3389%2Ffmolb.2022.832330.
DOI
[47]

C. Palladino, M.S. Narzt, M. Bublin, et al., Peanut lipids display potential adjuvanticity by triggering a pro-inflammatory response in human keratinocytes. Allergy 73 (2018) 1746-1749. https://doi.org/10.1111/all.13475.

[48]

E.M. Moore, C. Wagner, S. Komarnytsky, The enigma of bioactivity and toxicity of botanical oils for skin care, Front. Pharmacol. 11 (2020) 785. https://doi.org/10.3389/fphar.2020.00785.

[49]

P.N. Black, The prevalence of allergic disease and linoleic acid in the diet, J. Allergy Clin. Immunol. 103 (1999) 351-352. https://doi.org/10.1016/S0091-6749(99)70513-0.

[50]
J.M. Stark, J.M. Coquet, C.A. Tibbitt, The role of PPARγ in allergic disease, Curr. Allergy Asthma Rep. 21 (2021) 45. https://doi.org/10.1007%2Fs11882-021-01022-x.
DOI
[51]

E. Brennan, P. Kantharidis, M.E. Cooper, et al., Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function, Nat. Rev. Nephrol. 17 (2021) 725-739. https://doi.org/10.1038/s41581-021-00454-y.

[52]
A.P. Simopoulos, An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity, Nutrients 8 (2016) 128. https://doi.org/10.3390%2Fnu8030128.
DOI
[53]

A.P. Simopoulos, Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects, World Rev. Nutr. Diet. 92 (2003) 1-22. https://doi.org/10.1159/000073788.

[54]

A.P. Simopoulos, The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomed. Pharmacother. 56 (2002) 365-379. https://doi.org/10.1016/s0753-3322(02)00253-6.

[55]

A. Dahten, C. Koch, D. Ernst, et al., Systemic PPARgamma ligation inhibits allergic immune response in the skin, J. Invest. Dermatol. 128 (2008) 2211-2218. https://doi.org/10.1038/jid.2008.84.

[56]

T. Chen, C.A. Tibbitt, X. Feng, et al., PPAR- promotes type 2 immune responses in allergy and nematode infection, Sci. Immunol. 2 (2017) 1-11. https://doi.org/10.1126/sciimmunol.aal5196.

[57]

H.P. Raikwar, G. Muthian, J. Rajasingh, et al., PPARgamma antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis, J. Neuroimmunol. 167 (2005) 99-107. https://doi.org/10.1016/j.jneuroim.2005.06.026.

[58]

J.A. Domínguez-Avila, G.A. González-Aguilar, E. Alvarez-Parrilla, et al., Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets, Int. J. Mol. Sci. 17(7) (2016) E1002. https://doi.org/10.3390/ijms17071002.

Publication history
Copyright
Rights and permissions

Publication history

Received: 22 July 2022
Revised: 06 August 2022
Accepted: 03 September 2022
Published: 08 February 2024
Issue date: May 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return