Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Peanut allergy is majorly related to severe food induced allergic reactions. Several food including cow’s milk, hen’s eggs, soy, wheat, peanuts, tree nuts (walnuts, hazelnuts, almonds, cashews, pecans and pistachios), f ish and shellf ish are responsible for more than 90% of food allergies. Here, we provide promising insights using a large-scale data-driven analysis, comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts, tree nuts (walnuts, almonds, cashews, pecans and pistachios) and soybean.Additionally, we have analysed the chemical compositions of peanuts in different processed form raw, boiled and dry-roasted. Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors (PPARs) and its isoform and their interaction with dietary lipids may have signif icant effect on allergic response. The results obtained from this study will direct future experimental and clinical studies to understand the role of dietary lipids and PPAR-isoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.
S.K. Sathe, C. Liu, V.D. Zaffran, Food allergy, Annu. Rev. Food Sci. Technol. 7(2016) 191-220. https://doi.org/10.1146/annurev-food-041715-033308.
J.H.M. van Bilsen, E. Sienkiewicz-Szłapka, D. Lozano-Ojalvo, et al., Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins, Clin. Transl. Allergy 7 (2017) 13. https://doi.org/10.1186/s13601-017-0152-0.
B.I. Nwaru, L. Hickstein, S.S. Panesar, et al., Prevalence of common food allergies in Europe: a systematic review and meta-analysis, Allergy 69 (2014) 992-1007. https://doi.org/10.1111/all.12423.
R. Bonku, J. Yu, Health aspects of peanuts as an outcome of its chemical composition, Food Sci. Hum. Wellness 9 (2020) 21-30. https://doi.org/10.1016/j.fshw.2019.12.005.
S.A. Bock, A. Muñoz-Furlong, H.A. Sampson, Further fatalities caused by anaphylactic reactions to food, 2001–2006, J. Allergy Clin. Immunol. 119(2007) 1016-1018. https://doi.org/10.1016/j.jaci.2006.12.622.
U. Radzikowska, A.O. Rinaldi, Z. Çelebi Sözener, et al., The influence of dietary fatty acids on immune responses, Nutrients 11 (2019) 2990. https://doi.org/10.3390/nu11122990.
J. Li, Y. Wang, L. Tang, et al., Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice, J. Allergy Clin. Immunol. 131 (2013) 442-450. https://doi.org/10.1016/j.jaci.2012.10.011.
M.S. Schjødt, G. Gürdeniz, B. Chawes, The metabolomics of childhood atopic diseases: a comprehensive pathway-specific review, Metabolites 10(2020) 511. https://doi.org/10.3390/metabo10120511.
E. Rinninella, M. Cintoni, P. Raoul, et al., Food components and dietary habits: keys for a healthy gut microbiota composition, Nutrients 11 (2019) 2393. https://doi.org/10.3390/nu11102393.
E. Patterson, R. Wall, G.F. Fitzgerald, et al., Health implications of high dietary omega-6 polyunsaturated fatty acids, J. Nutr. Metab. 2012 (2012) 539426. https://doi.org/10.1155/2012/539426.
X. Meng, Y. Wu, X. Wen, et al., Dietary linolenic acid increases sensitizing and eliciting capacities of cow’s milk whey proteins in BALB/c mice, Nutrients 14 (2022) 822. https://doi.org/10.3390/nu14040822.
N.K. Fukagawa, K. McKillop, P.R. Pehrsson, et al., USDA’s FoodData Central: what is it and why is it needed today? Am. J. Clin. Nutr. 115 (2022) 619-624. https://doi.org/10.1093/ajcn/nqab397.
A.P. Bento, A. Hersey, E. Félix, et al., An open source chemical structure curation pipeline using RDKit, J. Cheminform. 12 (2020) 51. https://doi.org/10.1186/s13321-020-00456-1.
UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Res. 49 (2021) D480-D489. https://doi.org/10.1093/nar/gkaa1100.
Q. Chen, L. Springer, B.O. Gohlke, et al., SuperTCM: a biocultural database combining biological pathways and historical linguistic data of Chinese Materia Medica for drug development, Biomed. Pharmacother. 144 (2021) 112315. https://doi.org/10.1016/j.biopha.2021.112315.
M. Kanehisa, Y. Sato, M. Kawashima, et al., KEGG as a reference resource for gene and protein annotation, Nucleic Acids Res. 44 (2016) D457-D462. https://doi.org/10.1093/nar/gkv1070.
E. Szöcs, T. Stirling, E.R. Scott, et al., Webchem: an R package to retrieve chemical information from the web, J. Stat. Softw. 93(13) (2020) 1-17. https://doi.org/10.18637/jss.v093.i13.
M.K. Gilson, T. Liu, M. Baitaluk, et al., BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology, Nucleic Acids Res. 44 (2016) D1045-D1053. https://doi.org/10.1093/nar/gkv1072.
M. Gillespie, B. Jassal, R. Stephan, et al., The reactome pathway knowledgebase 2022, Nucleic Acids Res. 50 (2022) D687-D692. https://doi.org/10.1093/nar/gkab1028.
T. Jewison, Y. Su, F.M. Disfany, et al., SMPDB 2.0: big improvements to the small molecule pathway database, Nucleic Acids Res. 42 (2014) D478-D484. https://doi.org/10.1093/nar/gkt1067.
J. Nickel, B.O. Gohlke, J, Erehman, et al., SuperPred: update on drug classification and target prediction, Nucleic Acids Res. 42 (2014) W26-W31. https://doi.org/10.1093/nar/gku477.
P. Banerjee, A.O. Eckert, A.K. Schrey, et al., ProTox-Ⅱ: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46(W1) (2018) W257-W263. https://doi.org/10.1093/nar/gky318.
K. Gallo, A. Goede, R. Preissner, et al., SuperPred 3.0: drug classification and target prediction-a machine learning approach, Nucleic Acids Res. 50(2022) W726-W731. https://doi.org/10.1093/nar/gkac297.
H. Wickham, M. Averick, J. Bryan, et al., Welcome to the Tidyverse, J. Open Source Softw. 4 (2019) 1686. https://doi.org/10.21105/joss.01686.
T. Zhang, Y. Shi, Y. Zhao, et al., Different thermal processing effects on peanut allergenicity, J. Sci. Food Agric. 99 (2019) 2321-2328. https://doi.org/10.1002/jsfa.9430.
M.S. Alkaltham, M.M. Özcan, N. Uslu, et al., Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans, J. Food Process. Preserv. 44(11)(2020) e14874. https://doi.org/10.1111/jfpp.14874.
L.E.M. Willemsen, Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment, Eur. J. Pharmacol. 785 (2016) 174-186. https://doi.org/10.1016/j.ejphar.2016.03.062.
M.A. Trak-Fellermeier, S. Brasche, G. Winkler, et al., Food and fatty acid intake and atopic disease in adults, Eur. Respir. J. 23 (2004) 575-582. https://doi.org/10.1183/09031936.04.00074404.
P. Kankaanpää, Y. Sütas, S. Salminen, et al., Dietary fatty acids and allergy, Ann. Med. 31 (1999) 282-287. https://doi.org/10.3109/07853899908995891.
C. Palladino, M.S. Narzt, M. Bublin, et al., Peanut lipids display potential adjuvanticity by triggering a pro-inflammatory response in human keratinocytes. Allergy 73 (2018) 1746-1749. https://doi.org/10.1111/all.13475.
E.M. Moore, C. Wagner, S. Komarnytsky, The enigma of bioactivity and toxicity of botanical oils for skin care, Front. Pharmacol. 11 (2020) 785. https://doi.org/10.3389/fphar.2020.00785.
P.N. Black, The prevalence of allergic disease and linoleic acid in the diet, J. Allergy Clin. Immunol. 103 (1999) 351-352. https://doi.org/10.1016/S0091-6749(99)70513-0.
E. Brennan, P. Kantharidis, M.E. Cooper, et al., Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function, Nat. Rev. Nephrol. 17 (2021) 725-739. https://doi.org/10.1038/s41581-021-00454-y.
A.P. Simopoulos, Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects, World Rev. Nutr. Diet. 92 (2003) 1-22. https://doi.org/10.1159/000073788.
A.P. Simopoulos, The importance of the ratio of omega-6/omega-3 essential fatty acids, Biomed. Pharmacother. 56 (2002) 365-379. https://doi.org/10.1016/s0753-3322(02)00253-6.
A. Dahten, C. Koch, D. Ernst, et al., Systemic PPARgamma ligation inhibits allergic immune response in the skin, J. Invest. Dermatol. 128 (2008) 2211-2218. https://doi.org/10.1038/jid.2008.84.
T. Chen, C.A. Tibbitt, X. Feng, et al., PPAR- promotes type 2 immune responses in allergy and nematode infection, Sci. Immunol. 2 (2017) 1-11. https://doi.org/10.1126/sciimmunol.aal5196.
H.P. Raikwar, G. Muthian, J. Rajasingh, et al., PPARgamma antagonists exacerbate neural antigen-specific Th1 response and experimental allergic encephalomyelitis, J. Neuroimmunol. 167 (2005) 99-107. https://doi.org/10.1016/j.jneuroim.2005.06.026.
J.A. Domínguez-Avila, G.A. González-Aguilar, E. Alvarez-Parrilla, et al., Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets, Int. J. Mol. Sci. 17(7) (2016) E1002. https://doi.org/10.3390/ijms17071002.
1069
Views
219
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).