Journal Home > Volume 13 , Issue 3

Inflammatory bowel disease (IBD) is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions. Gut commensals have shown different functions in IBD prevention and treatment. To gain a mechanistic understanding of how different commensals affect intestinal inflammation, we compared the protective effects of 6 probiotics (belonging to the genera Akkermansia, Bifidobacterium, Clostridium, and Enterococcus) on dextran sulfate sodium (DSS)-induced colitis in mice with or without gut microbiota. Anti-inflammatory properties (ratio of interleukin (IL)-10 and IL-12) of these strains were also evaluated in an in vitro mesenteric lymph nodes (MLN) co-culture system. Results showed that 4 probiotics (belonging to the species Bifidobacterium breve, Bifidobacterium bifidum, and Enterococcus faecalis) can alleviate colitis in normal mice. The probiotic strains differed in regulating the intestinal microbiota, cytokines (IL-10, IL-1β and interferon (IFN)-γ), and tight junction function (Zonulin-1 and Occludin). By constrast, Akkermansia muciniphila AH39 and Clostridium butyricum FHuNHHMY49T1 were not protective. Interestingly, B. breve JSNJJNM2 with high anti-inflammatory potential in the MLN model could relieve colitis symptoms in antibiotic cocktail (Abx)-treated mice. Meanwhile, E. faecalis FJSWX25M1 induced low levels of cytokines in vitro and showed no beneficial effects. Therefore, we provided insight into the clinical application of probiotics in IBD treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Differences in the effects and action modes of gut commensals against dextran sulfate sodium-induced intestinal inflammation

Show Author's information Dingwu Qua,b,Zhennan Gua,bSaisai Fenga,bLeilei Yua,bFengwei Tiana,bHao Zhanga,b,c,dWei Chena,b,cQixiao Zhaia,b( )
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China

Peer review under responsibility of Tsinghua University Press.

Abstract

Inflammatory bowel disease (IBD) is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions. Gut commensals have shown different functions in IBD prevention and treatment. To gain a mechanistic understanding of how different commensals affect intestinal inflammation, we compared the protective effects of 6 probiotics (belonging to the genera Akkermansia, Bifidobacterium, Clostridium, and Enterococcus) on dextran sulfate sodium (DSS)-induced colitis in mice with or without gut microbiota. Anti-inflammatory properties (ratio of interleukin (IL)-10 and IL-12) of these strains were also evaluated in an in vitro mesenteric lymph nodes (MLN) co-culture system. Results showed that 4 probiotics (belonging to the species Bifidobacterium breve, Bifidobacterium bifidum, and Enterococcus faecalis) can alleviate colitis in normal mice. The probiotic strains differed in regulating the intestinal microbiota, cytokines (IL-10, IL-1β and interferon (IFN)-γ), and tight junction function (Zonulin-1 and Occludin). By constrast, Akkermansia muciniphila AH39 and Clostridium butyricum FHuNHHMY49T1 were not protective. Interestingly, B. breve JSNJJNM2 with high anti-inflammatory potential in the MLN model could relieve colitis symptoms in antibiotic cocktail (Abx)-treated mice. Meanwhile, E. faecalis FJSWX25M1 induced low levels of cytokines in vitro and showed no beneficial effects. Therefore, we provided insight into the clinical application of probiotics in IBD treatment.

Keywords: Intestinal barrier, Gut commensals, Immunoregulation, Dextran sulfate sodium (DSS) colitis

References(62)

[1]

W. Zeng, D. He, Y. Xing, et al., Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review, Food Sci. Hum. Wellness 10 (2021) 119-130. https://doi.org/10.1016/j.fshw.2021.02.016.

[2]

Y.M. Lu, J.J. Xie, C.G. Peng, et al., Enhancing clinical efficacy through the gut microbiota: a new field of traditional Chinese medicine, Engineering 5 (2019) 40-49. https://doi.org/10.1016/j.eng.2018.11.013.

[3]

A.V. Vila, F. Imhann, V. Collij, et al., Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome, Sci. Transl. Med. 10 (2018) eaap8914. https://doi.org/10.1126/scitranslmed.aap8914.

[4]

M. Schirmer, A. Garner, H. Vlamakis, et al., Microbial genes and pathways in inflammatory bowel disease, Nat. Rev. Microbiol. 17 (2019) 497-511. https://doi.org/10.1038/s41579-019-0213-6.

[5]

S. Vieira-Silva, J. Sabino, M. Valles-Colomer, et al., Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses, Nat. Microbiol. 4 (2019) 1826-1831. https://doi.org/10.1038/s41564-019-0483-9.

[6]

A. Perna, E. Hay, M. Contieri, et al., Adherent-invasive Escherichia coli (AIEC): cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? J. Cell. Physiol. 235 (2020) 5041-5049. https://doi.org/10.1002/jcp.29430.

[7]

S. Lima, L. Gogokhia, M. Viladomiu, et al., Transferable IgA-coated Odoribacter splanchnicus in responders to fecal microbiota transplantation for ulcerative colitis limits colonic inflammation, Gastroenterology 162 (2021) 166-178. https://doi.org/10.1053/j.gastro.2021.09.061.

[8]

D. Srutkova, M. Schwarzer, T. Hudcovic, et al., Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner, PLoS One 10 (2015) e0134050. https://doi.org/10.1371/journal.pone.0134050.

[9]

S.G. Jo, E.J. Noh, J.Y. Lee, et al., Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice, J. Microbiol. 54 (2016) 503-509. https://doi.org/10.1007/s12275-016-6160-2.

[10]

G. Wang, H. Tang, Y. Zhang, et al., The intervention effects of Lactobacillus casei LC2W on Escherichia coli O157:H7-induced mouse colitis, Food Sci. Hum. Wellness 9 (2020) 289-294. https://doi.org/10.1016/j.fshw.2020.04.008.

[11]

M. Liu, W. Xie, X. Wan, et al., Clostridium butyricum protects intestinal barrier function via upregulation of tight junction proteins and activation of the Akt/mTOR signaling pathway in a mouse model of dextran sodium sulfate-induced colitis, Exp. Ther. Med. 20 (2020) 10. https://doi.org/10.3892/etm.2020.9138.

[12]

C.S. Kang, M. Ban, E.J. Choi, et al., Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis, PloS One 8 (2013) e76520. https://doi.org/10.1371/journal.pone.0076520.

[13]

S. Qu, L. Fan, Y. Qi, et al., Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation, Microbiol.Spectrum. 9 (2021) e00730-21. https://doi.org/10.1128/Spectrum.00730-21.

[14]

Y. Ma, C. Hu, W. Yan, et al., Lactobacillus pentosus increases the abundance of Akkermansia and affects the serum metabolome to alleviate DSS-induced colitis in a murine model, Front. Cell Dev. Biol. 8 (2020) 591408. https://doi.org/10.3389/fcell.2020.591408.

[15]

R. Zhai, X. Xue, L. Zhang, et al., Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice, Front. Cell. Infect. Microbiol. 9 (2019) 239. https://doi.org/10.3389/fcimb.2019.00239.

[16]

E.J. Choi, H.J. Lee, W.J. Kim, et al., Enterococcus faecalis EF-2001 protects DNBS-induced inflammatory bowel disease in mice model, PLoS One 14 (2019) e0210854. https://doi.org/10.1371/journal.pone.0210854.

[17]

I.C. Chung, C.N. OuYang, S.N. Yuan, et al., Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates colitis-associated colorectal cancer in mice, Nutrients 11 (2019) 516. https://doi.org/10.3390/nu11030516.

[18]

S. Wang, M.L. Hibberd, S. Pettersson, et al., Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways, PLoS One 9 (2014) e97523. https://doi.org/10.1371/journal.pone.0097523.

[19]

K. Takahashi, O. Nakagawasai, W. Nemoto, et al., Effect of Enterococcus faecalis 2001 on colitis and depressive-like behavior in dextran sulfate sodium-treated mice: involvement of the brain-gut axis, J. Neuroinflamm. 16 (2019) 201. https://doi.org/10.1186/s12974-019-1580-7.

[20]

K.J. Rangan, V.A. Pedicord, Y.C. Wang, et al., A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens, Science 353 (2016) 1434-1437. https://doi.org/10.1126/science.aaf3552.

[21]

U.P. Singh, N.P. Singh, E.A. Murphy, et al., Chemokine and cytokine levels in inflammatory bowel disease patients, Cytokine 77 (2016) 44-49. https://doi.org/10.1016/j.cyto.2015.10.008.

[22]

V. Langer, E. Vivi, D. Regensburger, et al., IFN-γ drives inflammatory bowel disease pathogenesis through VE-cadherin-directed vascular barrier disruption, J. Clin. Invest. 129 (2019) 4691-4707. https://doi.org/10.1172/JCI124884.

[23]

B. Li, R. Alli, P. Vogel, et al., IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis, Mucosal. Immunol. 7 (2014) 869-878. https://doi.org/10.1038/mi.2013.103.

[24]

Y. Wang, Q. Xie, Y. Zhang, et al., Combination of probiotics with different functions alleviate DSS-induced colitis by regulating intestinal microbiota, IL-10, and barrier function, Appl. Microbiol. Biotechnol. 104 (2020) 335-349. https://doi.org/10.1007/s00253-019-10259-6.

[25]

H. Liang, Z. Luo, Z. Miao, et al., Lactobacilli and Bifidobacteria derived from infant intestines may activate macrophages and lead to different IL-10 secretion, Biosci. Biotechnol. Biochem. 84 (2020) 2558-2568. https://doi.org/10.1080/09168451.2020.1811948.

[26]

A. Hayashi, T. Sato, N. Kamada, et al., A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice, Cell Host Microbe. 13 (2013) 711-722. https://doi.org/10.1016/j.chom.2013.05.013.

[27]

C. Ding, F. Han, H. Xiang, et al., Probiotics ameliorate renal ischemia-reperfusion injury by modulating the phenotype of macrophages through the IL-10/GSK-3β/PTEN signaling pathway, Pflug. Arch. Eur. J. Phy. 471 (2019) 573-581. https://doi.org/10.1007/s00424-018-2213-1.

[28]

J.E. Kim, C.S. Chae, G.C. Kim, et al., Lactobacillus helveticus suppresses experimental rheumatoid arthritis by reducing inflammatory T cell responses, J. Funct. Foods 13 (2015) 350-362. https://doi.org/10.1016/j.jff.2015.01.002.

[29]

M.G. Kang, S.W. Han, H.R. Kang, et al., Probiotic NVP-1703 alleviates allergic rhinitis by inducing IL-10 expression: a four-week clinical trial, Nutrients 12 (2020) 1427. https://doi.org/10.3390/nu12051427.

[30]

S.G. Jeon, H. Kayama, Y. Ueda, et al., Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon, PLoS Pathog. 8 (2012) e1002714. https://doi.org/10.1371/journal.ppat.1002714.

[31]

M.M. Curtis, Z.P. Hu, C. Klimko, et al., The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape, Cell Host Microbe. 16 (2014) 759-769. https://doi.org/10.1016/j.chom.2014.11.005.

[32]

Q. Zhai, D. Qu, S. Feng, et al., Oral supplementation of lead-intolerant intestinal microbes protects against lead (Pb) toxicity in mice, Front.Microbiol. 10 (2019) 3161. https://doi.org/10.3389/fmicb.2019.03161.

[33]

S. Feng, Y. Liu, Y. Huang, et al., Influence of oral administration of Akkermansia muciniphila on the tissue distribution and gut microbiota composition of acute and chronic cadmium exposure mice, FEMS Microbiol. Lett. 366 (2019) fnz160. https://doi.org/10.1093/femsle/fnz160.

[34]

Q. Zhai, S. Cen, P. Li, et al., Effects of dietary selenium supplementation on intestinal barrier and immune responses associated with its modulation of gut microbiota, Environ. Sci. Technol. Lett. 5 (2018) 724-730. https://doi.org/10.1021/acs.estlett.8b00563.

[35]

R. Verma, C. Lee, E.J. Jeun, et al., Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells, Sci. Immunol. 3 (2018) eaat6975. https://doi.org/10.1126/sciimmunol.aat6975.

[36]

I. Khan, N. Ullah, L. Zha, et al., Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome, Pathogens 8 (2019) 126. https://doi.org/10.3390/pathogens8030126.

[37]

X. Chen, Y. Fu, L. Wang, et al., Bifidobacterium longum and VSL# 3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment, Dev. Comp. Immunol. 92 (2019) 77-86. https://doi.org/10.1016/j.dci.2018.09.006.

[38]

R. Gao, Y. Shen, W. Shu, et al., Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition, Food Funct. 11 (2020) 6987-6999. https://doi.org/10.1039/c9fo02772f.

[39]

N.R. Shin, T.W. Whon, J.W. Bae, Proteobacteria: microbial signature of dysbiosis in gut microbiota, Trends Biotechnol. 33 (2015) 496-503. https://doi.org/10.1016/j.tibtech.2015.06.011.

[40]

M. Vester-Andersen, H. Mirsepasi-Lauridsen, M. Prosberg, et al., Increased abundance of proteobacteria in aggressive Crohn’s disease seven years after diagnosis, Sci. Rep. 9 (2019) 1-10. https://doi.org/10.1038/s41598-019-49833-3.

[41]

E. Zagato, C. Pozzi, A. Bertocchi, et al., Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth, Nat. Microbiol. 5 (2020) 511-524. https://doi.org/10.1038/s41564-019-0649-5.

[42]

S.H. Lee, S.Y. Cho, Y. Yoon, et al., Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice, Nat. Microbiol. 6 (2021) 277-288. https://doi.org/10.1038/s41564-020-00831-6.

[43]

Z. Wu, D. Pan, M. Jiang, et al., Selenium-enriched Lactobacillus acidophilus ameliorates dextran sulfate sodium-induced chronic colitis in mice by regulating inflammatory cytokines and intestinal microbiota, Front. Med. 8 (2021) 716816. https://doi.org/10.3389/fmed.2021.716816.

[44]

F. Zhao, J. Feng, J. Li, et al., Alterations of the gut microbiota in hashimoto’s thyroiditis patients, Thyroid. 28 (2018) 175-186. https://doi.org/10.1089/thy.2017.0395.

[45]

Y. Chen, L. Zhang, G. Hong, et al., Probiotic mixtures with aerobic constituent promoted the recovery of multi-barriers in DSS-induced chronic colitis, Life Sci. 240 (2020) 117089. https://doi.org/10.1016/j.lfs.2019.117089.

[46]

Y. Chen, Y. Jin, C. Stanton, et al., Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation, Eur. J. Nutr. 60 (2021) 369-387. https://doi.org/10.1007/s00394-020-02252-x.

[47]

Y. Chen, B. Yang, R.P. Ross, et al., Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation, J. Agric. Food Chem. 67 (2019) 13282-13298. https://doi.org/10.1021/acs.jafc.9b05744.

[48]

E.C. Rose, J. Odle, A.T. Blikslager, et al., Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function, Int. J. Mol. Sci. 22 (2021) 6729. https://doi.org/10.3390/ijms22136729.

[49]

R. Al-Sadi, V. Dharmaprakash, P. Nighot, et al., Bifidobacterium bifidum enhances the intestinal epithelial tight Junction barrier and protects against intestinal inflammation by targeting the toll-like receptor-2 pathway in an NF-κB-independent manner, Int. J. Mol. Sci. 22 (2021) 8070. https://doi.org/10.3390/ijms22158070.

[50]

X. Zhou, K. Zhang, W. Qi, et al., Exopolysaccharides from Lactobacillus plantarum NCU116 enhances colonic mucosal homeostasis by controlling epithelial cell differentiation and c-Jun/Muc2 signaling, J. Agric. Food Chem. 67 (2019) 9831-9839. https://doi.org/10.1021/acs.jafc.9b03939.

[51]

N. Hong, S. Ku, K. Yuk, et al., Production of biologically active human interleukin-10 by Bifidobacterium bifidum BGN4, Microb. Cell Fact. 20 (2021) 16. https://doi.org/10.1186/s12934-020-01505-y.

[52]

Y. Okada, Y. Tsuzuki, N. Sugihara, et al., Novel probiotic yeast from miso promotes regulatory dendritic cell IL-10 production and attenuates DSSinduced colitis in mice, J. Gastroenterol. 56 (2021) 829-842. https://doi.org/10.1007/s00535-021-01804-0.

[53]

S. Veenbergen, P. Li, H.C. Raatgeep, et al., IL-10 signaling in dendritic cells controls IL-1β-mediated IFNγ secretion by human CD4+ T cells: relevance to inflammatory bowel disease, Mucosal. Immunol. 12 (2019) 1201-1211. https://doi.org/10.1038/s41385-019-0194-9.

[54]

F Obermeier, G Kojouharoff, W Hans, et al., Interferon-gamma (IFN-γ)-and tumour necrosis factor (TNF)-induced nitricoxide as toxic effector molecule in chronic dextran sulphate sodium (DSS)-induced colitis in mice, Clin. Exp. Immunol. 116 (1999) 238. https://doi.org/10.1046/j.1365-2249.1999.00878.x.

[55]

S.S. Seregin, N. Golovchenko, B. Schaf, et al., NLRP6 protects Il10−/− mice from colitis by limiting colonization of Akkermansia muciniphila, Cell Rep. 19 (2017) 733-745. https://doi.org/10.1016/j.celrep.2017.03.080.

[56]

B.P. Ganesh, R. Klopfleisch, G. Loh, et al., Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice, PLoS One 8 (2013) e74963. https://doi.org/10.1371/journal.pone.0074963.

[57]

I. Kashiwagi, R. Morita, T. Schichita, et al., Smad2 and Smad3 inversely regulate TGF-β autoinduction in Clostridium butyricum-activated dendritic cells, Immunity 43 (2015) 65-79. https://doi.org/10.1016/j.immuni.2015.06.010.

[58]

B. Zheng, J. van Bergenhenegouwen, S. Overbeek, et al., Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses, PLoS One 9 (2014) e95441. https://doi.org/10.1371/journal.pone.0095441.

[59]

C.C. Chiu, Y.H. Ching, Y.C. Wang, et al., Monocolonization of germ-free mice with Bacteroides fragilis protects against dextran sulfate sodium-induced acute colitis, Biomed. Res. Int. 2014 (2014) 675786. https://doi.org/10.1155/2014/675786.

[60]

R. Kaji, J. Kiyoshima-Shibata, S. Tsujibe, et al., Short communication:probiotic induction of interleukin-10 and interleukin-12 production by macrophages is modulated by co-stimulation with microbial components, J. Dairy Sci. 101 (2018) 2838-2841. https://doi.org/10.3168/jds.2017-13868.

[61]

P. Marteau, M. Lemann, P. Seksik, et al., Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn’s disease: a randomised, double blind, placebo controlled GETAID trial, Gut 55 (2006) 842-847. https://doi.org/10.1136/gut.2005.076604.

[62]

C. Mantegazza, P. Molinari, E. D’Auria, et al., Probiotics and antibioticassociated diarrhea in children: a review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment, Pharmacol. Res. 128 (2018) 63-72. https://doi.org/10.1016/j.phrs.2017.08.001.

File
fshw-13-3-1201_ESM.docx (334.7 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 July 2022
Revised: 17 October 2022
Accepted: 27 October 2022
Published: 08 February 2024
Issue date: May 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20200084); The National Natural Science Foundation of China (U1903205 and 31972971); and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return