Journal Home > Volume 13 , Issue 3

The black chokeberry is rich in polyphenols, including flavonoids with anthocyanins, flavanols and f lavonols as the main components and a variety of phenolic acids represented by chlorogenic acid. Because of these polyphenols, black chokeberry has the effect of preventing and adjuvant therapy diseases. This study summarized the current research results on the types and contents of functional components in black chokeberry, and analyzed their digestion, absorption and metabolism in human body. On this basis, the disease control functions that have been proved effective in clinical research were reviewed and analyzed. These studies showed that black chokeberry have good prevention and adjuvant therapy effects on hyperlipidemia,hypertension, diabetes and inflammation. Because there are different functional components in black chokeberry, its prevention and treatment of the same disease can come from multiple pathways, which provides a more reliable effectiveness for the disease control of different populations.


menu
Abstract
Full text
Outline
About this article

Polyphenol components in black chokeberry (Aronia melanocarpa) as clinically proven diseases control factors—an overview

Show Author's information Ningxuan Gaoa,Chi ShuaYuehua WangaJinlong TianaYuxi LangaChenyu JinaXingyue CuiaHanqian JiangaShi’an LiuaZhiying LiaWei ChenbHao XucBin Lia( )
Department of Food Science, College of Food, Shenyang Agricultural University, Shenyang 110161, China
Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
Chaoyang Beihe Food Co., Ltd., Chaoyang 122100, China

Peer review under responsibility of Tsinghua University Press.

Abstract

The black chokeberry is rich in polyphenols, including flavonoids with anthocyanins, flavanols and f lavonols as the main components and a variety of phenolic acids represented by chlorogenic acid. Because of these polyphenols, black chokeberry has the effect of preventing and adjuvant therapy diseases. This study summarized the current research results on the types and contents of functional components in black chokeberry, and analyzed their digestion, absorption and metabolism in human body. On this basis, the disease control functions that have been proved effective in clinical research were reviewed and analyzed. These studies showed that black chokeberry have good prevention and adjuvant therapy effects on hyperlipidemia,hypertension, diabetes and inflammation. Because there are different functional components in black chokeberry, its prevention and treatment of the same disease can come from multiple pathways, which provides a more reliable effectiveness for the disease control of different populations.

Keywords: Hypertension, Diabetes, Hyperlipidemia, Black chokeberry, Inf lammation

References(121)

[1]

Y. Zhang, Y. Zhao, X. Liu, et al., Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: an overview, J. Future Foods 1(2021) 168-178. https://doi.org/10.1016/j.jfutfo.2022.01.006.

[2]

A. Sidor, A. Drożdżyńska, A. Gramza-Michałowska, Black chokeberry(Aronia melanocarpa) and its products as potential health-promoting factors-an overview, Trends Food Sci. Tech. 89 (2019) 45-60. https://doi.org/10.1016/j.tifs.2019.05.006.

[3]

S.E. Kulling, H.M. Rawel, Chokeberry (Aronia melanocarpa)-a review on the characteristic components and potential health effects, Planta Medica 74 (2008) 1625-1634. https://doi.org/10.1055/s-0028-1088306.

[4]

A. Kokotkiewicz, Z. Jaremicz, M. Luczkiewicz, Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine, J. Med. Food 13 (2010) 255-269.

[5]

M. Bhaswant, S.R. Shafie, M.L. Mathai, et al., Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats, Nutrition 41 (2017) 24-31. https://doi.org/10.1016/j.nut.2016.12.009.

[6]

N.H. Kim, J. Jegal, Y.N. Kim, et al., Chokeberry extract and its active polyphenols suppress adipogenesis in 3T3-L1 adipocytes and modulates fat accumulation and insulin resistance in diet-induced obese mice, Nutrients 10 (2018) 1734. https://doi.org/10.3390/nu10111734.

[7]

E. Daskalova, S. Delchev, Y. Peeva, et al., Antiatherogenic and cardioprotective effects of black chokeberry (Aronia melanocarpa) juice in aging rats, Evid.-Based Compl. Alt. 2015 (2015) 717439. https://doi.org/10.1155/2015/717439.

[8]

N. Ćujić, K. Savikin, Z. Miloradovic, et al., Characterization of dried chokeberry fruit extract and its chronic effects on blood pressure and oxidative stress in spontaneously hypertensive rats, J. Funct. Foods 44 (2018) 330-339. https://doi.org/10.1016/j.jff.2018.02.027.

[9]

G.T. Ho, M. Braunlich, I. Austarheim, et al., Immunomodulating activity of Aronia melanocarpa polyphenols, Int. J. Mol. Sci. 15 (2014) 11626-11636. https://doi.org/10.3390/ijms150711626.

[10]

H. Wangensteen, M. Bräunlich, V. Nikolic, et al., Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: antioxidant and enzyme inhibitory effects, J. Funct. Foods 7 (2014) 746-752. https://doi.org/10.1016/j.jff.2014.02.006.

[11]

A. Sidor, A. Gramza-Michałowska, Black chokeberry Aronia melanocarpa L.—a qualitative composition, phenolic profile and antioxidant potential, Molecules 24 (2019) 3710. https://doi.org/10.3390/molecules24203710.

[12]

S. Benvenuti, F. Pellati, M. Melegari, et al., Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of rubus, ribes, and aronia, J. Food Sci. 69 (2004) 164-169. https://doi.org/10.1111/j.1365-2621.2004.tb13352.x.

[13]

X. Wu, L. Gu, R.L. Prior, et al., Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity, J. Agr. Food Chem. 52 (2004) 7846-7856.

[14]

Y. Tian, J. Liimatainen, A.L. Alanne, et al., Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants, Food Chem. 220 (2017) 266-281. https://doi.org/10.1016/j.foodchem.2016.09.145.

[15]

R. Slimestad, K. Torskangerpoll, H.S. Nateland, et al., Flavonoids from black chokeberries, Aronia melanocarpa, J. Food Compos. Anal. 18 (2005) 61-68. https://doi.org/10.1016/j.jfca.2003.12.003.

[16]

T. Yang, W. Yilin, P. Mengshi, et al., Combined ANFIS and numerical methods to simulate ultrasound-assisted extraction of phenolics from chokeberry cultivated in China and analysis of phenolic composition, Sep. Purif. Technol. 178 (2017) 178-188. https://doi.org/10.1016/j.seppur.2017.01.012.

[17]

M. Sójka, K. Kołodziejczyk, J. Milala, Polyphenolic and basic chemical composition of black chokeberry industrial by-products, Ind. Crop. Prod. 51 (2013) 77-86. https://doi.org/10.1016/j.indcrop.2013.08.051.

[18]

N. Gao, X. Sun, D. Li, et al., Optimization of anthocyanidins conversion using chokeberry pomace rich in polymeric proanthocyanidins and cellular antioxidant activity analysis, LWT-Food Sci. Technol. 133 (2020) 109889. https://doi.org/10.1016/j.lwt.2020.109889.

[19]

K. Ou, L. Gu, Absorption and metabolism of proanthocyanidins, J. Funct. Foods 7 (2014) 43-53. https://doi.org/10.1016/j.jff.2013.08.004.

[20]

R. Arimboor, C. Arumughan, Effect of polymerization on antioxidant and xanthine oxidase inhibitory potential of sea buckthorn (H. rhamnoides)proanthocyanidins, J. Food Sci. 77 (2012) C1036-1041. https://doi.org/10.1111/j.1750-3841.2012.02884.x.

[21]

D. Sosnowska, A. Podsędek, M. Redzynia, et al., Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase–searching for most active inhibitors, J. Funct. Foods 49 (2018) 196-204. https://doi.org/10.1016/j.jff.2018.08.029.

[22]

M. Vagiri, M. Jensen, Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction, Food Chem. 217 (2017) 409-417. https://doi.org/10.1016/j.foodchem.2016.08.121.

[23]

L. Grunovaitė, M. Pukalskienė, A. Pukalskas, et al., Fractionation of black chokeberry pomace into functional ingredients using high pressure extraction methods and evaluation of their antioxidant capacity and chemical composition, J. Funct. Foods 24 (2016) 85-96. https://doi.org/10.1016/j.jff.2016.03.018.

[24]

L. Meng, J. Zhu, Y. Ma, et al., Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning, China, Food Biosci. 30 (2019) 100413. https://doi.org/10.1016/j.fbio.2019.100413.

[25]

G.C. Cretu, G.E. Morlock, Analysis of anthocyanins in powdered berry extracts by planar chromatography linked with bioassay and mass spectrometry, Food Chem. 146 (2014) 104-112. https://doi.org/10.1016/j.foodchem.2013.09.038.

[26]

M.H. Brand, B.A. Connolly, L.H. Levine, et al., Anthocyanins, total phenolics, ORAC and moisture content of wild and cultivated dark-fruited Aronia species, Sci. Hortic-Amsterdam 224 (2017) 332-342. https://doi.org/10.1016/j.scienta.2017.06.021.

[27]

R. Veberic, A. Slatnar, J. Bizjak, et al., Anthocyanin composition of different wild and cultivated berry species, LWT-Food Sci. Technol. 60 (2015) 509-517. https://doi.org/10.1016/j.lwt.2014.08.033.

[28]

J. Oszmianski, S. Lachowicz, Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds, Molecules 21 (2016) 1098. https://doi.org/10.3390/molecules21081098.

[29]

Y. Takuya, I. Momoko, H. Satoshi, et al., Reduction of blood glucose and HbA1c levels by cyanidin 3,5-diglucoside in KKAy mice, J. Funct. Foods 58 (2019) 21-26. https://doi.org/10.1016/j.jff.2019.04.038.

[30]

A. Piasek, B. Kusznierewicz, I. Grzybowska, et al., The influence of sterilization with EnbioJet® Microwave Flow Pasteurizer on composition and bioactivity of aronia and blue-berried honeysuckle juices, J. Food Compos. Anal. 24 (2011) 880-888. https://doi.org/10.1016/j.jfca.2011.04.005.

[31]

L. Hanske, W. Engst, G. Loh, et al., Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats, Brit. J. Nutr. 109 (2013) 1433-1441. https://doi.org/10.1017/S0007114512003376.

[32]

F. Han, P. Yang, H. Wang, et al., Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract, Trends Food Sci. Tech. 83 (2019) 211-224. https://doi.org/10.1016/j.tifs.2018.11.025.

[33]

R.M. de Ferrars, C. Czank, Q. Zhang, et al., The pharmacokinetics of anthocyanins and their metabolites in humans, Brit. J. Pharmacol. 171 (2014) 3268-3282. https://doi.org/10.1111/bph.12676.

[34]

M. Kosmala, Z. Zduńczyk, E. Karlińska, et al., The effects of strawberry, black currant, and chokeberry extracts in a grain dietary fiber matrix on intestinal fermentation in rats, Food Res. Int. 64 (2014) 752-761. https://doi.org/10.1016/j.foodres.2014.07.010.

[35]

W. Yu, J. Gao, R. Hao, et al., Effects of simulated digestion on black chokeberry (Aronia melanocarpa (Michx.) Elliot) anthocyanins and intestinal flora, J. Food Sci. Technology 58 (2021) 1511-1523. https://doi.org/10.1007/s13197-020-04664-3.

[36]

M. Azeem, M. Hanif, K. Mahmood, et al., An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review, Polym. Bull. (2022) 1-22. https://doi.org/10.1007/s00289-022-04091-8.

[37]

J. Oszmiański, A. Wojdylo, Aronia melanocarpa phenolics and their antioxidant activity, Eur. Food Res. Technol. 221 (2005) 809-813. https://doi.org/10.1007/s00217-005-0002-5.

[38]

M. Teleszko, A. Wojdyło, Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves, J. Funct. Foods 14 (2015) 736-746. https://doi.org/10.1016/j.jff.2015.02.041.

[39]

J. Weldin, R. Jack, K. Dugaw, et al., Quercetin, an over-the-counter supplement, causes neuroblastoma-like elevation of plasma homovanillic acid, Pediatr. Dev. Pathol. 6 (2019) 547-551. https://doi.org/10.1007/s10024-003-5061-7.

[40]

T.L. Farrell, M. Gomez-Juaristi, L. Poquet, et al., Absorption of dimethoxycinnamic acid derivatives in vitro and pharmacokinetic profile in human plasma following coffee consumption, Mol. Nutr. Food Res. 56 (2012) 1413-1423. https://doi.org/10.1002/mnfr.201200021.

[41]

K. Németh, G.W. Plumb, J.G. Berrin, et al., Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans, Eur. J. Nutr. 42 (2003) 29-42. https://doi.org/10.1007/s00394-003-0397-3.

[42]

W. Wang, C. Sun, L. Mao, et al., The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review, Trends Food Sci. Tech. 56 (2016) 21-38. https://doi.org/10.1016/j.tifs.2016.07.004.

[43]

J. Šnebergrová, H. Čížková, E. Neradová, et al., Variability of characteristic components of aronia, Czech J. Food Sci. 32 (2014) 25-30.

[44]

G.J. McDougall, C. Austin, E. van Schayk, et al., Salal (Gaultheria shallon) and aronia (Aronia melanocarpa) fruits from Orkney: phenolic content, composition and effect of wine-making, Food Chem. 205 (2016) 239-247. https://doi.org/10.1016/j.foodchem.2016.03.025.

[45]

D. Bursac Kovacevic, J. Gajdos Kljusuric, P. Putnik, et al., Stability of polyphenols in chokeberry juice treated with gas phase plasma, Food Chem. 212 (2016) 323-331. https://doi.org/10.1016/j.foodchem.2016.05.192.

[46]

S. Lafay, C. Morand, C. Manach, et al., Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats, Brit. J. Nutr. 96 (2006) 39-46. https://doi.org/10.1079/BJN20051714.

[47]

Y. Zhang, Y. Li, X. Ren, et al., The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds, Food Chem. 402 (2023) 134231. https://doi.org/10.1016/j.foodchem.2022.134231.

[48]

Y. Li, Y. Peng, Y. Shen, et al., Dietary polyphenols: regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases, Crit. Rev. Food Sci. (2022) 1-27. https://doi.org/10.1080/10408398.2022.2076064.

[49]

M.R. Olthof, P.C.H. Hollman, M.B. Katan, Chlorogenic acid and caffeic acid are absorbed in humans, J. Nutr. Biochem. 131 (2001) 66-70.

[50]

G.W. Plumb, M.T. Garcia-Conesa, A.A. Kroon, et al., Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora, J. Sci. Food Agr. 79 (1999) 390-392.

DOI
[51]

T. Wu, C. Grootaert, S. Voorspoels, et al., Aronia (Aronia melanocarpa) phenolics bioavailability in a combined in vitro digestion/Caco-2 cell model is structure and colon region dependent, J. Funct. Foods 38 (2017) 128-139. https://doi.org/10.1016/j.jff.2017.09.008.

[52]

S.A. Heleno, A. Martins, M.J. Queiroz, et al., Bioactivity of phenolic acids:metabolites versus parent compounds: a review, Food Chem. 173 (2015) 501-513. https://doi.org/10.1016/j.foodchem.2014.10.057.

[53]

M. Handeland, N. Grude, T. Torp, et al., Black chokeberry juice (Aronia melanocarpa) reduces incidences of urinary tract infection among nursing home residents in the long term—a pilot study, Nutr. Res. 34 (2014) 518-525. https://doi.org/10.1016/j.nutres.2014.05.005.

[54]

L. Dong, C. Qin, Y. Li, et al., Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota, Food Biosci. 50 (2022) 101946. https://doi.org/10.1016/j.fbio.2022.101946.

[55]

J.P. Chapu, A.W. McHill, J.L. Broussard, et al., The role of insufficient sleep and circadian misalignment in obesity, Nat. Rev. Endocrinol. 10 (2022) 1-16. https://doi.org/10.1038/s41574-022-00747-7.

[56]

S. Valcheva-Kuzmanova, K. Kuzmanov, S. Tsanova-Savova, et al., Lipid-Lowering effects of aronia melanocarpa fruit juice in rats fed cholesterol-containing diets, J. Food Biochem. 3 (2007) 589-602.

[57]

B. Kim, C.S. Ku, T.X. Pham, et al., Aronia melanocarpa (chokeberry) polyphenol-rich extract improves antioxidant function and reduces total plasma cholesterol in apolipoprotein E knockout mice, Nutr. Res. 33 (2013 )406-413. https://doi.org/10.1016/j.nutres.2013.03.001.

[58]

A. Takahashi, H. Shimizu, Y. Okazaki, et al., Anthocyanin-rich phytochemicals from aronia fruits inhibit visceral fat accumulation and hyperglycemia in high-fat diet-induced dietary obese rats, J. Oleo Sci. 64 (2015) 1243-1250. https://doi.org/10.5650/jos.ess15181.

[59]

P. Worsztynowicz, M. Napierała, W. Białas, et al., Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.), Process Biochem. 49 (2014) 1457-1463. https://doi.org/10.1016/j.procbio.2014.06.002.

[60]

B. Kim, Y. Park, C.J. Wegner, et al., Polyphenol-rich black chokeberry(Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells, J. Nutr. Biochem. 24 (2013) 1564-1570. https://doi.org/10.1016/j.jnutbio.2013.01.005.

[61]

P.J. Turnbaugh, M. Hamady, T. Yatsunenko, et al., A core gut microbiome in obese and lean twins, Nature 457 (2009) 480-484. https://doi.org/10.1038/nature07540.

[62]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature 444 (2006) 1027-1031. https://doi.org/10.1038/nature05414.

[63]

X. Liu, D.A. Martin, J.C. Valdez, et al., Aronia berry polyphenols have matrix-dependent effects on the gut microbiota, Food Chem. 359 (2021) 129831. https://doi.org/10.1016/j.foodchem.2021.129831.

[64]

N. Gao, H. Cui, Y. Lang, et al., Conversion of condensed tannin from chokeberry to cyanidin: evaluation of antioxidant activity and gut microbiota regulation, Food Res. Int. 158 (2022) 111456. https://doi.org/10.1016/j.foodres.2022.111456.

[65]

Y. Zhu, J. Zhang, Y. Wei, et al., The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats, Nutr. Metab. 17 (2020) 1-15. https://doi.org/10.1186/s12986-020-00473-9.

[66]

B. Qin, R.A. Anderson, An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet, Brit. J. Nutr. 108 (2012) 581-587. https://doi.org/10.1017/S000711451100599X.

[67]

H. Park, Y. Liu, H.S. Kim, et al., Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease, Nutr. Res. 36 (2016) 57-64. https://doi.org/10.1016/j.nutres.2015.10.010.

[68]

C.H. Park, J.H. Kim, E.B. Lee, et al., Aronia melanocarpa extract ameliorates hepatic lipid metabolism through PPARγ2 downregulation, PLoS One 12 (2017) e0169685. https://doi.org/10.1371/journal.pone.0169685.

[69]

J. Mu, G. Xin, B. Zhang, et al., Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats, J. Food Sci. 85 (2020) 1307-1318. https://doi.org/10.1111/1750-3841.15109.

[70]

D.G. Hardie, AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels, Annu. Rev. Nutr. 34 (2014) 31-55. https://doi.org/10.1146/annurev-nutr-071812-161148.

[71]

N. Kardum, G. Petrovic-Oggiano, M. Takic, et al., Effects of glucomannan-enriched, aronia juice-based supplement on cellular antioxidant enzymes and membrane lipid status in subjects with abdominal obesity, Sci. World J. 2014 (2014) 869250. https://doi.org/10.1155/2014/869250.

[72]

N. Kardum, A. Konić-Ristić, K. Šavikin, et al., Effects of polyphenol-rich chokeberry juice on antioxidant/pro-oxidant status in healthy subjects, J. Med. Food 17 (2014) 869-874. https://doi.org/10.1089/jmf.2013.0135.

[73]

L. Xie, T. Vance, B. Kim, et al., Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: a randomized controlled trial, Nutr. Res. 37 (2017) 67-77. https://doi.org/10.1016/j.nutres.2016.12.007.

[74]

N. Kardum, B. Milovanovic, K. Savikin, et al., Beneficial effects of polyphenol-rich chokeberry juice consumption on blood pressure level and lipid status in hypertensive subjects, J. Med. Food 18 (2015) 1231-1238. https://doi.org/10.1089/jmf.2014.0171.

[75]

J. Sikora, M. Broncel, E. Mikiciuk-Olasik, Aronia melanocarpa Elliot reduces the activity of angiotensin I-converting enzyme-in vitro and ex vivo studies, Oxid. Med. Cell. Longev. 2014 (2014) 739721. https://doi.org/10.1155/2014/739721.

[76]

J. Sikora, M. Broncel, M. Markowicz, et al., Short-term supplementation with Aronia melanocarpa extract improves platelet aggregation, clotting, and fibrinolysis in patients with metabolic syndrome, Eur. J. Nutr. 51 (2012) 549-56. https://doi.org/10.1007/s00394-011-0238-8.

[77]

P. Duchnowicz, A. Nowicka, M. Koter-Michalak, et al., In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia, Med. Sci. Monitor 18 (2012) 569-574.

[78]

I. Lancrajan, Aronia melanocarpa a potential therapeutic agent, Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 22 (2012) 389-394.

[79]

Y. Zhang, P. Murugesan, K. Huang, et al., NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets, Nat. Rev. 17 (2020) 170-194. https://doi.org/10.1038/s41569-019-0260-8.

[80]

J.H. Oak, H. Cai, Attenuation of angiotensin Ⅱ signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice, Diabetes 56 (2007) 118-126. https://doi.org/10.2337/db06-0288.

[81]

J.Y. Youn, L. Gao, H. Cai, The p47phox- and NADPH oxidase organiser 1 (NOXO1)dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes, Diabetologia 55 (2012) 2069-2079. https://doi.org/10.1007/s00125-012-2557-6).

[82]

A. Parzonko, A. Oswit, A. Bazylko, et al., Anthocyans-rich Aronia melanocarpa extract possesses ability to protect endothelial progenitor cells against angiotensin Ⅱ induced dysfunction, Phytomedicine 22 (2015) 1238-1246. https://doi.org/10.1016/j.phymed.2015.10.009.

[83]

M. Ciocoiu, A. Miron, C. Badescu, et al., Biochemical and morphofunctional aspects of Aronia melanocarpa extract intervention in experimental arterial hypertension, Ann. Romanian Soc. Cell Biol. 16 (2011) 97-102.

[84]

M. Cebova, J. Klimentova, P. Janega, et al., Effect of bioactive compound of Aronia melanocarpa on cardiovascular system in experimental hypertension, Oxid. Med. Cell. Longev. 2017 (2017) 8156594. https://doi.org/10.1155/2017/8156594.

[85]

M. Ciocoiu, L. Badescu, A. Miron, et al., The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension, Evid. Based Complement Alternat. Med. 2013 (2013) 912769. https://doi.org/10.1155/2013/912769.

[86]

J.H. Kim, C. Auger, I. Kurita, et al., Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase, Nitric Oxide 35 (2013) 54-64. https://doi.org/10.1016/j.niox.2013.08.002.

[87]

C.E. Varela, E. Fromentin, M. Roller, et al., Effects of a natural extract of Aronia melanocarpa berry on endothelial cell nitric oxide production, J. Food Biochem. 40 (2016) 1-7. https://doi.org/10.1111/jfbc.12226.

[88]

T. Yamane, M. Kozuka, M. Imai, et al., Reduction of blood pressure by aronia berries through inhibition of angiotensin-converting enzyme activity in the spontaneously hypertensive rat kidney, Funct. Foods Health Dis. 7 (2017) 280-290.

[89]

K. Chalupsky, H. Cai, Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin Ⅱ uncoupling of endothelial nitric oxide synthase, P. Natl. Acad. Sci. U.S.A. 102 (2005) 9056-9061. https://doi.org/10.1073/pnas.0409594102.

[90]

H.D. Wang, S. Xu, D.G. Johns, et al., Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin Ⅱ in mice, Circ. Res. 88 (2001) 947-953.

[91]

K. Matsuno, H. Yamada, K. Iwata, et al., Nox1 is involved in angiotensin Ⅱ-mediated hypertension: a study in Nox1-deficient mice, Circulation 112 (2005) 2677-2685. https://doi.org/10.1161/CIRCULATIONAHA.105.573709.

[92]

G.Z. Liang, L.M. Cheng, X.F. Chen, et al., ClC-3 promotes angiotensin Ⅱ-induced reactive oxygen species production in endothelial cells by facilitating Nox2 NADPH oxidase complex formation, Acta Pharmacol. Sin.39 (2018) 1725-1734. https://doi.org/10.1038/s41401-018-0072-0.

[93]

J.K. Hellström, A.N. Shikov, M.N. Makarova, et al., Blood pressure-lowering properties of chokeberry (Aronia mitchurinii, var. Viking), J. Funct. Foods 2 (2010) 163-169. https://doi.org/10.1016/j.jff.2010.04.004.

[94]

M. Ciocoiu, M. Badescu, O. Badulescu, et al., Polyphenolic extract association with renin inhibitors in experimental arterial hypertension, J. Biomed. Sci. Eng.6 (2013) 493-497. https://doi.org/10.4236/jbise.2013.64062.

[95]

M. Naruszewicz, I. Laniewska, B. Millo, et al., Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction(MI), Atherosclerosis 194 (2007) e179-184. https://doi.org/10.1016/j.atherosclerosis.2006.12.032.

[96]

T.E. Tjelle, L. Holtung, S.K. Bohn, et al., Polyphenol-rich juices reduce blood pressure measures in a randomised controlled trial in high normal and hypertensive volunteers, Brit. J. Nutr. 114 (2015) 1054-1063. https://doi.org/10.1017/S0007114515000562.

[97]

B.M. Loo, I. Erlund, R. Koli, et al., Consumption of chokeberry (Aronia mitschurinii) products modestly lowered blood pressure and reduced low-grade inflammation in patients with mildly elevated blood pressure, Nutr.Res. 36 (2016) 1222-1230. https://doi.org/10.1016/j.nutres.2016.09.005.

[98]

V. Jakovljevic, P. Milic, J. Bradic, et al., Standardized Aronia melanocarpa extract as novel supplement against metabolic syndrome: a rat model, Int. J. Mol. Sci. 20 (2018) 6. https://doi.org/10.3390/ijms20010006.

[99]

M. Broncel, M. Kozirog, P. Duchnowicz, et al., Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome, Med. Sci. Monitor 16 (2010) 28-34. https://doi.org/10.13140/2.1.4356.7048.

[100]

S. Valcheva-Kuzmanova, K. Kuzmanov, S. Tancheva, et al., Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats, Methods Find. Exp. Clin. Pharmacol.29 (2007) 1-5. https://doi.org/10.1358/mf.2007.29.2.1075349.

[101]

I. Momoko, Y. Takuya, K. Miyuki, et al., Caffeoylquinic acids from aronia juice inhibit both dipeptidyl peptidase Ⅳ and α-glucosidase activities, LWT-Food Sci. Technol. 129 (2020) 109544. https://doi.org/10.1016/j.lwt.2020.109544.

[102]

T. Yamane, M. Kozuka, D. Konda, et al., Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase Ⅳ and alpha-glucosidase, J. Nutr. Biochem. 31 (2016) 106-112. https://doi.org/10.1016/j.jnutbio.2016.02.004.

[103]

J. Chen, J. Zhu, X. Meng, Aronia melanocarpa anthocyanin extracts are an effective regulator of suppressor of cytokine signaling 3-dependent insulin resistance in HepG2 and C2C12 cells, J. Funct. Foods 75 (2020) 104258. https://doi.org/10.1016/j.jff.2020.104258.

[104]

Y.M. Park, J.B. Park, The preventive and therapeutic effects of aronox extract on metabolic abnormality and hypertension, J. Korean Soc. Hypertens. 17 (2011) 95. https://doi.org/10.5646/jksh.2011.17.3.95.

[105]

P. Kalhotra, V.C.S.R. Chittepu, G. Osorio-Revilla, et al., Structure(-)activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: an integrated in silico and in vitro study, Molecules 23 (2018) 1368. https://doi.org/10.3390/molecules23061368.

[106]

M. Kozuka, T. Yamane, Y. Nakano, et al., Identification and characterization of a dipeptidyl peptidase Ⅳ inhibitor from aronia juice, Biochem. Biophys. Res. Commun. 465 (2015) 433-436. https://doi.org/10.1016/j.bbrc.2015.08.031.

[107]

T. Yamane, Beneficial effects of anthocyanin from natural products on lifestyle-related diseases through inhibition of protease activities-chapter 8, Stud. Nat. Prod. Chem. 58 (2018) 245-264. https://doi.org/10.1016/b978-0-444-64056-7.00008-8.

[108]

N. Kardum, M. Takić, K. Šavikin, et al., Effects of polyphenol-rich chokeberry juice on cellular antioxidant enzymes and membrane lipid status in healthy women, J. Funct. Foods 9 (2014) 89-97. https://doi.org/10.1016/j.jff.2014.04.019.

[109]

T. Yamane, M. Kozuka, M. Wada-Yoneta, Aronia juice suppresses the elevation of postprandial blood glucose levels in adult healthy Japanese, Clin. Nutr. Exp. 12 (2017) 1-7. https://doi.org/10.1016/j.yclnex.2017.01.002.

[110]

Z. Li, J. Tian, Z. Cheng, et al., Hypoglycemic bioactivity of anthocyanins: a review on proposed targets and potential signaling pathways, Crit. Rev. Food Sci. (2022) 1-18. https://doi.org/10.1080/10408398.2022.2055526.

[111]

P. Strugała, W. Gładkowski, A.Z. Kucharska, et al., Antioxidant activity and anti-inflammatory effect of fruit extracts from blackcurrant, chokeberry, hawthorn, and rosehip, and their mixture with linseed oil on a model lipid membrane, Eur. J. Lipid Sci. Technol. 118 (2016) 461-474. https://doi.org/10.1002/ejlt.201500001.

[112]

J. Yang, J. Gao, W. Yu, et al., The effects and mechanism of Aronia melanocarpa Elliot anthocyanins on hepatic fibrosis, J. Funct. Foods 68(2020) 103897. https://doi.org/10.1016/j.jff.2020.103897.

[113]

Z. Wang, Y. Liu, X. Zhao, et al., Aronia melanocarpa prevents alcohol-induced chronic liver injury via regulation of Nrf2 signaling in C57BL/6 mice, Oxid. Med. Cell. Longev. 2020 (2020) 4054520. https://doi.org/10.1155/2020/4054520.

[114]

X. Jiao, Y. Shen, H. Deng, et al., Cyanidin-3-O-galactoside from Aronia melanocarpa attenuates high-fat diet-induced obesity and inflammation via AMPK, STAT3, and NF-κB p65 signaling pathways in Sprague-Dawley rats, J. Funct. Foods 85 (2021) 104616. https://doi.org/10.1016/j.jff.2021.104616.

[115]

Y. Kong, T. Yan, Y. Tong, et al., Gut microbiota modulation by polyphenols from Aronia melanocarpa of LPS-induced liver diseases in rats, J. Agr. Food Chem. 69 (2021) 3312-3325. https://doi.org/10.1021/acs.jafc.0c06815.

[116]

M. Bijak, J. Saluk, A. Antosik, et al., Aronia melanocarpa as a protector against nitration of fibrinogen, Int. J. Biol. Macromol. 55 (2013) 264-268. https://doi.org/10.1016/j.ijbiomac.2013.01.019.

[117]

D. Zapolska-Downar, D. Bryk, M. Malecki, et al., Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells, Eur. J. Nutr. 51 (2012) 563-572. https://doi.org/10.1007/s00394-011-0240-1.

[118]

S. Valcheva-Kuzmanova, A. Kuzmanov, V. Kuzmanova, et al., Aronia melanocarpa fruit juice ameliorates the symptoms of inflammatory bowel disease in TNBS-induced colitis in rats, Food Chem. Toxicol. 113 (2018) 33-39. https://doi.org/10.1016/j.fct.2018.01.011.

[119]

D.A. Martin, R. Taheri, M.H. Brand, et al., Anti-inflammatory activity of aronia berry extracts in murine splenocytes, J. Funct. Foods 8 (2014) 68-75. https://doi.org/10.1016/j.jff.2014.03.004.

[120]

S.H. Kang, Y.D. Jeon, K.H. Moon, et al., Aronia berry extract ameliorates the severity of dextran sodium sulfate-induced ulcerative colitis in mice, J. Med. Food 20 (2017) 667-675. https://doi.org/10.1089/jmf.2016.3822.

[121]

D.A. Martin, J.A. Smyth, Z. Liu, et al., Aronia berry (Aronia mitschurinii‘Viking’) inhibits colitis in mice and inhibits T cell tumour necrosis factor-α secretion, J. Funct. Foods 44 (2018) 48-57. https://doi.org/10.1016/j.jff.2018.02.025.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 September 2022
Revised: 22 September 2022
Accepted: 13 November 2022
Published: 08 February 2024
Issue date: May 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

Acknowledgment

This work was supported by National Science Foundation of China (31972090).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return