Journal Home > Volume 13 , Issue 2

Alzheimer’s disease is a neurodegenerative disease with complex etiology. Gut microbiota influences the gut-brain axis, which may affect pathways related to the pathogenesis of Alzheimer’s disease. Additionally, diet and physical activity are likely to affect the pathology of Alzheimer’s disease as well as the gut microbiota. This demonstrates that it may be possible to prevent or halt the progression of Alzheimer’s disease by regulating the gut microbiota using diet and physical activity strategies. Therefore, the present study reviews the association between these two interventions and gut microbiota in the human body. It also summarizes how these two interventions benefit Alzheimer’s disease. Furthermore, the primary limitations of these two interventions are discussed and promising strategies are proposed, which may be beneficial to further study and develop the intervening measure for the progression of Alzheimer’s disease.


menu
Abstract
Full text
Outline
About this article

Diet and physical activity influence the composition of gut microbiota, benefit on Alzheimer’s disease

Show Author's information Jinyue Zhoua,1,Min Tangb,1Wanyi LibRui FangaChunlan Tanga,b,c( )Qinwen Wanga( )
School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
Department of Neurology, Ningbo Rehabilitation Hospital, Ningbo 3151000, China
Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315100, China
Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315100, China

1 These authors contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Abstract

Alzheimer’s disease is a neurodegenerative disease with complex etiology. Gut microbiota influences the gut-brain axis, which may affect pathways related to the pathogenesis of Alzheimer’s disease. Additionally, diet and physical activity are likely to affect the pathology of Alzheimer’s disease as well as the gut microbiota. This demonstrates that it may be possible to prevent or halt the progression of Alzheimer’s disease by regulating the gut microbiota using diet and physical activity strategies. Therefore, the present study reviews the association between these two interventions and gut microbiota in the human body. It also summarizes how these two interventions benefit Alzheimer’s disease. Furthermore, the primary limitations of these two interventions are discussed and promising strategies are proposed, which may be beneficial to further study and develop the intervening measure for the progression of Alzheimer’s disease.

Keywords: Gut microbiota, Alzheimer’s disease, Diet, Physical activity, Brain-gut axis

References(179)

[1]

Alzheimer’s Association, 2021 Alzheimer’s disease facts and figures, Alzheimer’s & dementia: the journal of the Alzheimer’s Association. 17 (2021) 327-406. http://dx.doi/10.1002/alz.12328.

[2]

D.J. Koss, G. Jones, A. Cranston, et al., Soluble pre-fibrillar tau and beta-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline, Acta Neuropathol. 132 (2016) 875-895. http://dx.doi/10.1007/s00401-016-1632-3.

[3]

Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures, Alzheimers Dement. (2020). http://dx.doi/10.1002/alz.12068.

[4]

G. Rakesh, S. Szabo, G. Alexopoulos, et al., Strategies for dementia prevention: latest evidence and implications, Ther. Adv. Chronic Dis. 8 (2017) 121-136. http://dx.doi/10.1177/2040622317712442.

[5]

K. Dhana, D. Evans, K. Rajan, et al., Healthy lifestyle and the risk of Alzheimer dementia: findings from 2 longitudinal studies, Neurology 95 (2020) e374-e383. http://dx.doi/10.1212/wnl.0000000000009816.

[6]

E. Leeming, A. Johnson, T. Spector, et al., Effect of diet on the gut microbiota: rethinking intervention duration, Nutrients 11 (2019) 2862. http://dx.doi/10.3390/nu11122862.

[7]

J. Allen, L. Mailing, G. Niemiro, et al., Exercise alters gut microbiota composition and function in lean and obese humans, Med. Sci. Sports Exerc. 50 (2018) 747-757. http://dx.doi/10.1249/mss.0000000000001495.

[8]

T. Kern, M. Blond, T. Hansen, et al., Structured exercise alters the gut microbiota in humans with overweight and obesity-a randomized controlled trial, Int. J. Obesity 44 (2020) 125-135. http://dx.doi/10.1038/s41366-019-0440-y.

[9]

K. Motiani, M. Collado, J. Eskelinen, et al., Exercise training modulates gut microbiota profile and improves endotoxemia, Med. Sci. Sports Exerc. 52 (2020) 94-104. http://dx.doi/10.1249/mss.0000000000002112.

[10]

H. Taniguchi, K. Tanisawa, X. Sun, et al., Effects of short-term endurance exercise on gut microbiota in elderly men, Physiol. Rep. 6 (2018) e13935. http://dx.doi/10.14814/phy2.13935.

[11]

E. Pasini, G. Corsetti, D. Assanelli, et al., Effects of chronic exercise on gut microbiota and intestinal barrier in human with type 2 diabetes, Minerva Med. 110 (2019) 3-11. http://dx.doi/10.23736/s0026-4806.18.05589-1.

[12]

R. Sender, S. Fuchs, R. Milo, Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans, Cell 164 (2016) 337-340. http://dx.doi/10.1016/j.cell.2016.01.013.

[13]

E. Rinninella, P. Raoul, M. Cintoni, et al., What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases, Microorganisms 7 (2019) 14. http://dx.doi/10.3390/microorganisms7010014.

[14]

P. Eckburg, E. Bik, C. Bernstein, et al., Diversity of the human intestinal microbial flora, Science (New York, N.Y.) 308 (2005) 1635-1638. http://dx.doi/10.1126/science.1110591.

[15]

C. Rosen, N. Palm, Functional classification of the gut microbiota: the key to cracking the microbiota composition code, BioEssays 39 (2017) 1700032. http://dx.doi/10.1002/bies.201700032.

[16]

C. Bauerl, M.C. Collado, A. Diaz Cuevas, et al., Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan, Lett. Appl. Microbiol. 66 (2018) 464-471. http://dx.doi/10.1111/lam.12882.

[17]

B. Zhang, H. Wang, Y. Bai, et al., Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study, Gut 70 (2021) 85-91. http://dx.doi/10.1136/gutjnl-2020-320789.

[18]

N. Vogt, R. Kerby, K. Dill-McFarland, et al., Gut microbiome alterations in Alzheimer’s disease, Sci. Rep. 7 (2017) 13537. http://dx.doi/10.1038/s41598-017-13601-y.

[19]

R. Nagpal, B. Neth, S. Wang, et al., Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment, EBioMedicine 47 (2019) 529-542. http://dx.doi/10.1016/j.ebiom.2019.08.032.

[20]

Z. Zhuang, L. Shen, W. Li, et al., Gut microbiota is altered in patients with Alzheimer’s disease, J. Alzheimer’s Dis. 63 (2018) 1337-1346. http://dx.doi/10.3233/jad-180176.

[21]

A. Cattaneo, N. Cattane, S. Galluzzi, et al., Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly, Neurobiol. Aging 49 (2017) 60-68. http://dx.doi/10.1016/j.neurobiolaging.2016.08.019.

[22]

M.A. Beydoun, H.A. Beydoun, M. Elbejjani, et al., Helicobacter pylori seropositivity and its association with incident all-cause and Alzheimer’s disease dementia in large national surveys, Alzheimers Dement. 14 (2018) 1148-1158. http://dx.doi/10.1016/j.jalz.2018.04.009.

[23]

Z. Li, H. Zhu, Y. Guo, et al., Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease, J. Neurochem. 155 (2020) 448-461. http://dx.doi/10.1111/jnc.15031.

[24]

L. Shen, L. Liu, H. Ji, Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state, J. Alzheimer’s Dis. 56 (2017) 385-390. http://dx.doi/10.3233/jad-160884.

[25]

T. Harach, N. Marungruang, N. Duthilleul, et al., Reduction of a beta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota, Sci. Rep. 7 (2017) 41802. http://dx.doi/10.1038/srep41802.

[26]

L. van Olst, S. Roks, A. Kamermans, et al., Contribution of gut microbiota to immunological changes in Alzheimer’s disease, Front. Immunol. 12 (2021) 683068. http://dx.doi/10.3389/fimmu.2021.683068.

[27]

M. Kim, Y. Kim, H. Choi, et al., Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model, Gut 69 (2020) 283-294. http://dx.doi/10.1136/gutjnl-2018-317431.

[28]

J. Sun, J. Xu, Y. Ling, et al., Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice, Transl. Psychiatry 9 (2019) 189. http://dx.doi/10.1038/s41398-019-0525-3.

[29]

F. Angelucci, K. Cechova, J. Amlerova, et al., Antibiotics, gut microbiota, and Alzheimer’s disease, J. Neuroinflammation 16 (2019) 108. http://dx.doi/10.1186/s12974-019-1494-4.

[30]

O. Tamtaji, R. Heidari-Soureshjani, N. Mirhosseini, et al., Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial, Clin. Nutr. (Edinburgh, Scotland) 38 (2019) 2569-2575. http://dx.doi/10.1016/j.clnu.2018.11.034.

[31]

A. Ton, B. Campagnaro, G. Alves, et al., Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation, Oxid. Med. Cell. Longev. 2020 (2020) 2638703. http://dx.doi/10.1155/2020/2638703.

[32]

X. Wang, G. Sun, T. Feng, et al., Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression, Cell Res. 29 (2019) 787-803. http://dx.doi/10.1038/s41422-019-0216-x.

[33]

S. Xiao, P. Chan, T. Wang, et al., A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia, Alzheimer’s Res. Ther. 13 (2021) 62. http://dx.doi/10.1186/s13195-021-00795-7.

[34]

S. Bischoff, G. Barbara, W. Buurman, et al., Intestinal permeability--a new target for disease prevention and therapy, BMC Gastroenterol. 14 (2014) 189. http://dx.doi/10.1186/s12876-014-0189-7.

[35]

D. Erny, A.H. de Angelis, D. Jaitin, et al., Host microbiota constantly control maturation and function of microglia in the CNS, Nat. Neurosci. 18 (2015) 965-977. http://dx.doi/10.1038/nn.4030.

[36]

M.T. Heneka, M.J. Carson, J. El Khoury, et al., Neuroinflammation in Alzheimer’s disease, Lancet Neurol. 14 (2015) 388-405. http://dx.doi/10.1016/S1474-4422(15)70016-5.

[37]

S. Liddelow, K. Guttenplan, L. Clarke, et al., Neurotoxic reactive astrocytes are induced by activated microglia, Nature 541 (2017) 481-487. http://dx.doi/10.1038/nature21029.

[38]

V. Stadlbauer, L. Engertsberger, I. Komarova, et al., Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study, BMC Geriatr. 20 (2020) 248. http://dx.doi/10.1186/s12877-020-01644-2.

[39]

C. Domingues, O. da Cruz E Silva, A. Henriques, Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks, Curr. Alzheimer Res. 14 (2017) 870-882. http://dx. doi/10.2174/1567205014666170317113606.

[40]

D. Parada Venegas, M. de la Fuente, G. Landskron, et al., Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol. 10 (2019) 277. http://dx.doi/10.3389/fimmu.2019.00277.

[41]

B. Dalile, L. van Oudenhove, B. Vervliet, et al., The role of short-chain fatty acids in microbiota-gut-brain communication, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 461-478. http://dx.doi/10.1038/s41575-019-0157-3.

[42]

M. Marizzoni, A. Cattaneo, P. Mirabelli, et al., Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease, J. Alzheimers Dis. 78 (2020) 683-697. http://dx.doi/10.3233/JAD-200306.

[43]

L. Wu, Y. Han, Z. Zheng, et al., Altered gut microbial metabolites in amnestic mild cognitive impairment and Alzheimer’s disease: signals in host-microbe interplay, Nutrients 13 (2021) http://dx.doi/10.3390/nu13010228.

[44]

M. Li, B. van Esch, G.T.M. Wagenaar, et al., Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells, Eur. J. Pharmacol. 831 (2018) 52-59. http://dx.doi/10.1016/j.ejphar.2018.05.003.

[45]

H. Jia, Y. Wang, C.D. Morris, et al., The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice, PLoS One 11 (2016) e0152498. http://dx.doi/10.1371/journal.pone.0152498.

[46]

K. Janczura, C. Volmar, G. Sartor, et al., Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse model, PNAS 115 (2018) E11148-E11157. http://dx.doi/10.1073/pnas.1805436115.

[47]

X. Zhu, S. Wang, L. Yu, et al., HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer’s disease, Aging Cell 16 (2017) 1073-1082. http://dx.doi/10.1111/acel.12642.

[48]

T. Wenzel, E. Gates, A. Ranger, et al., Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells, Mol. Cell. Neurosci. 105 (2020) 103493. http://dx.doi/10.1016/j.mcn.2020.103493.

[49]

C. Duan, L. Huang, C. Zhang, et al., Gut commensal-derived butyrate reverses obesity-induced social deficits and anxiety-like behaviors via regulation of microglial homeostasis, Eur. J. Pharmacol. 908 (2021) 174338. http://dx.doi/10.1016/j.ejphar.2021.174338.

[50]

Y. Ge, R.M. Ezzell, H.S. Warren, Localization of endotoxin in the rat intestinal epithelium, J. Infect. Dis. 182 (2000) 873-881. http://dx.doi/10.1086/315784.

[51]

R. Zakaria, W. wan Yaacob, Z. Othman, et al., Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer’s disease, Physiol. Res. 66 (2017) 553-565. http://dx.doi/10.33549/physiolres.933480.

[52]

S.M. Barton, V.A. Janve, R. McClure, et al., Lipopolysaccharide induced opening of the blood brain barrier on aging 5XFAD mouse model, J. Alzheimers Dis. 67 (2019) 503-513. http://dx.doi/10.3233/JAD-180755.

[53]

C. Cunningham, D.J. Sanderson, Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory, Brain Behav. Immun. 22 (2008) 1117-1127. http://dx.doi/10.1016/j.bbi.2008.05.007.

[54]

T. Kelty, X. Mao, N. Kerr, et al., Resistance-exercise training attenuates LPS-induced astrocyte remodeling and neuroinflammatory cytokine expression in female Wistar rats, J. Appl. Physiol. 132 (2022) 317-326. http://dx.doi/10.1152/japplphysiol.00571.2021.

[55]

X. Zhan, B. Stamova, L. Jin, et al., Gram-negative bacterial molecules associate with Alzheimer disease pathology, Neurology 87 (2016) 2324-2332. http://dx.doi/10.1212/wnl.0000000000003391.

[56]

A. Ticho, P. Malhotra, P. Dudeja, et al., Intestinal absorption of bile acids in health and disease, Compr. Physiol. 10 (2019) 21-56. http://dx.doi/10.1002/cphy.c190007.

[57]

E. Perrone, C. Chen, S. Longshore, et al., Dietary bile acid supplementation improves intestinal integrity and survival in a murine model, J. Pediatr. Surg. 45 (2010) 1256-1265. http://dx.doi/10.1016/j.jpedsurg.2010.02.094.

[58]

G. Sorrentino, A. Perino, E. Yildiz, et al., Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration, Gastroenterology 159 (2020) 956-968. http://dx.doi/10.1053/j.gastro.2020.05.067.

[59]

P. Hegyi, J. Maléth, J. Walters, et al., Guts and gall: bile acids in regulation of intestinal epithelial function in health and disease, Physiol. Rev. 98 (2018) 1983-2023. http://dx.doi/10.1152/physrev.00054.2017.

[60]

K. Nho, A. Kueider-Paisley, S. MahmoudianDehkordi, et al., Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: relationship to neuroimaging and CSF biomarkers, Alzheimers. Dement. 15 (2019) 232-244. http://dx.doi/10.1016/j.jalz.2018.08.012.

[61]

S. MahmoudianDehkordi, M. Arnold, K. Nho, et al., Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-an emerging role for gut microbiome, Alzheimers. Dement. 15 (2019) 76-92. http://dx.doi/10.1016/j.jalz.2018.07.217.

[62]

H. Tsubaki, T. Komai, Intestinal absorption of tetramethylammonium and its derivatives in rats, J. Pharmacobiodyn. 9 (1986) 747-754. http://dx.doi/10.1248/bpb1978.9.747.

[63]

L. Hoyles, M. Pontifex, I. Rodriguez-Ramiro, et al., Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide, Microbiome 9 (2021) 235. http://dx.doi/10.1186/s40168-021-01181-z.

[64]

N. Vogt, K. Romano, B. Darst, et al., The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease, Alzheimers Res. Ther. 10 (2018) 124. http://dx.doi/10.1186/s13195-018-0451-2.

[65]

V. Brunt, T. LaRocca, A. Bazzoni, et al., The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging, Geroscience 43 (2021) 377-394. http://dx.doi/10.1007/s11357-020-00257-2.

[66]

Z. Zhuang, M. Gao, R. Yang, et al., Causal relationships between gut metabolites and Alzheimer’s disease: a bidirectional Mendelian randomization study, Neurobiol. Aging 100 (2021) 115-118. http://dx.doi/10.1016/j.neurobiolaging.2020.10.022.

[67]

D.D. Rio, F. Zimetti, P. Caffarra, et al., The gut microbial metabolite trimethylamine-N-oxide is present in human cerebrospinal fluid, Nutrients 9 (2017) 1053. http://dx.doi/10.3390/nu9101053.

[68]

M. Govindarajulu, P. Pinky, I. Steinke, et al., Gut metabolite TMAO induces synaptic plasticity deficits by promoting endoplasmic reticulum stress, Front. Mol. Neurosci. 13 (2020) 138. http://dx.doi/10.3389/fnmol.2020.00138.

[69]

N. Scarmeas, C.A. Anastasiou, M. Yannakoulia, Nutrition and prevention of cognitive impairment, Lancet Neurol. 17 (2018) 1006-1015. http://dx.doi/10.1016/S1474-4422(18)30338-7.

[70]

E. Flanagan, D. Lamport, L. Brennan, et al., Nutrition and the ageing brain: moving towards clinical applications, Ageing Res. Rev. 62 (2020) 101079. http://dx.doi/10.1016/j.arr.2020.101079.

[71]

G.S. Vlachos, N. Scarmeas, Dietary interventions in mild cognitive impairment and dementia, Dialogues Clin. Neurosci. 21 (2019) 69-82.

[72]

S. Chuang, Y. Lo, S. Wu, et al., Dietary patterns and foods associated with cognitive function in taiwanese older adults: the cross-sectional and longitudinal studies, J. Am. Med. Dir. Assoc. 20 (2019) 544-550. http://dx.doi/10.1016/j.jamda.2018.10.017.

[73]

J. de la Rubia Ortí, M. García-Pardo, E. Drehmer, et al., Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched Mediterranean diet: a pilot study, J. Alzheimers Dis. 65 (2018) 577-587. http://dx.doi/10.3233/jad-180184.

[74]

F. Pistollato, R. Iglesias, R. Ruiz, et al., Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies, Pharmacol. Res. 131 (2018) 32-43. http://dx.doi/10.1016/j.phrs.2018.03.012.

[75]

D. Maciejewska, K. Skonieczna-Zydecka, A. Lukomska, et al., The short chain fatty acids and lipopolysaccharides status in Sprague-Dawley rats fed with high-fat and high-cholesterol diet, J. Physiol. Pharmacol. 69 (2018). http://dx.doi/10.26402/jpp.2018.2.05.

[76]

J. Bai, Y. Li, W. Zhang, et al., Effects of cereal fibers on short-chain fatty acids in healthy subjects and patients: a meta-analysis of randomized clinical trials, Food Funct. 12 (2021) 7040-7053. http://dx.doi/10.1039/d1fo00858g.

[77]

H. Mower, R. Ray, G. Stemmermann, et al., Analysis of fecal bile acids and diet among the Japanese in Hawaii, J. Nutr. 108 (1978) 1289-1296. http://dx.doi/10.1093/jn/108.8.1289.

[78]

I. Trefflich, H. Marschall, R. Giuseppe, et al., Associations between dietary patterns and bile acids-results from a cross-sectional study in vegans and omnivores, Nutrients 12 (2019) 47. http://dx.doi/10.3390/nu12010047.

[79]

J. Zheng, C. Ye, B. Hu, et al., Bile acid profiles in bile and feces of obese mice by a high-performance liquid chromatography-tandem mass spectrometry, Biotechnol. Appl. Biochem. 68 (2021) 1332-1341. http://dx.doi/10.1002/bab.2055.

[80]

P. André, J.P. de Barros, B. Mj Merle, et al., Mediterranean diet and prudent diet are both associated with low circulating esterified 3-hydroxy fatty acids, a proxy of LPS burden, among older adults, Am. J. Clin. Nutr. 114 (2021) 1080-1091. http://dx.doi/10.1093/ajcn/nqab126.

[81]

A. Ahola, M. Lassenius, C. Forsblom, et al., Dietary patterns reflecting healthy food choices are associated with lower serum LPS activity, Sci. Rep. 7 (2017) 6511. http://dx.doi/10.1038/s41598-017-06885-7.

[82]

J. Li, Y. Li, K. Ivey, et al., Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men, Gut 71 (2022) 724-733. http://dx.doi/10.1136/gutjnl-2020-322473.

[83]

W. Yoo, J. Zieba, N. Foegeding, et al., High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine-oxide, Science 373 (2021) 813-818. http://dx.doi/10.1126/science.aba3683.

[84]

W. Fernando, S.R. Rainey-Smith, S.L. Gardener, et al., Associations of dietary protein and fiber intake with brain and blood amyloid-beta, J. Alzheimers Dis. 61 (2018) 1589-1598. http://dx.doi/10.3233/JAD-170742.

[85]

D. Butteiger, A. Hibberd, N. McGraw, et al., Soy protein compared with milk protein in a Western diet increases gut microbial diversity and reduces serum lipids in golden syrian hamsters, J. Nutr. 146 (2016) 697-705. http://dx.doi/10.3945/jn.115.224196.

[86]

J. Zhao, X. Zhang, H. Liu, et al., Dietary protein and gut microbiota composition and function, Curr. Protein Pept. Sci. 20 (2019) 145-154. http://dx.doi/10.2174/1389203719666180514145437.

[87]

L. Chen, J. Wang, J. Yi, et al., Increased mucin-degrading bacteria by high protein diet leads to thinner mucus layer and aggravates experimental colitis, J. Gastroenterol. Hepatol. (2021). http://dx.doi/10.1111/jgh.15562.

[88]

O. Bracko, L. Vinarcsik, J. Cruz Hernández, et al., High fat diet worsens Alzheimer’s disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow, Sci. Rep. 10 (2020) 9884. http://dx.doi/10.1038/s41598-020-65908-y.

[89]

V. Kothari, Y. Luo, T. Tornabene, et al., High fat diet induces brain insulin resistance and cognitive impairment in mice, Biochim. Biophys. Acta Mol. Basis Dis. 1863 (2017) 499-508. http://dx.doi/10.1016/j.bbadis.2016.10.006.

[90]

E. Denou, K. Marcinko, M. Surette, et al., High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity, Am. J. Physiol. Endocrinol. Metab. 310 (2016) E982-E993. http://dx.doi/10.1152/ajpendo.00537.2015.

[91]

Y. Wan, F. Wang, J. Yuan, et al., Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial, Gut 68 (2019) 1417-1429. http://dx.doi/10.1136/gutjnl-2018-317609.

[92]

V. Patrone, A. Minuti, M. Lizier, et al., Differential effects of coconut versus soy oil on gut microbiota composition and predicted metabolic function in adult mice, BMC Genom. 19 (2018) 808. http://dx.doi/10.1186/s12864-018-5202-z.

[93]

C. Amadieu, S. Lefèvre-Arbogast, C. Delcourt, et al., Nutrient biomarker patterns and long-term risk of dementia in older adults, Alzheimers. Dement. 13 (2017) 1125-1132. http://dx.doi/10.1016/j.jalz.2017.01.025.

[94]

Y. Zhang, R. Miao, Q. Li, et al., Effects of DHA supplementation on hippocampal volume and cognitive function in older adults with mild cognitive impairment: a 12-month randomized, double-blind, placebo-controlled trial, J. Alzheimer’s Dis. 55 (2017) 497-507. http://dx.doi/10.3233/jad-160439.

[95]

M. Phillips, C. Childs, P. Calder, et al., No effect of omega-3 fatty acid supplementation on cognition and mood in individuals with cognitive impairment and probable Alzheimer’s disease: a randomised controlled trial, Int. J. Mol. Sci. 16 (2015) 24600-24613. http://dx.doi/10.3390/ijms161024600.

[96]

M. Grimm, D. Michaelson, T. Hartmann, Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention, J. Lipid Res. 58 (2017) 2083-2101. http://dx.doi/10.1194/jlr.R076331.

[97]

N. Tomaszewski, X. He, V. Solomon, et al., Effect of APOE genotype on plasma docosahexaenoic acid (DHA), eicosapentaenoic acid, arachidonic acid, and hippocampal volume in the Alzheimer’s disease cooperative study-sponsored DHA clinical trial, J. Alzheimer’s Dis. 74 (2020) 975-990. http://dx.doi/10.3233/jad-191017.

[98]

H. Watson, S. Mitra, F. Croden, et al., A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota, Gut 67 (2018) 1974-1983. http://dx.doi/10.1136/gutjnl-2017-314968.

[99]

C. Menni, J. Zierer, T. Pallister, et al., Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women, Sci. Rep. 7 (2017) 11079. http://dx.doi/10.1038/s41598-017-10382-2.

[100]

K. Makki, E. Deehan, J. Walter, et al., The impact of dietary fiber on gut microbiota in host health and disease, Cell Host Microbe 23 (2018) 705-715. http://dx.doi/10.1016/j.chom.2018.05.012.

[101]

N. Veronese, M. Solmi, M. Caruso, et al., Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses, Am. J. Clin. Nutr. 107 (2018) 436-444. http://dx.doi/10.1093/ajcn/nqx082.

[102]

K. Berding, C. Long-Smith, C. Carbia, et al., A specific dietary fibre supplementation improves cognitive performance-an exploratory randomised, placebo-controlled, crossover study, Psychopharmacology (Berl.) 238 (2021) 149-163. http://dx.doi/10.1007/s00213-020-05665-y.

[103]

M. Desai, A. Seekatz, N. Koropatkin, et al., A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility, Cell 167 (2016) 1339-1353. http://dx.doi/10.1016/j.cell.2016.10.043.

[104]

D. Lin, B. Peters, C. Friedlander, et al., Association of dietary fibre intake and gut microbiota in adults, Br. J. Nutr. 120 (2018) 1014-1022. http://dx.doi/10.1017/s0007114518002465.

[105]

E. Capuano The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect, Crit. Rev. Food Sci. Nutr. 57 (2017) 3543-3564. http://dx.doi/10.1080/10408398.2016.1180501.

[106]

E. Deehan, C. Yang, M. Perez-Muñoz, et al., Precision Microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production, Cell Host Microbe 27 (2020) 389-404. http://dx.doi/10.1016/j.chom.2020.01.006.

[107]

C. Feart, C. Helmer, B. Merle, et al., Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer’s disease in older adults, Alzheimer’s Dement. 13 (2017) 1207-1216. http://dx.doi/10.1016/j.jalz.2017.03.003.

[108]

S. Ouma, M. Suenaga, F. Bölükbaşı Hatip, et al., Serum vitamin D in patients with mild cognitive impairment and Alzheimer’s disease, Brain Behav. 8 (2018) e00936. http://dx.doi/10.1002/brb3.936.

[109]

E. Mavraki, P. Ioannidis, G. Tripsianis, et al., Vitamin D in mild cognitive impairment and Alzheimer’s disease. A study in older Greek adults, Hippokratia 24 (2020) 120-126.

[110]

E.J. Shih, W.J. Lee, J.L. Hsu, et al., Effect of vitamin D on cognitive function and white matter hyperintensity in patients with mild Alzheimer’s disease, Geriatr. Gerontol. Int. 20 (2020) 52-58. http://dx.doi/10.1111/ggi.13821.

[111]

J. Jia, J. Hu, X. Huo, et al., Effects of vitamin D supplementation on cognitive function and blood Abeta-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial, J. Neurol. Neurosurg. Psychiatry. 90 (2019) 1347-1352. http://dx.doi/10.1136/jnnp-2018-320199.

[112]

N. Naderpoor, A. Mousa, L. Fernanda Gomez Arango, et al., Effect of vitamin D supplementation on faecal microbiota: a randomised clinical trial, Nutrients 11 (2019). http://dx.doi/10.3390/nu11122888.

[113]

F. Bellerba, V. Muzio, P. Gnagnarella, et al., The association between vitamin D and gut microbiota: a systematic review of human studies, Nutrients 13 (2021). https://doi.org/10.3390/nu13103378.

[114]

R.V. Luthold, G.R. Fernandes, A.C. Franco-de-Moraes, et al., Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals, Metabolism 69 (2017) 76-86. http://dx.doi/10.1016/j.metabol.2017.01.007.

[115]

D. Włodarek, Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease), Nutrients 11 (2019). http://dx.doi/10.3390/nu11010169.

[116]

G.M. Broom, I.C. Shaw, J.J. Rucklidge, The ketogenic diet as a potential treatment and prevention strategy for Alzheimer’s disease, Nutrition 60 (2019) 118-121. http://dx.doi/10.1016/j.nut.2018.10.003.

[117]

M. Rusek, R. Pluta, M. Ulamek-Koziol, et al., Ketogenic diet in Alzheimer’s disease, Int. J. Mol. Sci. 20 (2019) 3892. http://dx.doi/10.3390/ijms20163892.

[118]

M. Lilamand, B. Porte, E. Cognat, et al., Are ketogenic diets promising for Alzheimer’s disease? A translational review, Alzheimers Res. Ther. 12 (2020) 42. http://dx.doi/10.1186/s13195-020-00615-4.

[119]

M. Morris, C. Tangney, Y. Wang, et al., MIND diet associated with reduced incidence of Alzheimer’s disease, Alzheimer’s Dement. 11 (2015) 1007-1014. http://dx.doi/10.1016/j.jalz.2014.11.009.

[120]

V. Berti, M. Walters, J. Sterling, et al., Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults, Neurology 90 (2018) e1789-e1798. http://dx.doi/10.1212/wnl.0000000000005527.

[121]

A. Kepka, A. Ochocinska, M. Borzym-Kluczyk, et al., Preventive role of L-carnitine and balanced diet in Alzheimer’s disease, Nutrients 12 (2020). http://dx.doi/10.3390/nu12071987.

[122]

A.C. van den Brink, E.M. Brouwer-Brolsma, A.A. M. Berendsen, et al., The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease-a review, Adv. Nutr. 10 (2019) 1040-1065. http://dx.doi/10.1093/advances/nmz054.

[123]

V. Meslier, M. Laiola, H. Roager, et al., Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake, Gut 69 (2020) 1258-1268. http://dx.doi/10.1136/gutjnl-2019-320438.

[124]

T. Ghosh, S. Rampelli, I. Jeffery, et al., Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries, Gut 69 (2020) 1218-1228. http://dx.doi/10.1136/gutjnl-2019-319654.

[125]

S. Müller, O. Preische, H. Sohrabi, et al., Relationship between physical activity, cognition, and Alzheimer pathology in autosomal dominant Alzheimer’s disease, Alzheimer’s Dement. 14 (2018) 1427-1437. http://dx.doi/10.1016/j.jalz.2018.06.3059.

[126]

J. Morris, E. Vidoni, D. Johnson, et al., Aerobic exercise for Alzheimer’s disease: a randomized controlled pilot trial, PLoS One 12 (2017) e0170547. http://dx.doi/10.1371/journal.pone.0170547.

[127]

N. Sobol, C. Dall, P. Høgh, et al., Change in fitness and the relation to change in cognition and neuropsychiatric symptoms after aerobic exercise in patients with mild Alzheimer’s disease, J. Alzheimers Dis. 65 (2018) 137-145. http://dx.doi/10.3233/jad-180253.

[128]

J. Walsh, M. Tschakovsky, Exercise and circulating BDNF: mechanisms of release and implications for the design of exercise interventions, Appl. Physiol. Nutr. Metab. 43 (2018) 1095-1104. http://dx.doi/10.1139/apnm-2018-0192.

[129]

C. Jensen, J. Bahl, L. Østergaard, et al., Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma, Exp. Gerontol. 121 (2019) 91-98. http://dx.doi/10.1016/j.exger.2019.04.003.

[130]

C. Tsai, M. Pai, J. Ukropec, et al., Distinctive effects of aerobic and resistance exercise modes on neurocognitive and biochemical changes in individuals with mild cognitive impairment, Curr. Alzheimer Res. 16 (2019) 316-332. http://dx.doi/10.2174/1567205016666190228125429.

[131]

M. Sellami, N. Bragazzi, B. Aboghaba, et al., The impact of acute and chronic exercise on immunoglobulins and cytokines in elderly: insights from a critical review of the literature, Front. Immunol. 12 (2021) 631873. http://dx.doi/10.3389/fimmu.2021.631873.

[132]

K. Hotta, B. Behnke, B. Arjmandi, et al., Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle, J. Physiol. 596 (2018) 1903-1917. http://dx.doi/10.1113/jp275459.

[133]

M. Pedralli, R. Marschner, D. Kollet, et al., Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial Exercise, endothelium and blood pressure, Sci. Rep. 10 (2020) 7628. http://dx.doi/10.1038/s41598-020-64365-x.

[134]

B. Brown, J. Peiffer, S. Rainey-Smith Exploring the relationship between physical activity, beta-amyloid and tau: a narrative review, Ageing Res. Rev. 50 (2019) 9-18. http://dx.doi/10.1016/j.arr.2019.01.003.

[135]

S. Lamb, B. Sheehan, N. Atherton, et al., Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial, BMJ 361 (2018) k1675. http://dx.doi/10.1136/bmj.k1675.

[136]

W. Barton, N. Penney, O. Cronin, et al., The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level, Gut 67 (2018) 625-633. http://dx.doi/10.1136/gutjnl-2016-313627.

[137]

M. Kulecka, B. Fraczek, M. Mikula, et al., The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls, Gut Microbes. 11 (2020) 1374-1384. http://dx.d oi/10.1080/19490976.2020.1758009.

[138]

C. Bressa, M. Bailén-Andrino, J. Pérez-Santiago, et al., Differences in gut microbiota profile between women with active lifestyle and sedentary women, PLoS One 12 (2017) e0171352. http://dx.doi/10.1371/journal.pone.0171352.

[139]

F. Magzal, T. Shochat, I. Haimov, et al., Increased physical activity improves gut microbiota composition and reduces short-chain fatty acid concentrations in older adults with insomnia, Sci. Rep. 12 (2022) 2265. http://dx.doi/10.1038/s41598-022-05099-w.

[140]

A. Moosavi Sohroforouzani, S. Shakerian, M. Ghanbarzadeh, et al., Treadmill exercise improves LPS-induced memory impairments via endocannabinoid receptors and cyclooxygenase enzymes, Behav. Brain Res. 380 (2020) 112440. http://dx.doi/10.1016/j.bbr.2019.112440.

[141]

B.C. Mota, Á.N. Kelly, Exercise alters LPS-induced glial activation in the mouse brain, Neuronal. Signal 4 (2020) NS20200003. http://dx.doi/10.1042/ns20200003.

[142]

E. Morita, H. Yokoyama, D. Imai, et al., Aerobic exercise training with brisk walking increases intestinal bacteroides in healthy elderly women, Nutrients 11 (2019) 868. http://dx.doi/10.3390/nu11040868.

[143]

A. Castro, K. Silva, C. Medeiros, et al., Effects of 12 weeks of resistance training on rat gut microbiota composition, J. Exp. Biol. 224 (2021). http://dx.doi/10.1242/jeb.242543.

[144]

T. Morville, R. Sahl, S. Trammell, et al., Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans, JCI Insight 3 (2018) e122737. http://dx.doi/10.1172/jci.insight.122737.

[145]

M. MacInnis, M. Gibala, Physiological adaptations to interval training and the role of exercise intensity, J. Physiol. 595 (2017) 2915-2930. http://dx.doi/10.1113/jp273196.

[146]

J. Hwang, R. Brothers, D. Castelli, et al., Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults, Neurosci. Lett. 630 (2016) 247-253. http://dx.doi/10.1016/j.neulet.2016.07.033.

[147]

C. Tsai, J. Ukropec, B. Ukropcová, et al., An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment, Neuroimage Clin. 17 (2018) 272-284. http://dx.doi/10.1016/j.nicl.2017.10.028.

[148]

C. Tsai, C. Pan, Y. Tseng, et al., Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults, Behav. Brain Res. 413 (2021) 113472. http://dx.doi/10.1016/j.bbr.2021.113472.

[149]

Z. Liu, H. Liu, H. Zhou, et al., Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice, Front. Microbiol. 8 (2017) 1687. http://dx.doi/10.3389/fmicb.2017.01687.

[150]

M. Beale, H. Leach, B. Baxter, et al., Physical activity and stool metabolite relationships among adults at high risk for colorectal cancer, J. Phys. Act Health 18 (2021) 1404-1411. http://dx.doi/10.1123/jpah.2020-0876.

[151]

M. Tabone, C. Bressa, J. García-Merino, et al., The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes, Sci. Rep. 11 (2021) 3558. http://dx.doi/10.1038/s41598-021-82947-1.

[152]

X. Zhao, Z. Zhang, B. Hu, et al., Response of gut microbiota to metabolite changes induced by endurance exercise, Front. Microbiol. 9 (2018) 765. http://dx.doi/10.3389/fmicb.2018.00765.

[153]

M. Sellami, S. Al-Muraikhy, H. Al-Jaber et al., Age and sport intensity-dependent changes in cytokines and telomere length in elite athletes, Antioxidants (Basel). 10 (2021). https://doi.org/10.3390/antiox10071035.

[154]

E. Danese, G. Salvagno, C. Tarperi, et al., Middle-distance running acutely influences the concentration and composition of serum bile acids: potential implications for cancer risk? Oncotarget 8 (2017) 52775-52782. http://dx.doi/10.18632/oncotarget.17188.

[155]

T. Baranowski, Why combine diet and physical activity in the same international research society? Int. J. Behav. Nutr. Phys. Act. 1 (2004) 2. http://dx.doi/10.1186/1479-5868-1-2.

[156]

J. Dorling, D. Broom, S. Burns, et al., Acute and chronic effects of exercise on appetite, energy intake, and appetite-related hormones: the modulating effect of adiposity, sex, and habitual physical activity, Nutrients 10 (2018). http://dx.doi/10.3390/nu10091140.

[157]

C. Steele, M. Baugh, L. Griffin, et al., Fasting and postprandial trimethylamine N-oxide in sedentary and endurance-trained males following a short-term high-fat diet, Physiol. Rep. 9 (2021) e14970. http://dx.doi/10.14814/phy2.14970.

[158]

T. Yang, W. Xu, H. York, et al., Diet choice patterns in rodents depend on novelty of the diet, exercise, species, and sex, Physiol. Behav. 176 (2017) 149-158. http://dx.doi/10.1016/j.physbeh.2017.02.045.

[159]

V. Miller, R. LaFountain, E. Barnhart, et al., A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health, Am. J. Physiol. Endocrinol. Metab. 319 (2020) E995-E1007. http://dx.doi/10.1152/ajpendo.00305.2020.

[160]

J. Volek, D. Freidenreich, C. Saenz, et al., Metabolic characteristics of keto-adapted ultra-endurance runners, Metabolism 65 (2016) 100-110. http://dx.doi/10.1016/j.metabol.2015.10.028.

[161]

H. Zhang, J. Meng, H. Yu, Trimethylamine N-oxide supplementation abolishes the cardioprotective effects of voluntary exercise in mice fed a Western diet, Front. Physiol. 8 (2017) 944. http://dx.doi/10.3389/fphys.2017.00944.

[162]

A. Rosenberg, T. Ngandu, M. Rusanen, et al., Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: the FINGER trial, Alzheimers Dement. 14 (2018) 263-270. http://dx.doi/10.1016/j.jalz.2017.09.006.

[163]

K. Dhana, O. Franco, E. Ritz, et al., Healthy lifestyle and life expectancy with and without Alzheimer’s dementia: population based cohort study, BMJ 377 (2022) e068390. http://dx.doi/10.1136/bmj-2021-068390.

[164]

R. Hardman, G. Kennedy, H. Macpherson, et al., A randomised controlled trial investigating the effects of Mediterranean diet and aerobic exercise on cognition in cognitively healthy older people living independently within aged care facilities: the Lifestyle Intervention in Independent Living Aged Care (LⅡLAC) study protocol[ACTRN12614001133628], Nutr. J. 14 (2015) 53. http://dx.doi/10.1186/s12937-015-0042-z.

[165]

N. Murtaza, L. Burke, N. Vlahovich, et al., The effects of dietary pattern during intensified training on stool microbiota of elite race walkers, Nutrients 11 (2019) 261. http://dx.doi/10.3390/nu11020261.

[166]

C. Yu, S. Liu, L. Chen, et al., Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism, J. Endocrinol. 243 (2019) 125-135. http://dx.doi/10.1530/joe-19-0122.

[167]

W. Fernando, I. Martins, M. Morici, et al., Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage, J. Alzheimers Dis. 74 (2020) 91-99. http://dx.doi/10.3233/jad-190120.

[168]

K. Mercer, A. Maurer, L. Pack, et al., Exercise training and diet-induced weight loss increase markers of hepatic bile acid (BA) synthesis and reduce serum total BA concentrations in obese women, Am. J. Physiol. Endocrinol. Metab. 320 (2021) E864-E873. http://dx.doi/10.1152/ajpendo.00644.2020.

[169]

M. Chupel, L. Minuzzi, G. Furtado, et al., Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women, Appl. Physiol. Nutr. Metab. 43 (2018) 733-741. http://dx.doi/10.1139/apnm-2017-0775.

[170]

M. Małkiewicz, A. Małecki, M. Toborek, et al., Substances of abuse and the blood brain barrier: interactions with physical exercise, Neurosci. Biobehav. Rev. 119 (2020) 204-216. http://dx.doi/10.1016/j.neubiorev.2020.09.026.

[171]

M. Małkiewicz, A. Szarmach, A. Sabisz, et al., Blood-brain barrier permeability and physical exercise, J. Neuroinflammation 16 (2019) 15. http://dx.doi/10.1186/s12974-019-1403-x.

[172]

C. Li, Y. Cai, Z. Yan, Brain-derived neurotrophic factor preserves intestinal mucosal barrier function and alters gut microbiota in mice, Kaohsiung J. Med. Sci. 34 (2018) 134-141. http://dx.doi/10.1016/j.kjms.2017.11.002.

[173]

P. Bercik, E. Denou, J. Collins, et al., The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice, Gastroenterology 141 (2011) 599-609. http://dx.doi/10.1053/j.gastro.2011.04.052.

[174]

L. David, C. Maurice, R. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505 (2014) 559-563. http://dx.doi/10.1038/nature12820.

[175]

G. Pagliai, E. Russo, E. Niccolai, et al., Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG study, Eur. J. Nutr. 59 (2020) 2011-2024. http://dx.doi/10.1007/s00394-019-02050-0.

[176]

D. Villareal, L. Aguirre, A. Gurney, et al., Aerobic or resistance exercise, or both, in dieting obese older adults, N. Engl. J. Med. 376 (2017) 1943-1955. http://dx.doi/10.1056/NEJMoa1616338.

[177]

K. Cox, E. Cyarto, K. Ellis, et al., A randomized controlled trial of adherence to a 24-month home-based physical activity program and the health benefits for older adults at risk of Alzheimer’s disease: the AIBL active-study, J. Alzheimer’s Dis. 70 (2019) S187-S205. http://dx.doi/10.3233/jad-180521.

[178]

D. Moreno-Pérez, C. Bressa, M. Bailén, et al., Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study, Nutrients 10 (2018) 337-353. http://dx.doi/10.3390/nu10030337.

[179]

K.K. Motiani, M.C. Collado, J.J. Eskelinen, et al., Exercise training modulates gut microbiota profile and improves endotoxemia, Med. Sci. Sports Exerc. 52 (2020) 94-104. http://dx.doi/10.1249/MSS.0000000000002112.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 January 2022
Revised: 24 June 2022
Accepted: 07 August 2022
Published: 25 September 2023
Issue date: March 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (32171035), the major fund project of Ningbo Science and Technology Bureau (2019B10034), Opened-end Fund of Key Laboratory (KFJJ-202101, ZPKLP202202), Public Project of Ningbo (202002N3167), Project of Yinzhou(2022AS025) and Ningbo Rehabilitation Hospital (2022KY02), In addition, the work was also sponsored by a K.C. Wong Magna Fund in Ningbo University.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return