Journal Home > Volume 13 , Issue 2

The Mediterranean diet has long been recognized as one of the most effective ways to prevent and improve cardiovascular disease. Extra virgin olive oil (EVOO) is the typical sources of fat in the Mediterranean diet which have been shown to have noteworthy nutritional value and positive impact on human health. It is worth noting that EVOO owes its superior nutritional value to its bioactive composition. The main component of EVOO is monounsaturated fatty acids (MUFAs) in the form of oleic acid. Oleic acid accounts for up to 70%‒80% of EVOO. Secondly, EVOO contains approximately more than 30 phenolic compounds, of which HT is essential for the protection against cardiovascular diseases. In this review, we focused on the potential mechanisms of oleic acid and polyphenols combat cardiovascular diseases risk in terms of oxidative stress, inflammation, blood pressure, endothelial function and cholesterol. This review might provide a reference for the studies on cardiovascular protective effects of EVOO.


menu
Abstract
Full text
Outline
About this article

Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases

Show Author's information Yan Lua,b,1,Jun Zhaoc,1Qiqi Xina,bRong Yuana,bYu Miaoa,bManli YangdHui MoeKeji Chena,b( )Weihong Conga,b( )
Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
Traditional Chinese Medicine Department, The Aff iliated Hospital of Qingdao University, Qingdao 266000, China
Nanjing University of Chinese Medicine, Nanjing 210023, China
Health Bureau of the Government of the Macao Special Administrative Region, Macao 999078, China

1 These authors have contributed equally to this work.

Peer review under responsibility of Tsinghua University Press.

Abstract

The Mediterranean diet has long been recognized as one of the most effective ways to prevent and improve cardiovascular disease. Extra virgin olive oil (EVOO) is the typical sources of fat in the Mediterranean diet which have been shown to have noteworthy nutritional value and positive impact on human health. It is worth noting that EVOO owes its superior nutritional value to its bioactive composition. The main component of EVOO is monounsaturated fatty acids (MUFAs) in the form of oleic acid. Oleic acid accounts for up to 70%‒80% of EVOO. Secondly, EVOO contains approximately more than 30 phenolic compounds, of which HT is essential for the protection against cardiovascular diseases. In this review, we focused on the potential mechanisms of oleic acid and polyphenols combat cardiovascular diseases risk in terms of oxidative stress, inflammation, blood pressure, endothelial function and cholesterol. This review might provide a reference for the studies on cardiovascular protective effects of EVOO.

Keywords: Oleic acid, Cardiovascular diseases, Polyphenols, Extra virgin olive oil

References(121)

[1]

S.S. Virani, A. Alonso, H.J. Aparicio, et al., Heart disease and stroke statistics-2021 update: a report from the american heart association, Circulation 143 (2021) e254-e743. http://doi.org/10.1161/CIR.0000000000000950.

[2]

J.B. Lanier, D.C. Bury, S.W. Richardson, Diet and physical activity for cardiovascular disease prevention, Am. Fam. Physician. 93 (2016) 919-924.

[3]

H. Tada, M. Takamura, M.A. Kawashiri, The effect of diet on cardiovascular disease, heart disease, and blood vessels, Nutrients 14 (2022). http://doi.org/10.3390/nu14020246.

[4]

R.J. Widmer, A.J. Flammer, L.O. Lerman, et al., The mediterranean diet, its components, and cardiovascular disease, Am. J. Med. 128 (2015) 229-238. http://doi.org/10.1016/j.amjmed.2014.10.014.

[5]

D. Belardo, E.D. Michos, R. Blankstein, et al., Practical, evidence-based approaches to nutritional modifications to reduce atherosclerotic cardiovascular disease: an american society for preventive cardiology clinical practice statement, Am. J. Prev. Cardiol. 10 (2022) 100323. http://doi.org/10.1016/j.ajpc.2022.100323.

[6]

C. Razquin, M.A. Martinez-Gonzalez, A traditional mediterranean diet effectively reduces inflammation and improves cardiovascular health, Nutrients 11 (2019). http://doi.org/10.3390/nu11081842.

[7]

A. Keys, Mediterranean diet and public health: Personal reflections, Am. J. Clin. Nutr. 61 (1995) 1321S-1323S. http://doi.org/10.1093/ajcn/61.6.1321S.

[8]

J.M. Hess, C.J. Cifelli, V.L. Fulgoni, 3rd, Modeling the impact of fat flexibility with dairy food servings in the 2015-2020 dietary guidelines for americans healthy U.S.-style eating pattern, Front. Nutr. 7 (2020) 595880. http://doi.org/10.3389/fnut.2020.595880.

[9]

U. Fresan, J. Sabate, M.A. Martinez-Gonzalez, et al., Adherence to the 2015 dietary guidelines for americans and mortality risk in a mediterranean cohort: the sun project, Prev. Med. 118 (2019) 317-324. http://doi.org/10.1016/j.ypmed.2018.11.015.

[10]

M. Guasch-Ferre, G. Liu, Y. Li, et al., Olive oil consumption and cardiovascular risk in U.S. adults, J. Am. Coll. Cardiol. 75 (2020) 1729-1739. http://doi.org/10.1016/j.jacc.2020.02.036.

[11]

G.M. Kouli, D.B. Panagiotakos, I. Kyrou, et al., Olive oil consumption and 10-year (2002-2012) cardiovascular disease incidence: the attica study, Eur. J. Nutr. 58 (2019) 131-138. http://doi.org/10.1007/s00394-017-1577-x.

[12]

M.I. Covas, R. de la Torre, M. Fito, Virgin olive oil: a key food for cardiovascular risk protection, Br. J. Nutr. 113(Suppl 2) (2015) S19-28. http://doi.org/10.1017/S0007114515000136.

[13]

C. Nocella, V. Cammisotto, L. Fianchini, et al., Extra virgin olive oil and cardiovascular diseases: benefits for human health, Endocr. Metab. Immune. Disord. Drug Targets 18 (2018) 4-13. http://doi.org/10.2174/1871530317666171114121533.

[14]

M. Nardella, R. Moscetti, S.S. Nallan Chakravartula, et al., A review on high-power ultrasound-assisted extraction of olive oils: effect on oil yield, quality, chemical composition and consumer perception, Foods 10 (2021). http://doi.org/10.3390/foods10112743.

[15]

T.H. Borges, J.A. Pereira, C. Cabrera-Vique, et al., Characterization of arbequina virgin olive oils produced in different regions of brazil and spain: physicochemical properties, oxidative stability and fatty acid profile, Food Chem. 215 (2017) 454-462. http://doi.org/10.1016/j.foodchem.2016.07.162.

[16]

C. Jimenez-Lopez, M. Carpena, C. Lourenco-Lopes, et al., Bioactive compounds and quality of extra virgin olive oil, Foods 9 (2020). http://doi.org/10.3390/foods9081014.

[17]

S. Teres, G. Barcelo-Coblijn, M. Benet, et al., Oleic acid content is responsible for the reduction in blood pressure induced by olive oil, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 13811-13816. http://doi.org/10.1073/pnas.0807500105.

[18]

J.F. Millman, S. Okamoto, T. Teruya, et al., Extra-virgin olive oil and the gut-brain axis: influence on gut microbiota, mucosal immunity, and cardiometabolic and cognitive health, Nutr. Rev. 79 (2021) 1362-1374. http://doi.org/10.1093/nutrit/nuaa148.

[19]

A. Mazzocchi, L. Leone, C. Agostoni, et al., The secrets of the mediterranean diet. Does[only] olive oil matter? Nutrients 11 (2019). http://doi.org/10.3390/nu11122941.

[20]

R. Escrich, I. Costa, M. Moreno, et al., A high-corn-oil diet strongly stimulates mammary carcinogenesis, while a high-extra-virgin-olive-oil diet has a weak effect, through changes in metabolism, immune system function and proliferation/apoptosis pathways, J. Nutr. Biochem. 64 (2019) 218-227. http://doi.org/10.1016/j.jnutbio.2018.11.001.

[21]

C. Carrillo, M. Cavia Mdel, S. Alonso-Torre, Role of oleic acid in immune system; mechanism of action: a review, Nutr. Hosp. 27 (2012) 978-990. http://doi.org/10.3305/nh.2012.27.4.5783.

[22]

R.M. Bilal, C. Liu, H. Zhao, et al., Olive oil: nutritional applications, beneficial health aspects and its prospective application in poultry production, Front. Pharmacol. 12 (2021) 723040. http://doi.org/10.3389/fphar.2021.723040.

[23]

H. Kurushima, K. Hayashi, T. Shingu, et al., Opposite effects on cholesterol metabolism and their mechanisms induced by dietary oleic acid and palmitic acid in hamsters, Biochim. Biophys. Acta. 1258 (1995) 251-256. http://doi.org/10.1016/0005-2760(95)00122-s.

[24]

R. Pastor, C. Bouzas, J.A. Tur, Beneficial effects of dietary supplementation with olive oil, oleic acid, or hydroxytyrosol in metabolic syndrome: systematic review and meta-analysis, Free Radic. Biol. Med. 172 (2021) 372-385. http://doi.org/10.1016/j.freeradbiomed.2021.06.017

[25]

K.M.C. Nogoy, H.J. Kim, Y. Lee, et al., High dietary oleic acid in olive oil-supplemented diet enhanced omega-3 fatty acid in blood plasma of rats, Food Sci. Nutr. 8 (2020) 3617-3625. http://doi.org/10.1002/fsn3.1644.

[26]

K.J. Bowen, P.M. Kris-Etherton, S.G. West, et al., Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a Western fatty acid profile in adults with central adiposity, J. Nutr. 149 (2019) 471-478. http://doi.org/10.1093/jn/nxy307.

[27]

E. Podolecka, W. Grzeszczak, E. Zukowska-Szczechowska, Correlation between serum low-density lipoprotein cholesterol concentration and arterial wall stiffness, Kardiol. Pol. 76 (2018) 1712-1716. http://doi.org/10.5603/KP.a2018.0174.

[28]

R. Poledne, J. Kovar, Hypertriglyceridemia and atherosclerosis risk, Vnitr. Lek. 65 (2020) 783-787.

[29]

J. Prades, R. Alemany, J.S. Perona, et al., Effects of 2-hydroxyoleic acid on the structural properties of biological and model plasma membranes, Mol. Membr. Biol. 25 (2008) 46-57. http://doi.org/10.1080/09687680701510042.

[30]

R. Alemany, S. Teres, C. Baamonde, et al., 2-Hydroxyoleic acid: a new hypotensive molecule, Hypertension 43 (2004) 249-254. http://doi.org/10.1161/01.HYP.0000107778.85528.b5.

[31]

Z. Al-Yafeai, A. Yurdagul, J.M. Peretik, et al., Endothelial fn (fibronectin) deposition by alpha5beta1 integrins drives atherogenic inflammation, Arterioscler. Thromb. Vasc. Biol. 38 (2018) 2601-2614. http://doi.org/10.1161/ATVBAHA.118.311705.

[32]

C. Lee, G. Viswanathan, I. Choi, et al., Beta-arrestins and receptor signaling in the vascular endothelium, Biomolecules 11 (2020). http://doi.org/10.3390/biom11010009.

[33]

P. Raggi, J. Genest, J.T. Giles, et al., Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions, Atherosclerosis 276 (2018) 98-108. http://doi.org/10.1016/j.atherosclerosis.2018.07.014.

[34]

F. Fuentes, J. Lopez-Miranda, P. Perez-Martinez, et al., Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with alpha-linolenic acid on postprandial endothelial function in healthy men, Br. J. Nutr. 100 (2008) 159-165. http://doi.org/10.1017/S0007114508888708.

[35]

A.K. Muller, F. Albrecht, C. Rohrer, et al., Olive oil extracts and oleic acid attenuate the lps-induced inflammatory response in murine raw264.7 macrophages but induce the release of prostaglandin e2, Nutrients 13 (2021). http://doi.org/10.3390/nu13124437.

[36]

C. Lopez-Gomez, C. Santiago-Fernandez, S. Garcia-Serrano, et al., Oleic acid protects against insulin resistance by regulating the genes related to the pi3k signaling pathway, J. Clin. Med. 9 (2020). http://doi.org/10.3390/jcm9082615.

[37]

X.H. Yu, X.L. Zheng, C.K. Tang, Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis, Adv. Clin. Chem. 70 (2015) 1-30. http://doi.org/10.1016/bs.acc.2015.03.004.

[38]

O. Kutuk, H. Basaga, Inflammation meets oxidation: NF-κB as a mediator of initial lesion development in atherosclerosis, Trends Mol. Med. 9 (2003) 549-557. http://doi.org/10.1016/j.molmed.2003.10.007

[39]

J. Zhang, W. Wu, D. Li, et al., Overactivation of NF-κB impairs insulin sensitivity and mediates palmitate-induced insulin resistance in C2C12 skeletal muscle cells, Endocrine 37 (2010) 157-166. http://doi.org/10.1007/s12020-009-9283-y.

[40]

W. Zhuang, Y. Yang, H. Li, et al., Research advance of nrf2 on atherosclerosis by regulating vascular smooth muscle cell, Zhejiang Da Xue Xue Bao Yi Xue Ban. 50 (2021) 390-395. http://doi.org/10.3724/zdxbyxb-2021-0190.

[41]

C. Sun, B. He, M. Sun, et al., Yes-associated protein in atherosclerosis and related complications: a potential therapeutic target that requires further exploration, Front. Cardiovasc. Med. 8 (2021) 704208. http://doi.org/10.3389/fcvm.2021.704208.

[42]

L. Perdomo, N. Beneit, Y.F. Otero, et al., Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process, Cardiovasc. Diabetol. 14 (2015) 75. http://doi.org/10.1186/s12933-015-0237-9.

[43]

J.J. DiNicolantonio, J.H. O’Keefe, Good fats versus bad fats: a comparison of fatty acids in the promotion of insulin resistance, inflammation, and obesity, Mol. Med. 114 (2017) 303-307.

[44]

K. Rehman, K. Haider, K. Jabeen, et al., Current perspectives of oleic acid: regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes, Rev. Endocr. Metab. Disord. 21 (2020) 631-643. http://doi.org/10.1007/s11154-020-09549-6.

[45]

B. Enkhmaa, K.S. Petersen, P.M. Kris-Etherton, et al., Diet and lp(a): does dietary change modify residual cardiovascular risk conferred by lp(a)? Nutrients 12 (2020). http://doi.org/10.3390/nu12072024.

[46]

L. Oberhauser, S. Granziera, A. Colom, et al., Palmitate and oleate modify membrane fluidity and kinase activities of ins-1e β-cells alongside altered metabolism-secretion coupling, Biochim. Biophys Acta. Mol. Cell Res. 1867 (2020) 118619. http://doi.org/10.1016/j.bbamcr.2019.118619.

[47]

B. Romana-Souza, B.O. Saguie, N.P. de Almeida Nogueira, et al., Oleic acid and hydroxytyrosol present in olive oil promote ros and inflammatory response in normal cultures of murine dermal fibroblasts through the NF-κB and NRF2 pathways, Food Res. Int. 131 (2020) 108984. http://doi.org/10.1016/j.foodres.2020.108984.

[48]

J. Rocha, N. Borges, O. Pinho, Table olives and health: a review, J. Nutr. Sci. 9 (2020) e57. http://doi.org/10.1017/jns.2020.50.

[49]

D. Del Rio, A. Rodriguez-Mateos, J.P. Spencer, et al., Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases, Antioxid. Redox. Signal. 18 (2013) 1818-1892. http://doi.org/10.1089/ars.2012.4581.

[50]

M. Aparicio-Soto, D. Redhu, M. Sanchez-Hidalgo, et al., Olive-oil-derived polyphenols effectively attenuate inflammatory responses of human keratinocytes by interfering with the NF-κB pathway, Mol. Nutr. Food Res. 63 (2019) e1900019. http://doi.org/10.1002/mnfr.201900019.

[51]

C. Santos-Buelga, S. Gonzalez-Manzano, A.M. Gonzalez-Paramas, Wine, polyphenols, and mediterranean diets. What else is there to say? Molecules 26 (2021). http://doi.org/10.3390/molecules26185537

[52]

M. Finicelli, T. Squillaro, U. Galderisi, et al., Polyphenols, the healthy brand of olive oil: Insights and perspectives, Nutrients 13 (2021). http://doi.org/10.3390/nu13113831.

[53]

M. Rossi, F. Caruso, L. Kwok, et al., Protection by extra virgin olive oil against oxidative stress in vitro and in vivo. Chemical and biological studies on the health benefits due to a major component of the mediterranean diet, PLoS One 12 (2017) e0189341. http://doi.org/10.1371/journal.pone.0189341.

[54]

A. Lopez-Yerena, J. Lozano-Castellon, A. Olmo-Cunillera, et al., Effects of organic and conventional growing systems on the phenolic profile of extra-virgin olive oil, Molecules 24 (2019). http://doi.org/10.3390/molecules24101986.

[55]

M. Deiana, G. Serra, G. Corona, Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds, Food Funct. 9 (2018) 4085-4099. http://doi.org/10.1039/c8fo00354h.

[56]

M. Robles-Almazan, M. Pulido-Moran, J. Moreno-Fernandez, et al., Hydroxytyrosol: bioavailability, toxicity, and clinical applications, Food Res. Int. 105 (2018) 654-667. http://doi.org/10.1016/j.foodres.2017.11.053.

[57]

M.C.L. de Las Hazas, L. Rubio, A. Macia, et al., Hydroxytyrosol: emerging trends in potential therapeutic applications, Curr. Pharm. Des. 24 (2018) 2157-2179. http://doi.org/10.2174/1381612824666180522110314.

[58]

M.C. Lopez de las Hazas, L. Rubio, A. Kotronoulas, et al., Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats, Mol. Nutr. Food Res. 59 (2015) 1395-1399. http://doi.org/10.1002/mnfr.201500048.

[59]

M.N. Sack, F.Y. Fyhrquist, O.J. Saijonmaa, et al., Basic biology of oxidative stress and the cardiovascular system: part 1 of a 3-part series, J. Am. Coll. Cardiol. 70 (2017) 196-211. http://doi.org/10.1016/j.jacc.2017.05.034.

[60]

A. Mehmood, M. Usman, P. Patil, et al., A review on management of cardiovascular diseases by olive polyphenols, Food Sci. Nutr. 8 (2020) 4639-4655. http://doi.org/10.1002/fsn3.1668.

[61]

A.J. Kattoor, N.V.K. Pothineni, D. Palagiri, et al., Oxidative stress in atherosclerosis, Curr Atheroscler. Rep. 19 (2017) 42. http://doi.org/10.1007/s11883-017-0678-6.

[62]

H. Zrelli, M. Matsuoka, S. Kitazaki, et al., Hydroxytyrosol induces proliferation and cytoprotection against oxidative injury in vascular endothelial cells: role of nrf2 activation and ho-1 induction, J. Agric Food Chem. 59 (2011) 4473-4482. http://doi.org/10.1021/jf104151d.

[63]

S. Tejada, S. Pinya, M. Del Mar Bibiloni, et al., Cardioprotective effects of the polyphenol hydroxytyrosol from olive oil, Curr. Drug Targets 18 (2017) 1477-1486. http://doi.org/10.2174/1389450117666161005150650

[64]

F. Gao, J. Chen, H. Zhu, A potential strategy for treating atherosclerosis: improving endothelial function via amp-activated protein kinase, Sci. China Life Sci. 61 (2018) 1024-1029. http://doi.org/10.1007/s11427-017-9285-1.

[65]

Q. Huang, T. Wang, L. Yang, et al., Ginsenoside rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of sirt1 and activation of ampk, Int. J. Mol. Sci. 18 (2017). http://doi.org/10.3390/ijms18051063.

[66]

B. Bayram, B. Ozcelik, S. Grimm, et al., A diet rich in olive oil phenolics reduces oxidative stress in the heart of samp8 mice by induction of nrf2-dependent gene expression, Rejuvenation Res. 15 (2012) 71-81. http://doi.org/10.1089/rej.2011.1245.

[67]

A. Atzeri, R. Lucas, A. Incani, et al., Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in CaCO-2 human enterocyte-like cells, Food Funct. 7 (2016) 337-346. http://doi.org/10.1039/c5fo00074b.

[68]

J. Peyrol, G. Meyer, P. Obert, et al., Involvement of bilitranslocase and beta-glucuronidase in the vascular protection by hydroxytyrosol and its glucuronide metabolites in oxidative stress conditions, J. Nutr. Biochem. 51 (2018) 8-15. http://doi.org/10.1016/j.jnutbio.2017.09.009.

[69]

I. Jantan, M.A. Haque, L. Arshad, et al., Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways, J. Nutr. Biochem. 93 (2021) 108634. http://doi.org/10.1016/j.jnutbio.2021.108634.

[70]

C. Santangelo, R. Vari, B. Scazzocchio, et al., Polyphenols, intracellular signalling and inflammation, Ann. Ist Super Sanita. 43 (2007) 394-405.

[71]

A. Nani, B. Murtaza, A. Sayed Khan, et al., Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: molecular mechanisms, Molecules 26 (2021). http://doi.org/10.3390/molecules26040985,

[72]

M. Dell’Agli, R. Fagnani, G.V. Galli, et al., Olive oil phenols modulate the expression of metalloproteinase 9 in thp-1 cells by acting on nuclear factor-κB signaling, J. Agric. Food Chem. 58 (2010) 2246-2252. http://doi.org/10.1021/jf9042503.

[73]

M.F. Linton, S. Fazio, Cyclooxygenase-2 and inflammation in atherosclerosis, Curr. Opin. Pharmacol. 4 (2004) 116-123. http://doi.org/10.1016/j.coph.2003.12.003.

[74]

S. Xu, W. Zhou, J. Ge, et al., Prostaglandin e2 receptor ep4 is involved in the cell growth and invasion of prostate cancer via the camppka/pi3kakt signaling pathway, Mol. Med. Rep. 17 (2018) 4702-4712. http://doi.org/10.3892/mmr.2018.8415.

[75]

E. Scoditti, A. Nestola, M. Massaro, et al., Hydroxytyrosol suppresses MMP-9 and COX-2 activity and expression in activated human monocytes via pkcalpha and pkcbeta1 inhibition, Atherosclerosis 232 (2014) 17-24. http://doi.org/10.1016/j.atherosclerosis.2013.10.017.

[76]

J. Peyrol, C. Riva, M.J. Amiot, Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders, Nutrients 9 (2017). http://doi.org/10.3390/nu9030306.

[77]

R. Casas, M. Urpi-Sarda, E. Sacanella, et al., Anti-inflammatory effects of the mediterranean diet in the early and late stages of atheroma plaque development, Mediators Inflamm. 2017 (2017) 3674390. http://doi.org/10.1155/2017/3674390.

[78]

E. Tsartsou, N. Proutsos, E. Castanas, et al., Network meta-analysis of metabolic effects of olive-oil in humans shows the importance of olive oil consumption with moderate polyphenol levels as part of the mediterranean diet, Front. Nutr. 6 (2019) 6. http://doi.org/10.3389/fnut.2019.00006.

[79]

K. Kotani, K. Tsuzaki, N. Taniguchi, et al., Ldl particle size and reactive oxygen metabolites in dyslipidemic patients, Int. J. Prev. Med. 3 (2012) 160-166.

[80]

A. Akhmedov, T. Sawamura, C.H. Chen, et al., Lectin-like oxidized low-density lipoprotein receptor-1 (lox-1): a crucial driver of atherosclerotic cardiovascular disease, Eur. Heart J. 42 (2021) 1797-1807. http://doi.org/10.1093/eurheartj/ehaa770.

[81]

H. Vural, F. Armutcu, O. Akyol, et al., The potential pathophysiological role of altered lipid metabolism and electronegative low-density lipoprotein (ldl) in non-alcoholic fatty liver disease and cardiovascular diseases, Clin. Chim. Acta. 523 (2021) 374-379. http://doi.org/10.1016/j.cca.2021.10.018.

[82]

D. Steinberg, S. Parthasarathy, T.E. Carew, et al., Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity, N. Engl. J. Med. 320 (1989) 915-924. http://doi.org/10.1056/NEJM198904063201407.

[83]

Y. Steffen, T. Jung, L.O. Klotz, et al., Protein modification elicited by oxidized low-density lipoprotein (ldl) in endothelial cells: protection by (-)-epicatechin, Free Radic Biol. Med. 42 (2007) 955-970. http://doi.org/10.1016/j.freeradbiomed.2006.12.024.

[84]

J. Li, Q. Meng, Y. Fu, et al., Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis, J. Cell Physiol. 236 (2021) 6154-6167. http://doi.org/10.1002/jcp.30300.

[85]

A. Nogiec, M. Bzowska, A. Demczuk, et al., Phenotype and response to pamps of human monocyte-derived foam cells obtained by long-term culture in the presence of oxldls, Front. Immunol. 11 (2020) 1592. http://doi.org/10.3389/fimmu.2020.01592.

[86]

D. Basu, I.J. Goldberg, Regulation of lipoprotein lipase-mediated lipolysis of triglycerides, Curr. Opin. Lipidol. 31 (2020) 154-160. http://doi.org/10.1097/MOL.0000000000000676.

[87]

T. Albrahim, M.H.M. Alotaibi, N.M.M. Altamimi, et al., The impact of dietary consumption of palm oil and olive oil on lipid profile and hepatocyte injury in hypercholesterolemic rats, Pharmaceuticals (Basel) 15 (2022). http://doi.org/10.3390/ph15091103.

[88]

A. Pedret, S. Fernandez-Castillejo, R.M. Valls, et al., Cardiovascular benefits of phenol-enriched virgin olive oils: new insights from the virgin olive oil and hdl functionality (vohf) study, Mol. Nutr. Food Res. 65 (2021) e2170061. http://doi.org/10.1002/mnfr.202170061.

[89]

A. Giammanco, D. Noto, C.M. Barbagallo, et al., Hyperalphalipoproteinemia and beyond: the role of hdl in cardiovascular diseases, Life (Basel) 11 (2021). http://doi.org/10.3390/life11060581.

[90]

A. Kontush, Hdl and reverse remnant-cholesterol transport (RRT): relevance to cardiovascular disease, Trends Mol. Med. 26 (2020) 1086-1100. http://doi.org/10.1016/j.molmed.2020.07.005.

[91]

S. Fernandez-Castillejo, R.M. Valls, O. Castaner, et al., Polyphenol rich olive oils improve lipoprotein particle atherogenic ratios and subclasses profile: a randomized, crossover, controlled trial, Mol. Nutr. Food Res. 60 (2016) 1544-1554. http://doi.org/10.1002/mnfr.201501068.

[92]

R.K. Mutharasan, C.S. Thaxton, J. Berry, et al., Hdl efflux capacity, hdl particle size, and high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: the chicago healthy aging study, J. Lipid Res. 58 (2017) 600-606. http://doi.org/10.1194/jlr.P069039.

[93]

A. Hernaez, S. Fernandez-Castillejo, M. Farras, et al., Olive oil polyphenols enhance high-density lipoprotein function in humans: a randomized controlled trial, Arterioscler. Thromb. Vasc Biol. 34 (2014) 2115-2119. http://doi.org/10.1161/ATVBAHA.114.303374.

[94]

J. Marsillach, J.O. Becker, T. Vaisar, et al., Paraoxonase-3 is depleted from the high-density lipoproteins of autoimmune disease patients with subclinical atherosclerosis, J. Proteome Res. 14 (2015) 2046-2054. http://doi.org/10.1021/pr5011586.

[95]

A. Hafiane, J. Genest, High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk, BBA Clin. 3 (2015) 175-188. http://doi.org/10.1016/j.bbacli.2015.01.005.

[96]

H. Berrougui, S. Ikhlef, A. Khalil, Extra virgin olive oil polyphenols promote cholesterol efflux and improve hdl functionality, Evid. Based Complement. Alternat. Med. 2015 (2015) 208062. http://doi.org/10.1155/2015/208062.

[97]

L.K. Phng, H.G. Belting, Endothelial cell mechanics and blood flow forces in vascular morphogenesis, Semin. Cell Dev. Biol. 120 (2021) 32-43. http://doi.org/10.1016/j.semcdb.2021.06.005.

[98]

R. Khaddaj Mallat, C. Mathew John, D.J. Kendrick, et al., The vascular endothelium: a regulator of arterial tone and interface for the immune system, Crit. Rev. Clin. Lab. Sci. 54 (2017) 458-470. http://doi.org/10.1080/10408363.2017.1394267.

[99]

S. Sancheti, P. Shah, D.S. Phalgune, Correlation of endothelial dysfunction measured by flow-mediated vasodilatation to severity of coronary artery disease, Indian Heart J. 70 (2018) 622-626. http://doi.org/10.1016/j.ihj.2018.01.008.

[100]

T.J. Anderson, F. Charbonneau, L.M. Title, et al., Microvascular function predicts cardiovascular events in primary prevention: long-term results from the firefighters and their endothelium (fate) study, Circulation 123 (2011) 163-169. http://doi.org/10.1161/CIRCULATIONAHA.110.953653.

[101]

P. Ditano-Vazquez, J.D. Torres-Pena, F. Galeano-Valle, et al., The fluid aspect of the mediterranean diet in the prevention and management of cardiovascular disease and diabetes: the role of polyphenol content in moderate consumption of wine and olive oil, Nutrients 11 (2019). http://doi.org/10.3390/nu11112833.

[102]

C.E. Storniolo, J. Rosello-Catafau, X. Pinto, et al., Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1, Redox Biol. 2 (2014) 971-977. http://doi.org/10.1016/j.redox.2014.07.001.

[103]

X. Zhang, J. Cao, L. Zhong, Hydroxytyrosol inhibits pro-inflammatory cytokines, inos, and cox-2 expression in human monocytic cells, Naunyn. Schmiedebergs. Arch. Pharmacol. 379 (2009) 581-586. http://doi.org/10.1007/s00210-009-0399-7.

[104]

I.R. Barrows, A. Ramezani, D.S. Raj, Inflammation, immunity, and oxidative stress in hypertension-partners in crime? Adv. Chronic Kidney Dis. 26 (2019) 122-130. http://doi.org/10.1053/j.ackd.2019.03.001.

[105]

K.D. Croft, Dietary polyphenols: antioxidants or not? Arch. Biochem. Biophys. 595 (2016) 120-124. http://doi.org/10.1016/j.abb.2015.11.014.

[106]

R. Moreno-Luna, R. Munoz-Hernandez, M.L. Miranda, et al., Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension, Am J. Hypertens 5 (2012) 1299-1304. http://doi.org/10.1038/ajh.2012.128.

[107]

K. Yamagata, Polyphenols regulate endothelial functions and reduce the risk of cardiovascular disease, Curr. Pharm. Des. 25 (2019) 2443-2458. http://doi.org/10.2174/1381612825666190722100504.

[108]

H.M. Hugel, N. Jackson, B. May, et al., Polyphenol protection and treatment of hypertension, Phytomedicine 23 (2016) 220-231. http://doi.org/10.1016/j.phymed.2015.12.012.

[109]

V. Ruiz-Gutierrez, F.J. Muriana, A. Guerrero, et al., Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources, J. Hypertens. 14 (1996) 1483-1490. http://doi.org/10.1097/00004872-199612000-00016.

[110]

K. Mnafgui, R. Hajji, F. Derbali, et al., Protective effect of hydroxytyrosol against cardiac remodeling after isoproterenol-induced myocardial infarction in rat, Cardiovasc. Toxicol. 16 (2016) 147-155. http://doi.org/10.1007/s12012-015-9323-1.

[111]

S. Rigacci, M. Stefani, Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans, Int. J. Mol. Sci. 17 (2016). http://doi.org/10.3390/ijms17060843.

[112]

A.N. Shkoporov, C. Hill, Bacteriophages of the human gut: The “known unknown” of the microbiome, Cell Host Microbe. 25 (2019) 195-209. http://doi.org/10.1016/j.chom.2019.01.017.

[113]

B. Zhang, X. Wang, R. Xia, et al., Gut microbiota in coronary artery disease: a friend or foe? Biosci. Rep. 40 (2020). http://doi.org/10.1042/BSR20200454.

[114]

K.A. Krautkramer, R.S. Dhillon, J.M. Denu, et al., Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin, Transl. Res. 189 (2017) 30-50. http://doi.org/10.1016/j.trsl.2017.08.005.

[115]

H.J. Flint, K.P. Scott, P. Louis, et al., The role of the gut microbiota in nutrition and health, Nat. Rev. Gastroenterol. Hepatol. 9 (2012) 577-589. http://doi.org/10.1038/nrgastro.2012.156.

[116]

M. Farras, L. Martinez-Gili, K. Portune, et al., Modulation of the gut microbiota by olive oil phenolic compounds: implications for lipid metabolism, immune system, and obesity, Nutrients 12 (2020). http://doi.org/10.3390/nu12082200.

[117]

H. Wu, J. Chiou, Potential benefits of probiotics and prebiotics for coronary heart disease and stroke, Nutrients 13 (2021). http://doi.org/10.3390/nu13082878.

[118]

K. Skrypnik, P. Bogdanski, I. Loniewski, et al., Effect of probiotic supplementation on liver function and lipid status in rats, Acta. Sci. Pol. Technol. Aliment. 17 (2018) 185-192. http://doi.org/10.17306/J.AFS.0554.

[119]

F.B. Ahtesh, L. Stojanovska, V. Apostolopoulos, Anti-hypertensive peptides released from milk proteins by probiotics, Maturitas 115 (2018) 103-109. http://doi.org/10.1016/j.maturitas.2018.06.016.

[120]

E.K. Mitsou, A. Kakali, S. Antonopoulou, et al., Adherence to the mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population, Br. J. Nutr. 117 (2017) 1645-1655. http://doi.org/10.1017/S0007114517001593.

[121]

S. Martin-Pelaez, J.I. Mosele, N. Pizarro, et al., Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota, Eur. J. Nutr. 56 (2017) 119-131. http://doi.org/10.1007/s00394-015-1063-2.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 September 2022
Revised: 04 October 2022
Accepted: 20 December 2022
Published: 25 September 2023
Issue date: March 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the CACMS Innovation Fund (CI2021A00914); the Beijing Novaprogram (Z211100002121062); the Opening Project of the Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province (2C32001) and the National Natural Science Foundation of China (82004193).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return