Journal Home > Volume 13 , Issue 1

In response to the rapid increase in world population and subsequent demands for food, edible insects represent an alternative food source for humans that is rich in proteins, amino acids and minerals. Entomophagy is a tradition in many countries including China and Thailand, and edible insects have attracted a lot of attention in Western World due to their suitable nutrient composition, high mineral content (e.g., Fe, Zn, Ca, Mg) and potential use as a supplement in human diet. In this study, we surveyed mineral content in seven insect orders and 67 species of mass produced and wild-harvested edible insects. The total content of essential elements in edible insects was very high in Tenebrio molitor, Bombyx mori, and Zonocerus variegatus. The heavy metal content (summarized for eight species) was below the maximum limit allowed for safe consumption. Sustainable supply of minerals derived from insect biomass is complicated due to the high variations of mineral content in insects and the potential of its change due to processing.


menu
Abstract
Full text
Outline
About this article

Minerals in edible insects: a review of content and potential for sustainable sourcing

Show Author's information Mingxing LuaChenxu ZhuaSergiy Smetanab( )Ming ZhaoaHaibo ZhangcFang ZhangcYuzhou Dua,d,( )
College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
German Institute of Food Technologies (DIL e.V.), Quakenbrück D-49610, Germany
Jiangsu Plant Protection and Plant Quarantine Station, Nanjing 210036, China
Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China

Peer review under responsibility of Tsinghua University Press.

Highlights

1) The diversity of mineral elements in insects reported was systematically summarized.

2) Insects from different sources contain numerous mineral elements, with significant differences in content between species.

3) Different processing and cooking methods can alter or reduce mineral content.

4) Questions about utilization of mineral nutrients and large-scale production were raised.

Abstract

In response to the rapid increase in world population and subsequent demands for food, edible insects represent an alternative food source for humans that is rich in proteins, amino acids and minerals. Entomophagy is a tradition in many countries including China and Thailand, and edible insects have attracted a lot of attention in Western World due to their suitable nutrient composition, high mineral content (e.g., Fe, Zn, Ca, Mg) and potential use as a supplement in human diet. In this study, we surveyed mineral content in seven insect orders and 67 species of mass produced and wild-harvested edible insects. The total content of essential elements in edible insects was very high in Tenebrio molitor, Bombyx mori, and Zonocerus variegatus. The heavy metal content (summarized for eight species) was below the maximum limit allowed for safe consumption. Sustainable supply of minerals derived from insect biomass is complicated due to the high variations of mineral content in insects and the potential of its change due to processing.

Keywords: Sustainability, Nutrition, Food safety, Edible insects, Minerals

References(89)

[1]

S.H. Nile, S.W. Park, Edible berries: bioactive components and their effect on human health, Nutrition 30 (2014) 134-144. https://doi.org/10.1016/j.nut.2013.04.007.

[2]

N. Rascio, F. Navari-Izzo, Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180 (2011) 169-181. https://doi.org/10.1016/j.plantsci.2010.08.016.

[3]

H. Ali, E. Khan, What are heavy metals? Long-standing controversy over the scientific use of the term “heavy metals”– proposal of a comprehensive definition, Toxicol. Environ. Chem. 100 (2018) 6-19. https://doi.org/10.1080/02772248.2017.1413652.

[4]
K.J. Appenroth, The definition of heavy metals and their role in biological systems, in: A. Varma, I. Sherameti (Eds.), Soil heavy metals, Soil Biology Springer, Berlin, 2009, pp. 19-29.
DOI
[5]

T.D. Awobusuyi, M. Siwela, K. Pillay, Nutritional composition of insect types most commonly consumed by the Olugboja Community of Ondo State, Nigeria, Int. J. Trop. Insect Sc. 41 (2021) 2975-2982. https://doi.org/10.1080/09637480701288405.

[6]

J.P. Egonyu, S. Subramanian, C.M. Tanga, et al., Global overview of locusts as food, feed and other uses, Glob. Food Secur. 31 (2021) 100574. https://doi.org/10.1016/j.gfs.2021.100574.

[7]

K. Niermans, J. Woyzichovski, N. Kroncke, et al., Feeding study for the mycotoxin zearalenone in yellow mealworm (Tenebrio molitor) larvaeinvestigation of biological impact and metabolic conversion, Mycotoxin Res. 35 (2019) 231-242. https://doi.org/10.1007/s12550-019-00346-y.

[8]

F. Pradanas-González, G. Álvarez-River, E. Benito-Peña, et al., Mycotoxin extraction from edible insects with natural deep eutectic solvents: a green alternative to conventional methods, J. Chromatogr. A 1648 (2021) 462180. https://doi.org/10.1016/j.chroma.2021.462180.

[9]

L.S. Queiroz, M. Regnard, F. Jessen, et al., Physico-chemical and colloidal properties of protein extracted from black soldier fly (Hermetia illucens) larvae, Int. J. Biol. Macromol. 186 (2021) 714-723. https://doi.org/10.1016/j.ijbiomac.2021.07.081.

[10]

C. Truzzi, S. Illuminati, F. Girolametti, et al., Influence of feeding substrates on the presence of toxic metals (Cd, Pb, Ni, As, Hg) in larvae of Tenebrio molitor: risk assessment for human consumption, Int. J. Env. Res. Pub. He. 16 (2019) 4815. https://doi.org/10.3390/ijerph16234815.

[11]

P.K. Rai, S.S. Lee, M. Zhang, et al., Heavy metals in food crops: health risks, fate, mechanisms, and management, Environ. Int. 125 (2019) 365-385. https://doi.org/10.1016/j.envint.2019.01.067.

[12]

B.A. Rumpold, O.K. Schlüter, Nutritional composition and safety aspects of edible insects, Mol. Nutr. Food Res. 57 (2013) 802-823. https://doi.org/10.1002/mnfr.201200735.

[13]

H.J. van der Fels-Klerx, L. Camenzuli, M.K. van der Lee, et al., Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates, PLoS ONE 11 (2016) e0166186. https://doi.org/10.1371/journal.pone.0166186.

[14]

P. Kosečková, O. Zvěřina, M. Pěchová, et al., Mineral profile of cricket powders, some edible insect species and their implication for gastronomy, J. Food Compos. Anal. 107 (2022) 104343. https://doi.org/10.1016/j.jfca.2021.104340.

[15]

V. Botton, L.M. Chiarello, G.A. Klunk, et al., Evaluation of nutritional composition and ecotoxicity of the stick insect Cladomorphus phyllinum, Eur. Food Res. Technol. 247 (2021) 605-611. https://doi.org/10.1007/s00217-020-03649-y.

[16]

A.C. da Costa Rocha, C.J. de Andrade, D. de Oliveira, Perspective on integrated biorefinery for valorization of biomass from the edible insect Tenebrio molitor, Trends Food Sci. Tech. 116 (2021) 480-491. https://doi.org/10.1016/j.tifs.2021.07.012.

[17]

J. de Souza-Vilela, N.R. Andrew, I. Ruhnke, Insect protein in animal nutrition, Anim. Prod. Sci. 59 (2019) 2029-2036. https://doi.org/10.1071/AN19255.

[18]

B.A. Rumpold, O.K. Schlüter, Potential and challenges of insects as an innovative source for food and feed production, Innov. Food Sci. Emerg. 17(2013) 1-11. https://doi.org/10.1016/j.ifset.2012.11.005.

[19]

S. Pianezze, M. Perini, L. Bontempo, et al., Stable isotope ratio analysis for the characterization of edible insects, J. Insects Food Feed 7 (2021) 1-10. https://doi.org/10.3920/JIFF2020.0128.

[20]

G. Melgar-Lalanne, A. -J. Hernández-Álvarez, A. Salinas-Castro, Edible insects processing: traditional and innovative technologies, Compr. Rev. Food Sci. F. 18 (2019) 1166-1191. https://doi.org/10.1111/1541-4337.12463.

[21]

H.J. van der Fels-Klerx, L. Camenzuli, S. Belluco, et al., Food safety issues related to uses of insects for feeds and foods, Compr. Rev. Food Sci. F. 17(2018) 1172-1183. https://doi.org/10.1111/1541-4337.12385.

[22]

S.W. Zou, History of chinese entomology, Science Press, Beijing, 1981. (in Chinese).

[23]

K. Proc, P. Bulak, D. Wiacek, et al., Hermetia illucens exhibits bioaccumulative potential for 15 different elements – implications for feed and food production, Sci. Total Environ. 723 (2020) 138125. https://doi.org/10.1016/j.scitotenv.2020.138125.

[24]

H.J. van der Fels-Klerx, N. Meijer, M.M. Nijkamp, et al., Chemical food safety of using former foodstuffs for rearing black soldier fly larvae (Hermetia illucens) for feed and food use, J. Insects Food Feed 6 (2020) 475-488. https://doi.org/10.3920/JIFF2020.0024.

[25]

H.A. Adebayo, K.A. Kemabonta, S.S. Ogbogu, et al., Comparative assessment of developmental parameters, proximate analysis and mineral compositions of black soldier fly (Hermetia illucens) prepupae reared on organic waste substrates, Int. J. Trop. Insect S. 41 (2021) 1953-1959. https://doi.org/10.1007/s42690-020-00404-4.

[26]

G. Leni, M. Cirlini, J. Jacobs, et al., Impact of naturally contaminated substrates on Alphitobius diaperinus and Hermetia illucens: uptake and excretion of mycotoxins, Toxins 11 (2019) 476. https://doi.org/10.3390/toxins11080476.

[27]

J.E. Gall, R.S. Boyd, N. Rajakaruna, Transfer of heavy metals through terrestrial food webs: a review, Environ. Monit. Assess. 187 (2015) 201. https://doi.org/10.1007/s10661-015-4436-3.

[28]

J. Mlcek, M. Adamek, A. Adamkova, et al., Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry, Potravinarstvo Slovak Journal of Food Science 11(2017) 725-730. https://doi.org/10.5219/850.

[29]

R. Ordonez-Araque, E. Egas-Montenegro, Edible insects: a food alternative for the sustainable development of the planet, Int. J. Gastron. Food S. 23(2021) 100304. https://doi.org/10.1016/j.ijgfs.2021.100304.

[30]

K. Papastavropoulou, A. Koupa, E. Kritikou, et al., Edible insects: benefits and potential risk for consumers and the food industry, Biointerface Research in Applied Chemistry 12 (2022) 5131-5149. https://doi.org/10.33263/BRIAC124.51315149.

[31]

D.L. Christensen, F.O. Orech, M.N. Mungai, et al., Entomophagy among the Luo of Kenya: a potential mineral source? Int. J. Food Sci. Nutr. 57 (2006) 198-203. https://doi.org/10.1080/09637480600738252.

[32]

K.O. Ademolu, A.B. Idowu, G.O. Olatunde, Nutritional value assessment of variegated grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pygomorphidae), during postembryonic development, Afr. Entomol. 18(2010) 360-364. https://doi.org/10.4001/003.018.0201.

[33]

T. Longvah, K. Mangthya, P. Ramulu, Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae, Food Chem. 128 (2011) 400-403. https://doi.org/10.1016/j.foodchem.2011.03.041.

[34]

M. Ray, D. Gangopadhyay, Effect of maturation stage and sex on proximate, fatty acid and mineral composition of eri silkworm (Samia ricini) from India, J. Food Compos. Anal. 100 (2021) 103898. https://doi.org/10.1016/j.jfca.2021.103898.

[35]

J. Zhou, D. Han, Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China, J. Food Compos. Anal. 19 (2006) 850-853. https://doi.org/10.1016/j.jfca.2006.04.008.

[36]

S.G.F. Bukkens, The nutritional value of edible insects, Ecology of Food and Nutrition. 36 (1997) 287-319. https://doi.org/10.1080/03670244.1997.9991521.

[37]

B.O. Elemo, G.N. Elemo, M.A. Makinde, et al., Chemical evaluation of African palm weevil, Rhynchophorus phoenicis, larvae as a food source, J. Insect Sci. 11 (2011) 1-6. https://doi.org/10.1673/031.011.14601.

[38]
S. Bhulaidok, O. Sihamala, L. Shen, et al., Nutritional and fatty acid profiles of sun-dried edible black ants (Polyrhachis vicina Roger), Maejo Int. J. Sci. Tech. 4 (2010) 101-112. https://mijst.mju.ac.th/vol4/101-112.pdf.
[39]

S. Ghosh, S.M. Namin, V.B. Meyer-Rochow, et al., Chemical composition and nutritional value of different species of Vespa Hornets, Foods 10 (2021) 418. https://doi.org/10.3390/foods10020418.

[40]

O.T. Adepoju, A.O. Ayenitaju, Assessment of acceptability and nutrient content of palm weevil (Rhyncophorus phoenicis) larvae enriched complementary food, Int. J. Trop. Insect Sc. 41 (2021) 2263-2276. https://doi.org/10.1007/s42690-021-00487-7.

[41]
J.N. Kinyuru, G.M. Kenji, S.N. Muhoho, et al., Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya District, Kenya. J. Agr. Sci. Tech. 12 (2010) 32-46. http://journals.jkuat.ac.ke/index.php/jagst/issue/view/3.
[42]

J. Chen, J.B. Wang, Y.H. Shu, Review on the effects of heavy metal pollution on herbivorous insects, Chinese Journal of Applied Ecology 31(2020) 1773-1782. (In Chinese). 10.13287/j. 1001-9332.202005.035.

[43]

A. Heikens, W.J.G.M. Peijnenburg, A.J. Hendriks, Bioaccumulation of heavy metals in terrestrial invertebrates, Environ. Pollut. 113 (2001) 385-393. https://doi.org/10.1016/S0269-7491(00)00179-2.

[44]

M. Zhao, Y. Feng, Z. He, et al., Research progress on the safety of insects for consumption in China, China Sericulture 39 (2018) 35-41, 46. (In Chinese). 10.16839/j.cnki.zgcy.2018.02.009.

[45]

R. Köhler, L. Kariuki, C. Lambert, et al., Protein, amino acid and mineral composition of some edible insects from Thailand, J. Asia-Pac. Entomol. 22(2019) 372-378. https://doi.org/10.1016/j.aspen.2019.02.002.

[46]

G. Poma, M. Cuykx, E. Amato, et al., Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption, Food and Chemical Toxicology 100 (2017) 70-79. https://doi.org/10.1016/j.fct.2016.12.006.

[47]

R.R.S. Araujo, T.A.R.S. dos Benfica, V.P. Ferraz, et al., Nutritional composition of insects Gryllus assimilis and Zophobas morio: potential foods harvested in Brazil, J. Food Compos. Anal. 76 (2019) 22-26. https://doi.org/10.1016/j.jfca.2018.11.005.

[48]

E. De Paepe, J. Wauters, M. van der Borght, et al., Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects, Food Chem. 293 (2019) 187-196. https://doi.org/10.1016/j.foodchem.2019.04.082.

[49]

S. Ojha, A. El-Din Bekhit, T. Grune, et al., Bioavailability of nutrients from edible insects, Curr. Opin. Food Sci. 41 (2021) 240-248. https://doi.org/10.1016/j.cofs.2021.08.003.

[50]

A. van Huis, B. Rumpold, C. Maya, et al., Nutritional qualities and enhancement of edible insects, Annu. Rev. Nutr. 41 (2021) 551-576. https://doi.org/10.1146/annurev-nutr-041520-010856.

[51]

B. Purschke, R. Scheibelberger, S. Axmann, et al., Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain, Food Additives & Contaminations: Part A 34 (2017) 1410-1420. https://doi.org/10.1080/19440049.2017.1299946.

[52]

L. Lindqvist, M. Block, Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor (Coleoptera; Tenebrionidae), Comp. Biochem. Phys. C 111 (1995) 325-328. https://doi.org/10.1016/0742-8413(95)00057-U.

[53]

S.A. Pedersen, E. Kristiansen, R.A. Andersen, et al., Cadmium is deposited in the gut content of larvae of the beetle Tenebrio molitor and involves a Cdbinding protein of the low cysteine type, Comp. Biochem. Phys. C 148 (2008) 217-222. https://doi.org/10.1016/j.cbpc.2008.05.013.

[54]

S. Ojha, S. Bußler, M. Psarianos, et al., Edible insect processing pathways and implementation of emerging technologies, J. Insects Food Feed 7 (2021) 877-900. https://doi.org/10.3920/JIFF2020.0121.

[55]

T.R. Murefu, L. Macheka, R. Musundire, et al., Safety of wild harvested and reared edible insects: a review, Food Control 101 (2019) 209-224. https://doi.org/10.1016/j.foodcont.2019.03.003.

[56]

F.A. Manditsera, P.A. Luning, V. Fogliano, et al., Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects, Food Res. Int. 121 (2019) 404-411. https://doi.org/10.1016/j.foodres.2019.03.052.

[57]

O.R. Madibela, T.K. Seitiso, T.F. Thema, et al., Effect of traditional processing methods on chemical composition and in vitro true dry matter digestibility of the Mophane worm (Imbrasia belina), J. Arid Environ. 68(2007) 492-500. https://doi.org/10.1016/j.jaridenv.2006.06.002.

[58]

H.J.O. Magara, S. Niassy, M.A. Ayieko, et al., Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits – a review, Front. Nutr. 7 (2021) 537915. https://doi.org/10.3389/fnut.2020.537915.

[59]

S. Smetana, E. Schmitt, A. Mathys, Sustainable use of Hermetia illucens insect biomass for feed and food: attributional and consequential life cycle assessment, Resour. Conserv. Recy. 144 (2019) 285-296. https://doi.org/10.1016/j.resconrec.2019.01.042.

[60]

S. Smetana, R. Spykman, V. Heinz, Environmental aspects of insect mass production, J. Insects Food Feed 7 (2021) 553-571. https://doi.org/10.3920/JIFF2020.0116.

[61]

A. Nikkhah, S. Van Haute, V. Jovanovic, et al., Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source, Sci. Rep. 11 (2021) 1-11. https://doi.org/10.1038/s41598-021-93284-8.

[62]

S. Smetana, L. Leonhardt, S.M. Kauppi, et al., Insect margarine: processing, sustainability and design, J. Clean. Prod. 264 (2020) 121670. https://doi.org/10.1016/j.jclepro.2020.121670.

[63]

D.A. Tzompa-Sosa, K. Dewettinck, P. Provijn, et al., Lipidome of cricket species used as food, Food Chem. 349 (2021) 129077. https://doi.org/10.1016/j.foodchem.2021.129077.

[64]

L. Gasco, G. Acuti, P. Bani, et al., Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition, Ital. J. Anim. Sci. 19 (2020) 360-372. https://doi.org/10.1080/1828051X.2020.1743209.

[65]

T. Veldkamp, N. Meijer, F. Alleweldt, et al., Overcoming technical and market barriers to enable sustainable large-scale production and consumption of insect proteins in europe: a susinchain perspective, Insects 13 (2022) 281. https://doi.org/10.3390/insects13030281.

[66]

L.A. Esteves, A.N. Monteiro, N.Y. Sitanaka, et al., The reduction of crude protein with the supplementation of amino acids in the diet reduces the environmental impact of growing pigs production evaluated through life cycle assessment, Sustainability 13 (2021) 4815. https://doi.org/10.3390/su13094815.

[67]

S.G. Mackenzie, I. Leinonen, N. Ferguson, et al., Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation, Brit. J. Nutr. 115 (2016) 1860-1874. https://doi.org/10.1017/S0007114516000763.

[68]
A.N.T.R. Monteiro, A. Avadí, A. Piñon, LCA case study for copper and zinc oxides used in animal nutrition, in: U. Eberle, S. Smetana, U. Bos (Eds.), 12th International Conference on Life Cycle Assessment of Food (LCAFood2020), 13-16 October 2020, Berlin Virtually, Germany. DIL, Quakenbrück, Germany, pp. 141-144.
[69]

B. Ridoutt, Bringing nutrition and life cycle assessment together (nutritional LCA): opportunities and risks, The International Journal of Life Cycle Assessment 26 (2021) 1932-1936. https://doi.org/10.1007/s11367-021-01982-2.

[70]

M. Saarinen, M. Fogelholm, R. Tahvonen, et al., Taking nutrition into account within the life cycle assessment of food products, J. Clean. Prod. 149 (2017) 828-844. https://doi.org/10.1016/j.jclepro.2017.02.062.

[71]

A. Green, T. Nemecek, S. Smetana, et al., Reconciling regionally-explicit nutritional needs with environmental protection by means of nutritional life cycle assessment, J. Clean. Prod. 312 (2021) 127696. https://doi.org/10.1016/j.jclepro.2021.127696.

[72]

A.D. Banjo, O.A. Lawal, E.A. Songonuga, The nutritional value of fourteen species of edible insects in southwestern Nigeria, Afr. J. Biotechnol. 5 (2006) 298-301. https://doi.org/10.5897/AJB05.250.

[73]
R.A. Olowu, B.A. Moronkola, O.O. Tovide, et al., Assessment of proximate and mineral status of Rhinoceros beetle larva, Oryctes rhinoceros Linnaeus (1758) (Coleoptera: Scarabaeidae) from Itokin, Lagos State, Nigeria, Res. J. Environ. Sci. 6 (2012) 118-124. https://scialert.net/abstract/?doi=rjes.2012.118.124.
DOI
[74]

E.G. Anaduaka, N.O. Uchendu, D.O. Osuji, et al., Nutritional compositions of two edible insects: Oryctes rhinoceros larva and Zonocerus variegatus, Heliyon 7 (2021) e06531. https://doi.org/10.1016/j.heliyon.2021.e06531.

[75]

M.D. Finke, Complete nutrient composition of commercially raised invertebrates used as food for insectivores, Zoo Biol. 21 (2002) 269-285. https://doi.org/10.1002/zoo.10031.

[76]

D. Barker, M.P. Fitzpatrick, E.S. Dierenfeld, Nutrient composition of selected whole invertebrates, Zoo Biol, 17 (1998) 123-134. https://doi.org/10.1002/(SICI)1098-2361(1998)17:2%3C123::AID-ZOO7%3E3.0.CO;2-B.

[77]

M.D. Finke, Complete nutrient composition of commercially raised invertebrates used as food for insectivores, Zoo Biol. 21 (2002) 269-285. https://doi.org/10.1002/zoo.10031.

[78]
J. Hwangbo, E.C. Hong, A. Jang, et al., Utilization of house fly-maggots, a feed supplement in the production of broiler chickens, J. Environ. Biol. 30 (2009) 609-614. http://www.jeb.co.in/journal_issues/200907_jul09/paper_24.pdf.
[79]

A.A. Mariod, S.I. Abdel-Wahab, N.M. Ain, Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects, Int. J. Trop. Insect Sc. 31 (2011) 145-153. https://doi.org/10.1017/S1742758411000282.

[80]
J. Ramos-Elorduy, E.M. Costa Neto, J.M. Pino, et al., Knowledge about useful entomofauna in the county of La Purisima Palmar de Bravo, Puebla State, Mexico, Biotemas 20 (2007) 121-134. https://www.researchgate.net/publication/26461711_Knowledge_about_useful_entomofauna_in_the_county_of_La_Purisima_Palmar_de_Bravo_Puebla_State_Mexico.
[81]
M.A. Ayieko, J.N. Kinyuru, M.F. Ndong’a, et al., Nutritional value and consumption of black ants (Carebara vidua Smith) from the Lake Victoria region in Kenya, Adv. J. Food Sci. Technol. 4 (2012) 39-45. https://maxwellsci.com/jp/abstract.php?jid=AJFST&no=175&abs=07.
[82]
C.U. Igwe, C.O. Ujowondo, L.A. Nwaogu, et al., Chemical analysis of an edible African termite, Macrotermes nigeriensis: a potential antidote to food security problem, Biochemistry & Analytical Biochemistry 1 (2011) 1-4. https://www.omicsonline.org/chemical-analysis-of-an-edible-africantermite-macrotermes-nigeriensis-a-potential-antidote-to-food-securityproblem-2161-1009.1000105.pdf.
[83]

M.O. Ashiru, The food value of the larvae of Anaphe venata Butler (Lepidoptera, Notodontidae), Ecol. Food Nutr. 22 (1989) 313-320. https://doi.org/10.1080/03670244.1989.9991080.

[84]

P.U. Rao, Chemical composition and nutritional evaluation of spent silk worm pupae, J. Agr. Food Chem. 42 (1994) 2201-2203. https://doi.org/10.1021/jf00046a023.

[85]
O. Akinnawo, A.O. Ketiku, Chemical composition and fatty acid profile of edible larva of Cirina forda (Westwood), African Journal Biomedical Research 3 (2000) 93-96. https://www.ajol.info/index.php/ajbr/article/view/140723.
[86]

O.T. Omotoso, Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae), J. Zhejiang Univ-Sc. B (2006) 7 51-55. https://doi.org/10.1631/jzus.2006.b0051.

[87]

J. Ramos-Elorduy Blasquez, J.M. Pino Moreno, V.H. Martinez Camacho, Could grasshoppers be a nutritive meal, Food and Nutrition Science 3 (2012) 164-175. http://dx.doi.org/10.4236/fns.2012.32025.

[88]

D.K. Murugu, A.N. Onyango, A.K. Ndiritu, et al., From farm to fork: crickets as alternative source of protein, minerals, and vitamins, Front. Nutr. 8 (2021) 704002. https://doi.org/10.3389/fnut.2021.704002.

[89]

E. Zielińska, B. Baraniak, M. Karaś, et al., Selected species of edible insects as a source of nutrient composition, Food Res. Int. 77 (2015) 460-466. https://doi.org/10.1016/j.foodres.2015.09.008.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 May 2022
Revised: 20 June 2022
Accepted: 30 June 2022
Published: 01 June 2023
Issue date: January 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research was founded by Jiangsu Agricultural Science and Technology Innovation Fund (CX (20) 3179), and Dongminghuanghetan Ecological Agriculture Co., Ltd (204032897). This research is also partially funded funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no.861 976, project SUSINCHAIN; and from the German Federal Ministry of Education and Research (BMBF), in the frame of FACCE-SURPLUS/FACCE-JPI project UpWaste, grant number 031B0934A.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return