Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The characteristic cooking-stretching process for pasta-filata cheese production applies shear forces accompanied by thermal treatment to form a fibrous cheese structure. This work aims to summarize the traditional and novel cooking-stretching equipment and related parameters, as well as shear-induced alterations in the micro-, meso-, and macro-behaviour of mozzarella cheese. Apparatus like cooker-stretchers, extruders, Thermomix, etc., have been summarized. Operating parameters, e.g., screw speed, were found less convenient to describe the process, in comparison with system variables like specific mechanical energy. These variations induce different cheese properties, including anisotropy, rheology, stretchability, and those related to fibre formation. Nowadays, researchers are devoted to 1) better qualifying and quantifying the system variables, and 2) developing online techniques to monitor the dynamic changes in components that occur during processing. This review provides an idea for researchers and manufacturers to study and produce customized pasta-filata cheese products, and facilitate improvements in controlling dairy processing and innovating processing approaches.
R. Bast, P. Sharma, H. K. Easton, et al., Tensile testing to quantitate the anisotropy and strain hardening of mozzarella cheese, Int. Dairy J. 44 (2015) 6–14. https://doi.org/10.1016/j.idairyj.2014.12.006.
D. McMahon, C. Oberg, Cheese: pasta-filata cheeses: low-moisture part-skim mozzarella (pizza cheese), Encycl. Dairy Sci. 1 (2011) 737–744. https://doi.org/10.1016/B978-0-12-374407-4.00088-1.
V. Banville, D. Chabot, N. Power, et al., Impact of thermo-mechanical treatments on composition, solids loss, microstructure, and rheological properties of pasta filata-type cheese, Int. Dairy J. 61 (2016) 155–165. https://doi.org/10.1016/j.idairyj.2016.05.004.
D. J. McMahon, B. Paulson, C. J. Oberg, Influence of calcium, pH, and moisture on protein matrix structure and functionality in direct-acidified nonfat mozzarella cheese, J. Dairy Sci. 88 (2005) 3754–3763. https://doi.org/10.3168/jds.S0022-0302(05)73061-7.
N. Noronha, E. D. O’Riordan, M. O’Sullivan, Influence of processing parameters on the texture and microstructure of imitation cheese, Eur. Food Res. Technol. 226 (2008) 385–393. https://doi.org/10.1007/s00217-006-0549-9.
P. Sharma, P. A. Munro, T. T. Dessev, et al., Effect of shear work input on steady shear rheology and melt functionality of model mozzarella cheeses, Food Hydrocoll. 54 (2016) 266–277. https://doi.org/10.1016/j.foodhyd.2015.10.009.
A. Renda, D. M. Barbano, J. J. Yun, et al., Influence of screw speeds of the mixer at low temperature on characteristics of mozzarella cheese, J. Dairy Sci. 80 (1997) 1901–1907. https://doi.org/10.3168/jds.S0022-0302(97)76130-7.
S. Mulvaney, S. D. Rong, D. M. Barbano, et al., Systems analysis of the plasticization and extrusion processing of mozzarella cheese, J. Dairy Sci. 80 (1997) 3030–3039. https://doi.org/10.3168/jds.S0022-0302(97)76270-2.
C. X. Yu, S. Gunasekaran, A systems analysis of pasta filata process during mozzarella cheese making, J. Food Eng. 69 (2005) 399–408. https://doi.org/10.1016/j.jfoodeng.2004.08.031.
X. X. Ma, B. James, L. Zhang, et al., Correlating mozzarella cheese properties to its production processes and microstructure quantification, J. Food Eng. 115 (2013) 154–163. https://doi.org/10.1016/j.jfoodeng.2012.10.002.
F. Masotti, S. Cattaneo, M. Stuknytė, et al., Impact of the type of cooker-stretcher on chemical, rheological and microstructural properties of low-moisture mozzarella cheese analogue, Int. J. Dairy Technol. 76 (2023) 607–615. https://doi.org/10.1111/1471-0307.12952.
B. Bähler, J. Hinrichs, Characterisation of mozzarella cheese curd by means of capillary rheometry, Int. J. Dairy Technol. 66 (2013) 231–235. https://doi.org/10.1111/1471-0307.12022.
B. Bahler, T. Ruf, R. Samudrala, et al., Systematic approach to study temperature and time effects on yield of pasta filata cheese, Int. J. Dairy Technol. 69 (2016) 184–190. https://doi.org/10.1111/1471-0307.12248.
C. Kern, B. Bähler, J. Hinrichs, et al., Waterless single screw extrusion of pasta-filata cheese: process design based on thermo-rheological material properties, J. Food Eng. 260 (2019) 58–69. https://doi.org/10.1016/j.jfoodeng.2019.04.015.
R. Feng, F. W. J. van den Berg, S. K. Lillevang, et al., High shear cooking extrusion to create fibrous mozzarella cheese from renneted and cultured curd, Food Res. Int. 157 (2022) 111192. https://doi.org/10.1016/j.foodres.2022.111192.
R. Feng, F. W. J. van der Berg, R. Mokso, et al., Structural, rheological and functional properties of extruded mozzarella cheese influenced by the properties of the renneted casein gels, Food Hydrocoll. 137 (2023) 108322. https://doi.org/10.1016/j.foodhyd.2022.108322.
M. El-Bakry, E. Duggan, E. O’Riordan, et al., Small scale imitation cheese manufacture using a farinograph, LWT-Food Sci. Technol. 43 (2010) 1079–1087. https://doi.org/10.1016/j.lwt.2010.02.013.
M. Corredig, E. Verespej, D. G. Dalgleish, Heat-induced changes in the ultrasonic properties of whey proteins, J. Agric. Food Chem. 52 (2004) 4465–4471. https://doi.org/10.1021/jf0354390.
J. Mayes, B. Sutherland, Effect of high stretch temperature on the properties of mozzarella, Aust. J. Dairy Technol. 57 (2002) 178.
C. Yu, S. Gunasekaran, Modeling of melt conveying in a deep-channel single-screw cheese stretcher, J. Food Eng. 61 (2004) 241–251. https://doi.org/10.1016/S0260-8774(03)00096-7.
C. Kern, M. Scharfe, J. Hinrichs, Texturization of renneted casein-based gel particles by sheet die extrusion: mechanical properties and numerical analysis of flow characteristics, J. Food Eng. 278 (2020) 109938. https://doi.org/10.1016/j.jfoodeng.2020.109938.
P. Sharma, P. A. Munro, G. Gillies, et al., Changes in creep behavior and microstructure of model mozzarella cheese during working, LWT-Food Sci. Technol. 83 (2017) 184–192. https://doi.org/10.1016/j.lwt.2017.05.003.
P. Sharma, P. A. Munro, T. T. Dessev, et al., Strain hardening and anisotropy in tensile fracture properties of sheared model mozzarella cheeses, J. Dairy Sci. 101 (2018) 123–134. https://doi.org/10.3168/jds.2017-13126.
M. C. Gonçalves, H. R. Cardarelli, Composition, microstructure and chemical interactions during the production stages of mozzarella cheese, Int. Dairy J. 88 (2019) 34–41. https://doi.org/10.1016/j.idairyj.2018.07.005.
R. Feng, S. K. Lillevang, L. Ahrné, Effect of water temperature and time during heating on mass loss and rheology of cheese curds, Foods 10 (2021) 2881. https://doi.org/10.3390/foods10112881.
B. Sezer, M. Ozturk, H. Ayvaz, et al., Laser-induced breakdown spectroscopy as a reliable analytical method for classifying commercial cheese samples based on their cooking/stretching process, Food Chem. 390 (2022) 132946. https://doi.org/10.1016/j.foodchem.2022.132946.
P. Schenkel, R. Samudrala, J. Hinrichs, Thermo-physical properties of semi-hard cheese made with different fat fractions: influence of melting point and fat globule size, Int. Dairy J. 30 (2013) 79–87. https://doi.org/10.1016/j.idairyj.2012.11.014.
S. Nöbel, K. Weidendorfer, J. Hinrichs, Apparent voluminosity of casein micelles determined by rheometry, J. Colloid Interface Sci. 386 (2012) 174–180. https://doi.org/10.1016/j.jcis.2012.07.075.
P. Sharma, T. T. Dessev, P. A. Munro, et al., Measurement techniques for steady shear viscosity of mozzarella-type cheeses at high shear rates and high temperature, Int. Dairy J. 47 (2015) 102–108. https://doi.org/10.1016/j.idairyj.2015.03.005.
P. Sharma, P. A. Munro, T. T. Dessev, et al., Shear work induced changes in the viscoelastic properties of model mozzarella cheese, Int. Dairy J. 56 (2016) 108–118. https://doi.org/10.1016/j.idairyj.2016.01.010.
M. K. Rowney, P. Roupas, M. W. Hickey, et al., The effect of compression, stretching, and cooking temperature on free oil formation in mozzarella curd, J. Dairy Sci. 86 (2003) 449–456. https://doi.org/10.3168/jds.S0022-0302(03)73623-6.
X. Ma, B. James, L. Zhang, et al., The stretchability of mozzarella cheese evaluated by a temperature-controlled 3-prong hook test, J. Dairy Sci. 95 (2012) 5561–5568. https://doi.org/10.3168/jds.2012-5486.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).