Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Intake of marine phospholipids can ameliorate the gut microbiota dysbiosis, thereby improving the metabolic disturbance of the host. It is unclear whether consuming marine phospholipids affects the gut microbiota community structure in a normal-diet host. The aim of this research was to compare the gut microbiota community structure between normal-diet mice consuming and not consuming large yellow croaker roe phospholipids (LYCRPLs) by 16S rRNA amplicon sequencing technology. Results indicated that LYCRPLs could regulate the relative abundance of some certain bacteria of normal-diet mice, i.e., increasing the abundance of some beneficial genera including Lachnospiraceae_NK4A136_group and Lactobacillus, and decreasing harmful bacteria such as GCA-900066575 and Romboutsia. Simultaneously, intake of LYCRPLs was predicted to reduce the bacterial biosynthesis of carbohydrate and lipids. This research revealed the regulation of LYCRPLs on the gut microbiota community structure in normal-diet mice, and provides a valuable reference for LYCRPLs as a functional ingredient in the food industry.
S. R. Gill, M. Pop, R. T. DeBoy, et al., Metagenomic analysis of the human distal gut microbiome, Science 312 (2006) 1355–1359. https://doi.org/10.1126/science.1124234.
F. Ceppa, A. Mancini, K. Tuohy, Current evidence linking diet to gut microbiota and brain development and function, Int. J. Food Sci. Nutr. 70 (2019) 1–19. https://doi.org/10.1080/09637486.2018.1462309.
Q. Li, X. Wen, G. Wang, et al., Gut microbiota and exercise-induced fatigue: unraveling the connections, Food Sci. Anim. Prod. 2 (2024) 9240061. https://doi.org/10.26599/FSAP.2024.9240061.
M. S. Riaz Rajoka, J. Shi, H. M. Mehwish, et al., Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health, Food Sci. Hum. Wellness 6 (2017) 121–130. https://doi.org/10.1016/j.fshw.2017.07.003.
P. Vernocchi, F. Del Chierico, L. Putignani, Gut microbiota metabolism and interaction with food components, Int. J. Mol. Sci. 21 (2020) 3688. https://doi.org/10.3390/ijms21103688.
H. Naeem, H. U. Hassan, M. Shahbaz, et al., Role of probiotics against human cancers, inflammatory diseases, and other complex malignancies, J. Food Biochem. 1 (2024) 6632209. https://doi.org/10.1155/2024/6632209.
H. Song, W. Jia, Beneficial effects of food-derived polyphenols on type 2 diabetes: mechanistic insights based on gut microbiota alterations and anti-inflammatory responses, Food Sci. Anim. Prod. 1 (2023) 9240043. https://doi.org/10.26599/FSAP.2023.9240043.
Y. Zang, K. Wu, J. Liu, et al., Effects of black quinoa polysaccharides on obesity and intestinal flora dysbiosis in T2DM mice, J. Food Biochem. 1 (2024) 5473584. https://doi.org/10.1155/2024/5473584.
J. Henao-Mejia, E. Elinav, C. Jin, et al., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature 482 (2012) 179–185. https://doi.org/10.1038/nature10809.
R. Hosomi, K. Fukunaga, T. Nagao, et al., Effect of dietary partial hydrolysate of phospholipids, rich in docosahexaenoic acid-bound lysophospholipids, on lipid and fatty acid composition in rat serum and liver, J. Food Sci. 84 (2019) 183–191. https://doi.org/10.1111/1750-3841.14416.
Z. Wang, E. Karrar, Y. Wang, et al., The bioactive of four dietary sources phospholipids on heavy metal-induced skeletal muscle injury in zebrafish: a comparison of phospholipid profiles, Food Biosci. 47 (2022) 101630. https://doi.org/10.1016/j.fbio.2022.101630.
H. Che, H. Li, L. Song, et al., Orally administered DHA-enriched phospholipids and DHA-enriched triglyceride relieve oxidative stress, improve intestinal barrier, modulate inflammatory cytokine and gut microbiota, and meliorate inflammatory responses in the brain in dextran sodium sulfate induced colitis in mice, Mol. Nutr. Food Res. 65 (2021) 2000986. https://doi.org/10.1002/mnfr.202000986.
I. Ferreira, A. P. Rauter, N. M. Bandarra, Marine sources of DHA-rich phospholipids with anti-Alzheimer effect, Mar. Drugs 20 (2022) 662. https://doi.org/10.3390/md20110662.
L. Su, H. Zhu, S. Chen, et al., Anti-obesity and gut microbiota regulation effects of phospholipids from the eggs of crab, Portunus trituberculatus, in high fat diet-fed mice, Mar. Drugs 20 (2022) 411. https://doi.org/10.3390/md20070411.
P. Liang, R. F. Li, H. Sun, et al., Phospholipids composition and molecular species of large yellow croaker ( Pseudosciaena crocea) roe, Food Chem. 245 (2018) 806–811. https://doi.org/10.1016/j.foodchem.2017.11.108.
L. Y. Huang, X. D. Lu, L. Y. Zhang, et al., Insight into the emulsifying properties of DHA-enriched phospholipids from large yellow croaker ( Larimichthys crocea) roe, LWT-Food Sci. Technol. 150 (2021) 111984. https://doi.org/10.1016/j.lwt.2021.111984.
J. G. Caporaso, C. L. Lauber, W. A. Walters, et al., Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc. Natl. Acad. Sci. 108 (2011) 4516–4522. https://doi.org/10.1073/pnas.1000080107.
M. Hess, A. Sczyrba, R. Egan, et al., Metagenomic discovery of biomass-degrading genes and genomes from cow rumen, Science 331 (2011) 463–467. https://doi.org/10.1126/science.1200387.
J. Shin, S. Lee, M. J. Go, et al., Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing, Sci. Rep. 6 (2016) 29681. https://doi.org/10.1038/srep29681.
X. L. Zhou, X. W. Xiang, Y. F. Zhou, et al., Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice, J. Funct. Foods 79 (2021) 104394. https://doi.org/10.1016/j.jff.2021.104394.
R. B. Zhong, Y. J. Zhu, H. D. Zhang, et al., Integrated lipidomic and transcriptomic analyses reveal the mechanism of large yellow croaker roe phospholipids on lipid metabolism in normal-diet mice, Food Funct. 13 (2022) 12852–12869. https://doi.org/10.1039/d2fo02736d.
C. Yang, X. Wang, Q. C. Deng, et al., Rapeseed polysaccharides alleviate overweight induced by high-fat diet with regulation of gut microbiota in rats, Oil Crop Sci. 6 (2021) 192–200. https://doi.org/10.1016/j.ocsci.2021.09.001.
M. Noval Rivas, O. T. Burton, P. Wise, et al., A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis, J. Allergy Clin. Immunol. 131 (2013) 201–212. https://doi.org/10.1016/j.jaci.2012.10.026.
D. Shalon, R. N. Culver, J. A. Grembi, et al., Profiling the human intestinal environment under physiological conditions, Nature 617 (2023) 581–591. https://doi.org/10.1038/s41586-023-05989-7.
Y. Fan, O. Pedersen, Gut microbiota in human metabolic health and disease, Nat. Rev. Microbiol. 19 (2021) 55–71. https://doi.org/10.1038/s41579-020-0433-9.
S. Nakamura, R. Kurata, T. Tonozuka, et al., Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria, J. Biol. Chem. 299 (2023) 104885. https://doi.org/10.1016/j.jbc.2023.104885.
V. Singh, G. Lee, H. Son, et al., Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: a case of finger millet, Front. Nutr. 9 (2022) 1056445. https://doi.org/10.3389/fnut.2022.1056445.
N. N. Zhang, W. W. Zhu, S. W. Zhang, et al., A novel Bifidobacterium/Klebsiella ratio in characterization analysis of the gut and bile microbiota of CCA patients, Microb. Ecol. 87 (2024) 5. https://doi.org/10.1007/s00248-023-02318-3.
M. Schirmer, A. Garner, H. Vlamakis, et al., Microbial genes and pathways in inflammatory bowel disease, Nat. Rev. Microbiol. 17 (2019) 497–511. https://doi.org/10.1038/s41579-019-0213-6.
A. Mayorga-Ramos, C. Barba-Ostria, D. Simancas-Racines, et al., Protective role of butyrate in obesity and diabetes: new insights, Front. Nutr. 9 (2022) 1067647. https://doi.org/10.3389/fnut.2022.1067647.
X. L. Zhu, Z. C. Bi, C. Yang, et al., Effects of different doses of ω-3 polyunsaturated fatty acids on gut microbiota and immunity, Food Nutr. Res. 65 (2021) 6263. https://doi.org/10.29219/fnr.v65.6263.
K. Kasahara, K. A. Krautkramer, E. Org, et al., Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model, Nat. Microbiol. 3 (2018) 1461–1471. https://doi.org/10.1038/s41564-018-0272-x.
G. Cabrera, R. Perez, J. Gomez, et al., Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains, J. Hazard. Mater. 135 (2006) 40–46. https://doi.org/10.1016/j.jhazmat.2005.11.058.
H. N. Mu, Q. Zhou, R. Y. Yang, et al., Naringin attenuates high fat diet induced non-alcoholic fatty liver disease and gut bacterial dysbiosis in mice, Front. Microbiol. 11 (2020) 585066. https://doi.org/10.3389/fmicb.2020.585066.
Y. L. Cui, L. S. Zhang, X. Wang, et al., Roles of intestinal Parabacteroides in human health and diseases, FEMS Microbiol. Lett. 369 (2022) fnac072. https://doi.org/10.1093/femsle/fnac072.
G. A. Hedblom, H. A. Reiland, M. J. Sylte, et al., Segmented filamentous bacteria-metabolism meets immunity, Front. Microbiol. 9 (2018) 1991. https://doi.org/10.3389/fmicb.2018.01991.
R. R. Rodrigues, M. Gurung, Z. P. Li, et al., Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes, Nat. Commun. 12 (2021) 101. https://doi.org/10.1038/s41467-020-20313-x.
A. E. Eder, S. A. Munir, C. R. Hobby, et al., Exogenous polyunsaturated fatty acids (PUFAs) alter phospholipid composition, membrane permeability, biofilm formation and motility in Acinetobacter baumanni, Microbiology 163 (2017) 1626–1636. https://doi.org/10.1099/mic.0.000556.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).