AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Comparative analysis of the impact of large yellow croaker roe phospholipids on the gut microbiota community structure in normal-diet mice

Rongbin Zhong1,2Xinhong Zheng1,2Haoyu Zheng1Minna Yao1,2Feifei Shi1,2Qian Yang1,2Min Zhang3( )Peng Liang1,3( )
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
Show Author Information

Graphical Abstract

Abstract

Intake of marine phospholipids can ameliorate the gut microbiota dysbiosis, thereby improving the metabolic disturbance of the host. It is unclear whether consuming marine phospholipids affects the gut microbiota community structure in a normal-diet host. The aim of this research was to compare the gut microbiota community structure between normal-diet mice consuming and not consuming large yellow croaker roe phospholipids (LYCRPLs) by 16S rRNA amplicon sequencing technology. Results indicated that LYCRPLs could regulate the relative abundance of some certain bacteria of normal-diet mice, i.e., increasing the abundance of some beneficial genera including Lachnospiraceae_NK4A136_group and Lactobacillus, and decreasing harmful bacteria such as GCA-900066575 and Romboutsia. Simultaneously, intake of LYCRPLs was predicted to reduce the bacterial biosynthesis of carbohydrate and lipids. This research revealed the regulation of LYCRPLs on the gut microbiota community structure in normal-diet mice, and provides a valuable reference for LYCRPLs as a functional ingredient in the food industry.

References

[1]

S. R. Gill, M. Pop, R. T. DeBoy, et al., Metagenomic analysis of the human distal gut microbiome, Science 312 (2006) 1355–1359. https://doi.org/10.1126/science.1124234.

[2]

F. Ceppa, A. Mancini, K. Tuohy, Current evidence linking diet to gut microbiota and brain development and function, Int. J. Food Sci. Nutr. 70 (2019) 1–19. https://doi.org/10.1080/09637486.2018.1462309.

[3]

Q. Li, X. Wen, G. Wang, et al., Gut microbiota and exercise-induced fatigue: unraveling the connections, Food Sci. Anim. Prod. 2 (2024) 9240061. https://doi.org/10.26599/FSAP.2024.9240061.

[4]

M. S. Riaz Rajoka, J. Shi, H. M. Mehwish, et al., Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health, Food Sci. Hum. Wellness 6 (2017) 121–130. https://doi.org/10.1016/j.fshw.2017.07.003.

[5]

P. Vernocchi, F. Del Chierico, L. Putignani, Gut microbiota metabolism and interaction with food components, Int. J. Mol. Sci. 21 (2020) 3688. https://doi.org/10.3390/ijms21103688.

[6]
L. Z. Shu, Y. D. Ding, Q. M. Xue, et al., Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier, Therap. Adv. Gastroenterol. 16 (2023) 175628482311764. https://doi.org/10.1177/17562848231176427.
[7]

H. Naeem, H. U. Hassan, M. Shahbaz, et al., Role of probiotics against human cancers, inflammatory diseases, and other complex malignancies, J. Food Biochem. 1 (2024) 6632209. https://doi.org/10.1155/2024/6632209.

[8]

H. Song, W. Jia, Beneficial effects of food-derived polyphenols on type 2 diabetes: mechanistic insights based on gut microbiota alterations and anti-inflammatory responses, Food Sci. Anim. Prod. 1 (2023) 9240043. https://doi.org/10.26599/FSAP.2023.9240043.

[9]

Y. Zang, K. Wu, J. Liu, et al., Effects of black quinoa polysaccharides on obesity and intestinal flora dysbiosis in T2DM mice, J. Food Biochem. 1 (2024) 5473584. https://doi.org/10.1155/2024/5473584.

[10]

J. Henao-Mejia, E. Elinav, C. Jin, et al., Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature 482 (2012) 179–185. https://doi.org/10.1038/nature10809.

[11]

R. Hosomi, K. Fukunaga, T. Nagao, et al., Effect of dietary partial hydrolysate of phospholipids, rich in docosahexaenoic acid-bound lysophospholipids, on lipid and fatty acid composition in rat serum and liver, J. Food Sci. 84 (2019) 183–191. https://doi.org/10.1111/1750-3841.14416.

[12]

Z. Wang, E. Karrar, Y. Wang, et al., The bioactive of four dietary sources phospholipids on heavy metal-induced skeletal muscle injury in zebrafish: a comparison of phospholipid profiles, Food Biosci. 47 (2022) 101630. https://doi.org/10.1016/j.fbio.2022.101630.

[13]

H. Che, H. Li, L. Song, et al., Orally administered DHA-enriched phospholipids and DHA-enriched triglyceride relieve oxidative stress, improve intestinal barrier, modulate inflammatory cytokine and gut microbiota, and meliorate inflammatory responses in the brain in dextran sodium sulfate induced colitis in mice, Mol. Nutr. Food Res. 65 (2021) 2000986. https://doi.org/10.1002/mnfr.202000986.

[14]

I. Ferreira, A. P. Rauter, N. M. Bandarra, Marine sources of DHA-rich phospholipids with anti-Alzheimer effect, Mar. Drugs 20 (2022) 662. https://doi.org/10.3390/md20110662.

[15]

L. Su, H. Zhu, S. Chen, et al., Anti-obesity and gut microbiota regulation effects of phospholipids from the eggs of crab, Portunus trituberculatus, in high fat diet-fed mice, Mar. Drugs 20 (2022) 411. https://doi.org/10.3390/md20070411.

[16]

P. Liang, R. F. Li, H. Sun, et al., Phospholipids composition and molecular species of large yellow croaker ( Pseudosciaena crocea) roe, Food Chem. 245 (2018) 806–811. https://doi.org/10.1016/j.foodchem.2017.11.108.

[17]

L. Y. Huang, X. D. Lu, L. Y. Zhang, et al., Insight into the emulsifying properties of DHA-enriched phospholipids from large yellow croaker ( Larimichthys crocea) roe, LWT-Food Sci. Technol. 150 (2021) 111984. https://doi.org/10.1016/j.lwt.2021.111984.

[18]
X. D. Lu, R. B. Zhong, L. Hu, et al., DHA-enriched phospholipids from large yellow croaker roe regulate lipid metabolic disorders and gut microbiota imbalance in SD rats with a high-fat diet, Food Funct. 12 (2021) 4825–4841. https://doi.org/10.1039/D1FO00747E.
[19]

J. G. Caporaso, C. L. Lauber, W. A. Walters, et al., Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc. Natl. Acad. Sci. 108 (2011) 4516–4522. https://doi.org/10.1073/pnas.1000080107.

[20]

M. Hess, A. Sczyrba, R. Egan, et al., Metagenomic discovery of biomass-degrading genes and genomes from cow rumen, Science 331 (2011) 463–467. https://doi.org/10.1126/science.1200387.

[21]

J. Shin, S. Lee, M. J. Go, et al., Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing, Sci. Rep. 6 (2016) 29681. https://doi.org/10.1038/srep29681.

[22]

X. L. Zhou, X. W. Xiang, Y. F. Zhou, et al., Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice, J. Funct. Foods 79 (2021) 104394. https://doi.org/10.1016/j.jff.2021.104394.

[23]

R. B. Zhong, Y. J. Zhu, H. D. Zhang, et al., Integrated lipidomic and transcriptomic analyses reveal the mechanism of large yellow croaker roe phospholipids on lipid metabolism in normal-diet mice, Food Funct. 13 (2022) 12852–12869. https://doi.org/10.1039/d2fo02736d.

[24]

C. Yang, X. Wang, Q. C. Deng, et al., Rapeseed polysaccharides alleviate overweight induced by high-fat diet with regulation of gut microbiota in rats, Oil Crop Sci. 6 (2021) 192–200. https://doi.org/10.1016/j.ocsci.2021.09.001.

[25]
F. Ren, C. Meng, W. J. Chen, et al., Ganoderma amboinense polysaccharide prevents obesity by regulating gut microbiota in high-fat-diet mice, Food Biosci. 42 (2021) 101107. https://doi.org/10.1016/j.fbio.2021.101107.
[26]

M. Noval Rivas, O. T. Burton, P. Wise, et al., A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis, J. Allergy Clin. Immunol. 131 (2013) 201–212. https://doi.org/10.1016/j.jaci.2012.10.026.

[27]

D. Shalon, R. N. Culver, J. A. Grembi, et al., Profiling the human intestinal environment under physiological conditions, Nature 617 (2023) 581–591. https://doi.org/10.1038/s41586-023-05989-7.

[28]

Y. Fan, O. Pedersen, Gut microbiota in human metabolic health and disease, Nat. Rev. Microbiol. 19 (2021) 55–71. https://doi.org/10.1038/s41579-020-0433-9.

[29]

S. Nakamura, R. Kurata, T. Tonozuka, et al., Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria, J. Biol. Chem. 299 (2023) 104885. https://doi.org/10.1016/j.jbc.2023.104885.

[30]

V. Singh, G. Lee, H. Son, et al., Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: a case of finger millet, Front. Nutr. 9 (2022) 1056445. https://doi.org/10.3389/fnut.2022.1056445.

[31]

N. N. Zhang, W. W. Zhu, S. W. Zhang, et al., A novel Bifidobacterium/Klebsiella ratio in characterization analysis of the gut and bile microbiota of CCA patients, Microb. Ecol. 87 (2024) 5. https://doi.org/10.1007/s00248-023-02318-3.

[32]

M. Schirmer, A. Garner, H. Vlamakis, et al., Microbial genes and pathways in inflammatory bowel disease, Nat. Rev. Microbiol. 17 (2019) 497–511. https://doi.org/10.1038/s41579-019-0213-6.

[33]

A. Mayorga-Ramos, C. Barba-Ostria, D. Simancas-Racines, et al., Protective role of butyrate in obesity and diabetes: new insights, Front. Nutr. 9 (2022) 1067647. https://doi.org/10.3389/fnut.2022.1067647.

[34]
N. Yoshida, T. Yamashita, T. Osone, et al., Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity, IScience 24 (2021) 103342. https://doi.org/10.1016/j.isci.2021.103342.
[35]
K. Nie, K. J. Ma, W. W. Luo, et al., Roseburia intestinalis: a beneficial gut organism from the discoveries in genus and species, Front. Cell. Infect. Microbiol. 11 (2021) 757718. https://doi.org/10.3389/fcimb.2021.757718.
[36]

X. L. Zhu, Z. C. Bi, C. Yang, et al., Effects of different doses of ω-3 polyunsaturated fatty acids on gut microbiota and immunity, Food Nutr. Res. 65 (2021) 6263. https://doi.org/10.29219/fnr.v65.6263.

[37]

K. Kasahara, K. A. Krautkramer, E. Org, et al., Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model, Nat. Microbiol. 3 (2018) 1461–1471. https://doi.org/10.1038/s41564-018-0272-x.

[38]

G. Cabrera, R. Perez, J. Gomez, et al., Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains, J. Hazard. Mater. 135 (2006) 40–46. https://doi.org/10.1016/j.jhazmat.2005.11.058.

[39]
R. G. Nejrup, T. R. Licht, L. I. Hellgren. Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice, Sci. Rep. 7 (2017) 3975. https://doi.org/10.1038/s41598-017-04298-0.
[40]

H. N. Mu, Q. Zhou, R. Y. Yang, et al., Naringin attenuates high fat diet induced non-alcoholic fatty liver disease and gut bacterial dysbiosis in mice, Front. Microbiol. 11 (2020) 585066. https://doi.org/10.3389/fmicb.2020.585066.

[41]

Y. L. Cui, L. S. Zhang, X. Wang, et al., Roles of intestinal Parabacteroides in human health and diseases, FEMS Microbiol. Lett. 369 (2022) fnac072. https://doi.org/10.1093/femsle/fnac072.

[42]
K. Wang, M. F. Liao, N. Zhou, et al., Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids, Cell Rep. 26 (2019) 222–235. https://doi.org/10.1016/j.celrep.2018.12.028.
[43]

G. A. Hedblom, H. A. Reiland, M. J. Sylte, et al., Segmented filamentous bacteria-metabolism meets immunity, Front. Microbiol. 9 (2018) 1991. https://doi.org/10.3389/fmicb.2018.01991.

[44]
H. T. Shen, Y. T. Fang, W. H. Tsai, et al., A Lactobacillus combination ameliorates lung inflammation in an elastase/LPS-induced mouse model of chronic obstructive pulmonary disease, Probiotics Antimicrob. Proteins (2024) 1–13. https://doi.org/10.1007/s12602-024-10300-9.
[45]
R. B. Qin, J. Wang, C. Chao, et al., RS5 produced more butyric acid through regulating the microbial community of human gut microbiota, J. Agric. Food Chem. 69 (2021) 3209–3218. https://doi.org/10.1021/acs.jafc.0c08187.
[46]

R. R. Rodrigues, M. Gurung, Z. P. Li, et al., Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes, Nat. Commun. 12 (2021) 101. https://doi.org/10.1038/s41467-020-20313-x.

[47]

A. E. Eder, S. A. Munir, C. R. Hobby, et al., Exogenous polyunsaturated fatty acids (PUFAs) alter phospholipid composition, membrane permeability, biofilm formation and motility in Acinetobacter baumanni, Microbiology 163 (2017) 1626–1636. https://doi.org/10.1099/mic.0.000556.

Food Science of Animal Products
Article number: 9240114
Cite this article:
Zhong R, Zheng X, Zheng H, et al. Comparative analysis of the impact of large yellow croaker roe phospholipids on the gut microbiota community structure in normal-diet mice. Food Science of Animal Products, 2025, 3(2): 9240114. https://doi.org/10.26599/FSAP.2025.9240114

137

Views

15

Downloads

0

Crossref

Altmetrics

Received: 22 November 2024
Revised: 14 December 2024
Accepted: 20 December 2024
Published: 09 April 2025
© Beijing Academy of Food Sciences 2025.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return