Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The traditional pulverizing technologies face limitations such as nutrient loss, risk of dust explosions and poor properties of powder. Liquid nitrogen freezing and pulverizing (LNFP) is an innovative technology combining low-temperature freezing and pulverizing, which can maintain high nutritional value and performance of food powders. This paper primarily reviews the basic principles of LNFP, the advantages compared to traditional pulverizing technologies (e.g., high-speed airflow pulverizing and ball pulverizing), relevant equipment, applications in animal-derived products, the improvement and innovation direction, and the combination with other food processing techniques. Although LNFP has potential in food processing, it still faces challenges such as food form, thawing loss and enzyme changes. In addition, the cost is also an issue. In the future, combining auxiliary methods with LNFP technology may improve product quality and processing outcomes of animal-derived products.
L. H. Kushi, T. Byers, C. Doyle, et al., American cancer society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity, CA. Cancer J. Clin. 56 (2006) 254–281. https://doi.org/10.3322/canjclin.56.5.254.
O. C. Chikwanha, P. Vahmani, V. Muchenje, et al., Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing, Food Res. Int. 104 (2017) 25–38. https://doi.org/10.1016/j.foodres.2017.05.005.
B. Alao, A. Falowo, A. Chulayo, et al., The potential of animal by-products in food systems: production, prospects and challenges, Sustainability 9 (2017) 681–696. https://doi.org/10.5455/japa.20150626043918.
G. M. Mathew, D. C. Mathew, R. K. Sukumaran, et al., Sustainable and eco-friendly strategies for shrimp shell valorization, Environ. Pollut. 267 (2020) 115656. https://doi.org/10.1016/j.envpol.2020.115656.
A. K. Wani, N. Akhtar, T. U. G. Mir, et al., Eco-friendly and safe alternatives for the valorization of shrimp farming waste, Environ. Sci. Pollut. Res. Int. 31 (2024) 38960–38989. https://doi.org/10.1007/s11356-023-27819-z.
F. Toldra, M. C. Aristoy, L. Mora, et al., Innovations in value-addition of edible meat by-products, Meat Sci. 92 (2012) 290–296. https://doi.org/10.1016/j.meatsci.2012.04.004.
V. Z. Leykin, Basic laws of the processes and the principle of minimum energy consumption during pneumatic transport and distribution of pulverized fuel in direct pulverized fuel preparation systems, Therm. Eng. 62 (2015) 564–571. https://doi.org/10.1134/S0040601515080042.
O. A. Orumwense, E. Forssberg, Superfine and ultrafine grinding: a literature survey, Miner. Process. Extr. Metall. Rev. 11 (1992) 107–127. https://doi.org/10.1080/08827509208914216.
R. G. D. Molin Filho, J. M. Rosso, E. A. Volnistem, et al., Sugarcane bagasse ash micronized using air jet mills for green pozzolan in Brazil, Int. J. Chem. Eng. 2019 (2019) 5307098. https://doi.org/10.1155/2019/5307098.
W. J. Gao, F. Chen, X. Wang, et al., Recent advances in processing food powders by using superfine grinding techniques: a review, Compr. Rev. Food Sci. Food Saf. 19 (2020) 2222–2255. https://doi.org/10.1111/1541-4337.12580.
I. Y. Saleem, H. D. C. Smyth, Micronization of a soft material: air-jet and micro-ball milling, AAPS PharmSciTech 11 (2010) 1642–1649. https://doi.org/10.1208/s12249-010-9542-5.
V. Rodnianski, N. Krakauer, K. Darwesh, et al., Aerodynamic classification in a spiral jet mill, Powder Technol. 243 (2013) 110–119. https://doi.org/10.1016/j.powtec.2013.03.018.
M. Zhang, C. J. Zhang, S. Shrestha, Study on the preparation technology of superfine ground powder of Agrocybe chaxingu huang, J. Food Eng. 67 (2005) 333–337. https://doi.org/10.1016/j.jfoodeng.2004.04.036.
A. Z. M. Abouzeid, D. W. Fuerstenau, Grinding of mineral mixtures in high-pressure grinding rolls, Int. J. Miner. Process. 93 (2009) 59–65. https://doi.org/10.1016/j.minpro.2009.05.008.
S. Rashidi, R. K. Rajamani, D. W. Fuerstenau, A review of the modeling of high pressure grinding rolls, KONA Powder Part. J. 34 (2017) 125–140. https://doi.org/10.14356/kona.2017017.
F. P. van der Meer, A. Gruendken, Flowsheet considerations for optimal use of high pressure grinding rolls, Miner. Eng. 23 (2010) 663–669. https://doi.org/10.1016/j.mineng.2009.09.012.
S. Y. Guo, T. L. Zhao, H. Tang, Effects of HPGR products of mixed magnetite-hematite on subsequent grinding, Part. Sci. Technol. 41 (2022) 176–182. https://doi.org/10.1080/02726351.2022.2065391.
N. Matsanga, W. Nheta, N. Chimwani, A review of the grinding media in ball mills for mineral processing, Minerals 13 (2023) 1373. https://doi.org/10.3390/min13111373.
V. K. Gupta, Energy absorption and specific breakage rate of particles under different operating conditions in dry ball milling, Powder Technol. 361 (2020) 827–835. https://doi.org/10.1016/j.powtec.2019.11.033.
N. Chimwani, T. M. Mohale, M. M. Bwalya, Tailoring ball mill feed size distribution for the production of a size-graded product, Miner. Eng. 141 (2019) 105891. https://doi.org/10.1016/j.mineng.2019.105891.
M. Giraud, C. Gatumel, S. Vaudez, et al., Investigating grinding mechanisms and scaling criteria in a ball mill by dimensional analysis, Adv. Powder Technol. 32 (2021) 2988–3001. https://doi.org/10.1016/j.apt.2021.06.016.
V. K. Gupta, S. Sharma, Analysis of ball mill grinding operation using mill power specific kinetic parameters, Adv. Powder Technol. 25 (2014) 625–634. https://doi.org/10.1016/j.apt.2013.10.003.
A. Biglia, C. Messina, L. Comba, et al., Quick-freezing based on a nitrogen reversed brayton cryocooler prototype: effects on the physicochemical characteristics of beef longissimus thoracis muscle, Innov. Food Sci. Emerg. Technol. 82 (2022) 103208. https://doi.org/10.1016/j.ifset.2022.103208.
A. Ruiz-Rodríguez, E. Durán-Guerrero, R. Natera, et al., Influence of two different cryoextraction procedures on the quality of wine produced from muscat grapes, Foods 9 (2020) 1529. https://doi.org/10.3390/foods9111529.
M. M. Aref, The present status of liquid nitrogen freezing of foods, J. Food Sci. 1(1) (1968) 11–16. https://doi.org/10.1016/s0008-3860(68)74443-3.
T. K. Goswami, Recent trends of application of cryogenics in food processing and preservation, Environ. Sci. 214 (2017) 47−59. https://doi.org/10.1016/j.jfoodeng.2017.06.020.
L. N. Cheng, W. J. Wu, K. J. An, et al., Advantages of liquid nitrogen quick freezing combine gradient slow thawing for quality preserving of blueberry, Crystals 10 (2020) 368. https://doi.org/10.3390/cryst10050368.
Z. W. Zhu, W. H. Luo, D. W. Sun, Effects of liquid nitrogen quick freezing on polyphenol oxidase and peroxide activities, cell water states and epidermal microstructure of wolfberry, LWT-Food Sci. Technol. 120 (2020) 108923. https://doi.org/10.1016/j.lwt.2019.108923.
J. Zhang, Y. Li, Z. Wang, et al., Effects of liquid nitrogen freezing, immersion freezing, and air freezing on properties of Perca fluviatilis fillets and analysis of potential protein markers based on label-free proteomics, Food Biosci. 59 (2024) 104262. https://doi.org/10.1016/j.fbio.2024.104262.
X. H. Cao, F. F. Zhang, D. Y. Zhao, et al., Effects of freezing conditions on quality changes in blueberries, J. Sci. Food Agric. 98 (2018) 4673–4679. https://doi.org/10.1002/jsfa.9000.
E. D. Berry, W. J. Dorsa, G. R. Siragusa, et al., Bacterial cross-contamination of meat during liquid nitrogen immersion freezing, J. Food Prot. 61 (1998) 1103–1108. https://doi.org/10.4315/0362-028x-61.9.1103.
J. Y. Huang, Z. H. Hu, W. J. Gao, et al., Preservation mechanism of liquid nitrogen freezing on crayfish ( Procambarus clarkia): study on the modification effects in biochemical and structural properties, J. Food Process. Preserv. 46 (2022) e17116. https://doi.org/10.1111/jfpp.17116.
Y. X. Mao, L. H. Hu, S. Y. Kuang, et al., Effect of liquid nitrogen spray freezing on the ice crystal size and quality of large yellow croaker, J. Food Eng. 369 (2024) 111937. https://doi.org/10.1016/j.jfoodeng.2024.111937.
X. Y. Luo, J. R. Li, W. L. Yan, et al., Physicochemical changes of mtgase cross-linked surimi gels subjected to liquid nitrogen spray freezing, Int. J. Biol. Macromol. 160 (2020) 642–651. https://doi.org/10.1016/j.ijbiomac.2020.05.249.
Y. S. Xu, M. Song, W. S. Xia, et al., Effects of freezing method on water distribution, microstructure, and taste active compounds of frozen channel catfish ( Ictalurus punctatus), J. Food. Process. Eng. 42 (2019) e12937. https://doi.org/10.1111/jfpe.12937.
Z. H. Qiao, M. Y. Yin, X. J. Qi, et al., Freezing and storage on aquatic food: underlying mechanisms and implications on quality deterioration, LWT-Food. Sci. Technol. 42 (2022) e91322. https://doi.org/10.1590/fst.91322.
Q. X. Jiang, T. Yin, F. Yang, et al., Effect of freezing methods on quality changes of grass carp during frozen storage, J. Food. Process. Eng. 43 (2020) e13539. https://doi.org/10.1111/jfpe.13539.
X. Zhao, L. Wang, J. X. Wang, et al., Effects of different freezing methods on muscle qualities and myofibrillar protein properties of red drum ( Sciaenops ocellatus) during storage, Int. J. Refrig. 165 (2024) 199–208. https://doi.org/10.1016/j.ijrefrig.2024.05.021.
X. Y. Teng, Y. Liu, L. P. Chen, et al., Effects of liquid nitrogen freezing at different temperatures on the quality and flavor of pacific oyster ( Crassostrea gigas), Food Chem. 422 (2023) 136162. https://doi.org/10.1016/j.foodchem.2023.136162.
F. Yang, D. T. Jing, Y. D. Diao, et al., Effect of immersion freezing with edible solution on freezing efficiency and physical properties of obscure pufferfish ( Takifugu obscurus) fillets, LWT-Food Sci. Technol. 118 (2020) 108762. https://doi.org/10.1016/j.lwt.2019.108762.
W. D. Yan, Q. X. Sun, O. Y. Zheng, et al., Effect of liquid nitrogen freezing temperature on the muscle quality of Litopenaeus vannamei, Foods 12 (2023) 4459. https://doi.org/10.3390/foods12244459.
L. Qin, C. Ma, S. G. Li, et al., Mechanical damage mechanism of frozen coal subjected to liquid nitrogen freezing, Fuel 309 (2022) 122124. https://doi.org/10.1016/j.fuel.2021.122124.
M. Wilczek, J. Bertling, D. Hintemann, Optimised technologies for cryogenic grinding, Int. J. Miner. Process. 74 (2004) S425–S434. https://doi.org/10.1016/j.minpro.2004.07.032.
P. K. Singh, S. Kumar, P. K. Jain, Effect of cryogenic grinding on surface characteristics of additively manufactured TI-6AL-4V alloy, Surf. Topogr.: Metrol. Prop. 11 (2023) 015014. https://doi.org/10.1088/2051-672x/acad16.
H. Singh, M. Meghwal, P. K. Prabhakar, et al., Grinding characteristics and energy consumption in cryogenic and ambient grinding of ajwain seeds at varied moisture contents, Powder Technol. 405 (2022) 117531. https://doi.org/10.1016/j.powtec.2022.117531.
C. T. Murthy, S. Bhattacharya, Cryogenic grinding of black pepper, J. Food Eng. 85 (2008) 18–28. https://doi.org/10.1016/j.jfoodeng.2007.06.020.
Ş. Duman, M. Küçük, Cryogenic milling-based keratin microparticle production from anatolian goat fibers and their structural, chemical and thermal properties, Text. Res. J. 93 (2023) 1347–1357. https://doi.org/10.1177/00405175221131334.
L. Zhou, S. T. Huang, X. L. Yu, Machining characteristics in cryogenic grinding of SiCp/Al composites, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 869–874. https://doi.org/10.1007/s40195-014-0126-3.
P. P. Reddy, A. Ghosh, Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet, J. Mater. Process. Technol. 229 (2016) 329–337. https://doi.org/10.1016/j.jmatprotec.2015.09.040.
H. Junghare, M. Hamjade, C. Patil, et al., A review on cryogenic grinding, IJECET 7 (2020) 420–423.
S. W. Liu, J. C. Yu, J. Zou, et al., Effects of different drying and milling methods on the physicochemical properties and phenolic content of hawthorn fruit powders, J. Food Process. Preserv. 44 (2020) 14460. https://doi.org/10.1111/jfpp.14460.
G. Manimaran, M. Pradeep kumar, R. Venkatasamy, Influence of cryogenic cooling on surface grinding of stainless steel 316, Cryogenics 59 (2014) 76–83. https://doi.org/10.1016/j.cryogenics.2013.11.005.
S. N. Saxena, P. Barnwal, S. Balasubramanian, et al., Cryogenic grinding for better aroma retention and improved quality of Indian spices and herbs: a review, J. Food Process Eng. 41 (2018) e12826. https://doi.org/10.1111/jfpe.12826.
S. Balasubramanian, M. K. Gupta, K. K. Singh, Cryogenics and its application with reference to spice grinding: a review, Crit. Rev. Food Sci. Nutr. 52 (2012) 781–794. https://doi.org/10.1080/10408398.2010.509552.
B. M. Ghodki, T. K. Goswami, Dem simulation of flow of black pepper seeds in cryogenic grinding system, J. Food Eng. 196 (2017) 36–51. https://doi.org/10.1016/j.jfoodeng.2016.09.026.
S. Balbino, M. Dorić, S. Vidaković, et al., Application of cryogenic grinding pretreatment to enhance extractability of bioactive molecules from pumpkin seed cake, J. Food Process Eng. 42 (2019) e13300. https://doi.org/10.1111/jfpe.13300.
K. Singh, T. K. Goswami, Cryogenic grinding of cloves, J. Food Process Eng. 24 (2000) 57–71. https://doi.org/10.1111/j.1745-4549.2000.tb00405.x.
K. K. Singh, T. K. Goswami, Design of a cryogenic grinding system for spices, J. Food Eng. 39 (1999) 359–368. https://doi.org/10.1016/S0260-8774(98)00172-1.
M. Bera, D. Shrivastava, C. Singh, et al., Development of cold grinding process, packaging and storage of cumin powder, J. Food Sci. Technol. 38 (2001) 257–259.
B. Manohar, B. Sridhar, Size and shape characterization of conventionally and cryogenically ground turmeric ( Curcuma domestica) particles, Powder Technol. 120 (2001) 292–297. https://doi.org/10.1016/s0032-5910(01)00284-4.
S. T. Gouveia, G. S. Lopes, O. Fatibello-Filho, et al., Homogenization of breakfast cereals using cryogenic grinding, J. Food Eng. 51 (2002) 59–63. https://doi.org/10.1016/s0260-8774(01)00037-1.
J. M. Mallappa, H. Sharankumar, R. S. Roopa Bai, Effect of milling methods and its temperature on quality parameters of Byadagichilli: with emphasis on cryogenic grinding, Res. J. Eng. Sci. 4(3) (2015) 1−5.
F. Toldrá, M. Reig, L. Mora, Management of meat by- and co-products for an improved meat processing sustainability, Meat Sci. 181 (2021) 108608. https://doi.org/10.1016/j.meatsci.2021.108608.
Y. G. Zhao, M. Zhang, C. L. Law, et al., New technologies and products for livestock and poultry bone processing: research progress and application prospects: a review, Trends Food Sci. Technol. 144 (2024) 104343. https://doi.org/10.1016/j.jpgs.2024.104343.
J. W. Bujak, New insights into waste management: meat industry, Renew. Energy 83 (2015) 1174–1186. https://doi.org/10.1016/j.renene.2015.06.007.
A. Hart, K. Ebiundu, E. Peretomode, et al., Value-added materials recovered from waste bone biomass: technologies and applications, RSC Adv. 12 (2022) 22302–22330. https://doi.org/10.1039/d2ra03557j.
B. S. Sridhar, Cryo comminution of food waste, Food Sci. Nutr. 44 (2014) 47–56. https://doi.org/10.1108/NFS-05-2013-0062.
L. Morenos, R. van Oorschot, F. Guarino, et al., Evaluation of the use of freezer mill to improve DNA retrieval from dried cotton swabs, Forensic Sci. Int.: Genet. Suppl. Ser. 1(1) (2008) 55–57. https://doi.org/10.1016/j.fsigen.2007.10.003.
D. Sweet, D. Hildebrand, Recovery of DNA from human teeth by cryogenic grinding, J. Forensic Sci. 43 (1998) 1199–1202. https://doi.org/10.1016/j.jfs.1998.07.001.
M. Caputo, M. Irisarri, E. Alechine, et al., A DNA extraction method of small quantities of bone for high-quality genotyping, Forensic Sci. Int. Genet. 7 (2013) 488–493. https://doi.org/10.1016/j.fsigen.2013.05.002.
E. Morales Colón, M. Hernández, M. Candelario, et al., Evaluation of a freezer mill for bone pulverization prior to DNA extraction: an improved workflow for STR analysis, J. Forensic Sci. 63 (2018) 530–535. https://doi.org/10.1111/1556-4029.13551.
M. Lolo, S. Pedreira, B. I. Vázquez, et al., Cryogenic grinding pre-treatment improves extraction efficiency of fluoroquinolones for HPLC-MS/MS determination in animal tissue, Anal. Bioanal. Chem. 387 (2007) 1933–1937. https://doi.org/10.1007/s00216-006-1090-1.
D. Santos, F. Barbosa, A. Tomazelli, et al., Determination of Cd and Pb in food slurries by GFAAS using cryogenic grinding for sample preparation, Anal. Bioanal. Chem. 373 (2002) 183–189. https://doi.org/10.1007/s00216-002-1296-9.
K. M. Hetter, D. J. Bellis, C. Geraghty, et al., Development of candidate reference materials for the measurement of lead in bone, Anal. Bioanal. Chem. 391 (2008) 2011–2021. https://doi.org/10.1007/s00216-008-2085-x.
H. T. Truonghuynh, B. Li, Quality of aquatic products via cryogenic freezing, J. Food Nutr. Res. 2 (2019) 333–346. https://doi.org/10.26502/jfsnr.2642-11000032.
A. Dhiman, P. K. Prabhakar, Micronization in food processing: a comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials, J. Food Eng. 292 (2021) 110248. https://doi.org/10.1016/j.jfoodeng.2020.110248.
J. S. Ham, H. Y. Kim, S. T. Lim, Antioxidant and deodorizing activities of phenolic components in chestnut inner shell extracts, Ind. Crops Prod. 73 (2015) 99–105. https://doi.org/10.1016/j.indcrop.2015.04.017.
S. Vijaya Venkata Raman, S. Iniyan, R. Goic, A review of solar drying technologies, Renew. Sust. Energ. Rev. 16 (2012) 2652–2670. https://doi.org/10.1016/j.rser.2012.01.007.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).