Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Limosilactobacillus reuteri is a species of lactobacillus present in the gastrointestinal tract of animals and may contribute to the balance of intestinal flora. This study aimed to investigate the effects and correlations of L. reuteri on both intestinal flora and muscle fiber characteristics of Sunit sheep, with the objective of enhancing meat quality. Twelve 8-month-old Sunit sheep were randomly divided into two groups: control (fed without L. reuteri) and L. reuteri group. The results showed that L. reuteri had a significant positive impact on meat quality, particularly improving the tenderness of sheep meat compared with the control group, with values of 69.8 and 76.8 N, respectively (P < 0.05). L. reuteri group showed significantly more type I muscle fibers (23% vs. 13%) and higher succinate dehydrogenase activity than the control group, while lactate dehydrogenase activity was significantly lower (P < 0.05). The L. reuteri group showed significantly higher expression of genes encoding colonic epithelial nutrient transport (GPR43) and immune barrier function (Zonulin) than the control group. At the genus level, Alistipes and Methanobacterium were significantly different between L. reuteri and control groups (P < 0.05), with L. reuteri group showing an increase of 2.9 times and a decrease of 8.0 times compared to the control group, respectively. At the species level, Succiniclasticum ruminis and Bacteroides sp. 43_108 were significantly (P < 0.05) lower and higher, respectively in L. reuteri group than those in the control group. Butyric acid exhibited the highest concentration in L. reuteri group, reaching 7.52 mmol/L. In conclusion, supplementation with L. reuteri may affect muscle fiber characteristics, enhance intestinal health, and facilitate carbohydrate digestion of Sunit sheep. This study offers novel insights into the use of feed additives for improving meat quality.
B. Wang, Z. Z. Wang, Y. Chen, et al., Carcass traits, meat quality, and volatile compounds of lamb meat from different restricted grazing time and indoor supplementary feeding systems, Foods 10 (2021) 11. https://doi.org/10.3390/foods10112822.
Y. L. Luo, B. H. Wang, C. Liu, et al., Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet, Food Sci. Nutr. 7 (2019) 2796–2805. https://doi.org/10.1002/fsn3.1039.
Z. M. Tian, Y. Y. Cui, H. J. Lu, et al., Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs, Meat Sci. 171 (2021) 108234. https://doi.org/10.1016/j.meatsci.2020.108234.
Y. Zagury, I. Ianovici, S. Landau, et al., Engineered marble-like bovine fat tissue for cultured meat, Commun. Biol. 5 (2022) 927. https://doi.org/10.1038/s42003-022-03852-5.
W. R. Huo, K. Q. Weng, T. T. Gu, et al., Effect of muscle fiber characteristics on meat quality in fast- and slow-growing ducks, Poult. Sci. 100 (2021) 101264. https://doi.org/10.1016/j.psj.2021.101264.
M. J. Mo, Z. H. Zhang, X. T. Wang, et al., Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry, Front. Vet. Sci. 10 (2023) 1284551. https://doi.org/10.3389/fvets.2023.1284551.
W. X. Wen, X. L. Chen, Z. Q. Huang, et al., Dietary lycopene supplementation improves meat quality, antioxidant capacity and skeletal muscle fiber type transformation in finishing pigs, Anim. Nutr. 8 (2022) 256–264. https://doi.org/10.1016/j.aninu.2021.06.012.
Y. R. Hou, C. Liu, L. Su, et al., Dietary linseed supplementation improves meat quality and flavor of sheep by altering muscle fiber characteristics and antioxidant capacity, Anim. Sci. J. 94 (2023) e13801. https://doi.org/10.1111/asj.13801.
S. Lahiri, H. Kim, I. Garcia-Perez, et al., The gut microbiota influences skeletal muscle mass and function in mice, Sci. Transl. Med. 11 (2019) 5662. https://doi.org/10.1126/scitranslmed.aan5662.
T. Liu, Y. P. Bai, C. L. Wang, et al., Effects of probiotics supplementation on the intestinal metabolites, muscle fiber properties, and meat quality of sunit lamb, Animals 13 (2023) 762. https://doi.org/10.3390/ani13040762.
M. K. Hess, L. Zetouni, A. S. Hess, et al., Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits, Genet. Sel. Evol. 55 (2023) 53. https://doi.org/10.1186/s12711-023-00822-1.
W. Guo, X. J. Guo, L. N. Xu, et al., Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep, Animal 16 (2022) 100576. https://doi.org/10.1016/j.animal.2022.100576.
F. Xie, L. Xu, Y. Wang, et al., Metagenomic sequencing reveals that high-grain feeding alters the composition and metabolism of cecal microbiota and induces cecal mucosal injury in sheep, mSystems 6 (2021) e0091521. https://doi.org/10.1128/mSystems.00915-21.
C. H. Huang, S. Y. Qiao, D. F. Li, et al., Effects of lactobacilli on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs, Asian-Australas J. Anim. Sci. 17 (2004) 401–409. https://doi.org/10.5713/ajas.2004.401.
B. Yu, J. R. Liu, M. Y. Chiou, et al., The effects of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers, Asian-Australas. J. Anim. Sci. 20 (2007) 1243–1251. https://doi.org/10.5713/ajas.2007.1243.
L. Dou, L. N. Sun, C. Liu, et al., Effect of dietary arginine supplementation on protein synthesis, meat quality and flavor in growing lambs, Meat Sci. 204 (2023) 109291. https://doi.org/10.1016/j.meatsci.2023.109291.
M. H. Brooke, K. K. Kaiser, Three “myosin adenosine triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence, J. Histochem. Cytochem. 18 (1970) 670–672. https://doi.org/10.1177/18.9.670.
Y. L. Luo, N. Ju, J. Chang, et al., Dietary α-lipoic acid supplementation improves postmortem color stability of the lamb muscles through changing muscle fiber types and antioxidative status, Meat Sci. 193 (2022) 108945. https://doi.org/10.1016/j.meatsci.2022.108945.
K. J. Livak, T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method, Methods 25 (2001) 402–408. https://doi.org/10.1006/meth.2001.1262.
D. H. Huson, S. Mitra, H. Ruscheweyh, et al., Integrative analysis of environmental sequences using MEGAN4, Genome Res. 21 (2011) 1552–1560. https://doi.org/10.1101/gr.120618.111.
B. D. Ondov, N. H. Bergman, A. M. Phillippy, Interactive metagenomic visualization in a Web browser, BMC Bioinformatics 12 (2011) 385. https://doi.org/10.1186/1471-2105-12-385.
M. N. Rivas, O. T. Burton, P. Wise, et al., A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis, J. Allergy. Clin. Immunol. 131 (2013) 201–212. https://doi.org/10.1016/j.jaci.2012.10.026.
G. N. Lytras, A. Geileskey, R. D. King, et al., Effect of muscle type, salt and pH on cooked meat haemoprotein formation in lamb and beef, Meat Sci. 52 (1999) 189–194. https://doi.org/10.1016/s0309-1740(98)00167-3.
C. T. Nie, Y. Q. Hu, R. R. Chen, et al., Effect of probiotics and Chinese medicine polysaccharides on meat quality, muscle fibre type and intramuscular fat deposition in lambs, Ital. J. Anim. Sci. 21 (2022) 811–820. https://doi.org/10.1080/1828051X.2022.2067489.
M. Zhang, Y. Y. Guo, R. N. Su, et al., Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic, Meat Sci. 194 (2022) 108996. https://doi.org/10.1016/j.meatsci.2022.108996.
H. P Zhao, Y. Zhang, Z. Liu, et al., Acute toxicity and anti-fatigue activity of polysaccharide-rich extract from corn silk, Biomed. Pharmacother. 90 (2017) 686–693. https://doi.org/10.1016/j.biopha.2017.04.045.
M. A. Katekhaye, K. N. Kumar, K. J. Reddy, et al., Comparison of chicken varieties: muscle fiber diameter, pH, color, tenderness in pectoralis major muscle, J. Meat Sci. 13 (2018) 60. https://doi.org/10.5958/2581-6616.2018.00009.9.
H. D. Lyu, Q. Na, L. L. Wang, et al., Effects of muscle type and aging on glycolysis and physicochemical quality properties of bactrian camel ( Camelus bactrianus) meat, Animals 14 (2024) 611. https://doi.org/10.3390/ani14040611.
Y. K. Kang, Y. M. Choi, S. H. Lee, et al., Effects of myosin heavy chain isoforms on meat quality, fatty acid composition, and sensory evaluation in Berkshire pigs, Meat Sci. 89 (2011) 384–389. https://doi.org/10.1016/j.meatsci.2011.04.019.
B. Picard, M. Gagaoua, Muscle fiber properties in cattle and their relationships with meat qualities: an overview, J. Agric. Food Chem. 68 (2020) 6021–6039. https://doi.org/10.1021/acs.jafc.0c02086.
M. Gil, M. À. Oliver, M. Gispert, et al., The relationship between pig genetics, myosin heavy chain I, biochemical traits and quality of M. longissimus thoracis, Meat Sci. 65 (2003) 1063–1070. https://doi.org/10.1016/S0309-1740(02)00324-8.
S. Liu, M. Du, J. Sun, et al., Bacillus subtilis and Enterococcus faecium co-fermented feed alters antioxidant capacity, muscle fibre characteristics and lipid profiles of finishing pigs, Br. J. Nutr. 131 (2024) 1298–1307. https://doi.org/10.1017/S000711452300291X.
C. Liu, Y. Hou, R. Su, et al., Effect of dietary probiotics supplementation on meat quality, volatile flavor compounds, muscle fiber characteristics, and antioxidant capacity in lambs, Food Sci. Nutr. 10 (2022) 2646–2658. https://doi.org/10.1002/fsn3.2869.
K. M. van Boom, J. P. Schoeman, J. C. A. Steyl, et al., Fiber type and metabolic characteristics of skeletal muscle in 16 breeds of domestic dogs, Anat. Rec. 306 (2023) 2572–2586. https://doi.org/10.1002/ar.25207.
N. N. Naseri, J. Bonica, H. Xu, et al., Novel metabolic abnormalities in the tricarboxylic acid cycle in peripheral cells from huntington’s disease patients, PLoS ONE 11 (2016) e0160384. https://doi.org/10.1371/journal.pone.0160384.
W. An, Z. Huang, Z. Mao, et al., Taurine promotes muscle fiber type transformation through CaN/NFATc1 signaling in porcine myoblasts, J. Cell. Physiol. 238 (2023) 2879–2887. https://doi.org/10.1002/jcp.31136.
C. Kong, R. Gao, X. Yan, et al., Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet, Nutrition 60 (2019) 175–184. https://doi.org/10.1016/j.nut.2018.10.002.
B. Wang, Y. Luo, R. Su, et al., Impact of feeding regimens on the composition of gut microbiota and metabolite profiles of plasma and feces from Mongolian sheep, J. Microbiol. 58 (2020) 472–482. https://doi.org/10.1007/s12275-020-9501-0.
A. Wichmann, A. Allahyar, T. U. Greiner, et al., Microbial modulation of energy availability in the colon regulates intestinal transit, Cell Host Microbe. 14 (2013) 582–590. https://doi.org/10.1016/j.chom.2013.09.012.
J. Jeyanathan, C. Martin, D. P. Morgavi, The use of direct-fed microbials for mitigation of ruminant methane emissions: a review, Animal 8 (2014) 250–261. https://doi.org/10.1017/S1751731113002085.
H. Zafar, M. H. Saier, Gut Bacteroides species in health and disease, Gut Microbes. 13 (2021) 1–20. https://doi.org/10.1080/19490976.2020.1848158.
C. L. Betancur-Murillo, S. B. Aguilar-Marín, J. Jovel, Prevotella: a key player in ruminal metabolism, Microorganisms 11 (2022) 1. https://doi.org/10.3390/microorganisms11010001.
E. Fabersani, A. Marquez, M. Russo, et al., Lactic acid bacteria strains differently modulate gut microbiota and metabolic and immunological parameters in high-fat diet-fed mice, Front. Nutr. 8 (2021) 718564. https://doi.org/10.3389/fnut.2021.718564.
Y. Yao, B. Fu, D. Han, et al., Formate-dependent acetogenic utilization of glucose by the fecal acetogen clostridium bovifaecis, Appl. Environ. Microbiol. 86 (2020) e01870-20. https://doi.org/10.1128/AEM.01870-20.
Y. Li, P. He, Y. Chen, et al., Microbial metabolite sodium butyrate enhances the anti-tumor efficacy of 5-fluorouracil against colorectal cancer by modulating PINK1/Parkin signaling and intestinal flora, Sci. Rep. 14 (2024) 13063. https://doi.org/10.1038/s41598-024-63993-x.
R. Qi, J. Sun, X. Qiu, et al., The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets, Sci. Rep. 11 (2021) 11237. https://doi.org/10.1038/s41598-021-90881-5.
L. Dou, C. Liu, X. Chen, et al., Supplemental clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs, Meat Sci. 204 (2023) 109235. https://doi.org/10.1016/j.meatsci.2023.109235.
S. Chen, L. Huang, B. Liu, et al., Dynamic changes in butyrate levels regulate satellite cell homeostasis by preventing spontaneous activation during aging, Sci. China Life Sci. 67 (2024) 745–764. https://doi.org/10.1007/s11427-023-2400-3.
C. Anbalagan, S. K. Nandabalan, P. Sankar, et al., Postbiotics of naturally fermented synbiotic mixture of rice water aids in promoting colonocyte health, Biomolecules 14 (2024) 344. https://doi.org/10.3390/biom14030344.
D. Pérez-Reytor, C. Puebla, E. Karahanian, et al., Use of short-chain fatty acids for the recovery of the intestinal epithelial barrier affected by bacterial toxins, Front. Physiol. 12 (2021) 650313. https://doi.org/10.3389/fphys.2021.650313.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).