Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Freezing is the primary preservation method for surimi gel. However, repeated freezing and thawing during storage, processing, or consumption can cause ice crystal growth and recrystallization, leading to mechanical damage to muscle cells and tissue. Additionally, it can induce protein denaturation and oxidation, ultimately resulting in a decline in the quality of surimi gel. This includes moisture loss, nutrient depletion, as well as deterioration in taste and texture. Therefore, it is crucial to incorporate cryoprotectants or utilize innovative freezing/thawing technologies to enhance the quality of freeze-thawed surimi gel. This review aims to elucidate the mechanisms underlying the quality deterioration of surimi gel during freeze-thawing cycles, summarize changes in myofibrillar protein and alterations in surimi gel quality after freeze-thawing cycle treatment, and finally strategies for enhancing the quality of surimi gel throughout the freeze-thawing cycles are discussed. This review will offer valuable references for improving the stability of freeze-thawed surimi gel and provide insights into the development of novel cryoprotectants and freezing/thawing technologies.
N. Buamard, S. Benjakul, Effect of ethanolic coconut husk extract and pre-emulsification on properties and stability of surimi gel fortified with seabass oil during refrigerated storage, LWT-Food Sci. Technol. 108 (2019) 160–167. https://doi.org/10.1016/j.lwt.2019.03.038.
X. J. Liu, J. H. Chi, Y. W. Lin, et al., Mechanistic insights into combined effects of continuous microwave heating and tremella powder addition on physiochemical properties of Nemipterus virgatus surimi gel, Food Chem. 460 (2024) 140752. https://doi.org/10.1016/j.foodchem.2024.140752.
X. Chen, X. Z. Li, F. J. Yang, et al., Effects and mechanism of antifreeze peptides from silver carp scales on the freeze-thaw stability of frozen surimi, Food Chem. 396 (2022) 133717. https://doi.org/10.1016/j.foodchem.2022.133717.
T. Li, L. H. Niu, X. H. Li, et al., Formation of advanced glycation end-products in silver carp ( Hypophthalmichthys molitrix) surimi products during heat treatment as affected by freezing-thawing cycles, Food Chem. 395 (2022) 133612. https://doi.org/10.1016/j.foodchem.2022.133612.
Y. Cao, L. Y. Zhao, Q. L. Huang, et al., Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees, Food Hydrocoll. 124 (2022) 107267. https://doi.org/10.1016/j.foodhyd.2021.107267.
S. Yan, Z. Du, C. Liu, et al., Uncovering quality changes of surimi-sol based products subjected to freeze-thaw process: the potential role of oxidative modification on salt-dissolved myofibrillar protein aggregation and gelling properties, Food Chem. 451 (2024) 139456. https://doi.org/10.1016/j.foodchem.2024.139456.
H. Zhu, Q. C. Zhang, Y. C. Ding, et al., Myofibrillar protein oxidation associated with surimi processing and emerging control techniques: a review, Trends Food Sci. Technol. 149 (2024) 104560. https://doi.org/10.1016/j.jpgs.2024.104560.
D. Wu, Y. Cao, T. Yin, et al., Inhibitive effect of trehalose and sodium pyrophosphate on oxidation and structural changes of myofibrillar proteins in silver carp surimi during frozen storage, Food Res. Int. 187 (2024) 114361. https://doi.org/10.1016/j.foodres.2024.114361.
X. Y. Luo, K. Huang, Y. L. Lei, et al., Effects of freezing on quality attributes of surimi gels with various cross-linking degrees using MTGase: quantitative analysis based on the ice crystals, network structure, and taste substances, J. Food Eng. 371 (2024) 111975. https://doi.org/10.1016/j.jfoodeng.2024.111975.
D. Wu, Y. Cao, Q. L. Huang, Trehalose and sodium pyrophosphate inhibit ice-induced freezing quality deterioration of surimi: a comparative study on water migration, ice crystal growth, glass transition and state diagram, J. Food Eng. 257 (2023) 111657. https://doi.org/10.1016/j.jfoodeng.2023.111657.
Y. M. Zhang, G. P. Bai, J. P. Wang, et al., Myofibrillar protein denaturation/oxidation in freezing-thawing impair the heat-induced gelation: mechanisms and control technologies, Trends Food Sci. Technol. 138 (2023) 655–670. https://doi.org/10.1016/j.jpgs.2023.06.035.
F. Xie, W. Q. Zheng, T. T. Fu, et al., Cryoprotective effect of tamarind seed polysaccharide on grass carp surimi: characteristics, interactions, and mechanisms, Food Hydrocoll. 153 (2024) 110022. https://doi.org/10.1016/j.foodhyd.2024.110022.
X. Feng, X. Yu, Y. L. Yang, et al., Improving the freeze-thaw stability of fish myofibrils and myofibrillar protein gels: current methods and future perspectives, Food Hydrocoll. 144 (2023) 109041. https://doi.org/10.1016/j.foodhyd.2023.109041.
J. Li, R. N. Feng, J. D. Shen, et al., Influence of sodium chloride and sodium pyrophosphate on the physicochemical and gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles, LWT-Food Sci. Technol. 170 (2022) 114055. https://doi.org/10.1016/j.lwt.2022.114055.
S. Tang, G. Feng, W. Cui, et al., Effect of α-tocopherol on the physicochemical properties of sturgeon surimi during frozen storage, Molecules 24 (2019) 710. https://doi.org/10.3390/molecules24040710.
J. Wu, C. S. Li, L. H. Li, et al., Improved physicochemical properties and product characteristics of tilapia surimi by tea polyphenols during chilled storage, LWT-Food Sci. Technol. 167 (2022) 113822. https://doi.org/10.1016/j.lwt.2022.113822.
S. N. Zhang, M. Meenu, T. Xiao, et al., The impact of pressure-shift freezing on the three-dimensional network structure and properties of myofibrillar proteins in surimi gel derived from freshwater fish, Innovative Food Sci. Emerging Technol. 94 (2024) 103673. https://doi.org/10.1016/j.ifset.2024.103673.
O. Y. Zheng, Q. Hou, Q. H. Wei, et al., Insights into the potential mechanism of diversified freezing techniques’ influence on quality of golden pompano ( Trachinotus ovatus): focus on freezing speed, ice crystal morphology, water migration, and texture properties, LWT-Food Sci. Technol. 205 (2024) 116539. https://doi.org/10.1016/j.lwt.2024.116539.
X. Y. Luo, K. Huang, L. L. Yu, et al., Insights into the potential mechanism of liquid nitrogen spray freezing’s influence on volatile compounds in surimi gels with different cross-linking degrees: focus on oxidation, protein structure, intermolecular force and free amino acid alterations, Food Chem. 444 (2024) 138558. https://doi.org/10.1016/j.foodchem.2024.138558.
W. J. Xu, Y. L. Bao, H. Gou, et al., Mitigation of mechanical damage and protein deterioration in giant river prawn ( Macrobrachium rosenbergii) by multi-frequency ultrasound-assisted immersion freezing, Food Chem. 458 (2024) 140324. https://doi.org/10.1016/j.foodchem.2024.140324.
J. Xie, Y. Yan, Q. N. Pan, et al., Effect of frozen time on Ctenopharyngodon idella surimi: with emphasis on protein denaturation by Tri-step spectroscopy, J. Mol. Struct. 1217 (2020) 128421. https://doi.org/10.1016/j.molstruc.2020.128421.
D. Yan, W. J. Xu, Q. Q. Yu, et al., Pre-rigor salting improves gel strength and water-holding of surimi gel made from snakehead fish ( Channa argus): the role of protein oxidation, Food Chem. 450 (2024) 139269. https://doi.org/10.1016/j.foodchem.2024.139269.
L. Wang, J. Yu, S. G. Xia, et al., Alaska pollock surimi-based meat analogs by high-moisture extrusion: effect of konjac glucomannan/curdlan/carrageenan/sodium alginate on fibrous structure formation, Food Chem. 23 (2024) 140584. https://doi.org/10.1016/j.foodchem.2024.140584.
X. W. Zhu, D. H. He, Y. Y. Chen, et al., Adenosine monophosphate boosts the cryoprotection of ultrasound-assisted freezing to frozen surimi: insights into protein structures and gelling behaviors, Food Chem. 450 (2024) 139343. https://doi.org/10.1016/j.foodchem.2024.139343.
C. Wang, J. H. Rao, X. Y. Li, et al., Chickpea protein hydrolysate as a novel plant-based cryoprotectant in frozen surimi: insights into protein structure integrity and gelling behaviors, Food Res. Int. 169 (2023) 112871. https://doi.org/10.1016/j.foodres.2023.112871.
R. Jia, Q. Q. Jiang, M. Kanda, et al., Effects of heating processes on changes in ice crystal formation, water holding capacity, and physical properties of surimi gels during frozen storage, Food Hydrocoll. 90 (2019) 254–265. https://doi.org/10.1016/j.foodhyd.2018.12.029.
Z. W. Shen, M. L. Tian, F. Wang, et al., Enhancing freeze-thaw stability and flavor in surimi products: impact of virgin coconut oil and fish oil incorporation, Food Biosci. 57 (2024) 103515. https://doi.org/10.1016/j.fbio.2023.103515.
H. Z. Chen, M. Zhang, Z. M. Rao, Effect of ultrasound-assisted thawing on gelling and 3D printing properties of silver carp surimi, Food Res. Int. 145 (2021) 110405. https://doi.org/10.1016/j.foodres.2021.110405.
Y. Y. Wang, J. K. Yan, Y. H. Ding, et al., Effect of sweep frequency ultrasound and fixed frequency ultrasound thawing on gelling properties of myofibrillar protein from quick-frozen small yellow croaker and its possible mechanisms, LWT-Food Sci. Technol. 150 (2021) 111922. https://doi.org/10.1016/j.lwt.2021.111922.
X. R. Yang, C. H. Bian, Y. X. Dong, et al., Effects of different power multi-frequency ultrasound-assisted thawing on the quality characteristics and protein stability of large yellow croaker ( Larimichthys crocea), Food Chem.: X 23 (2024) 101559. https://doi.org/10.1016/j.fochx.2024.101559.
W. W. Duan, H. Qiu, K. K. Htwe, et al., Investigation of the relationship between gel strength and microstructure of surimi gel induced by dense phase carbon dioxide based on quantitative analysis, Food Hydrocoll. 146 (2024) 109209. https://doi.org/10.1016/j.foodhyd.2023.109209.
T. Shi, L. Yuan, Y. F. Kong, et al., Towards higher-quality low salt surimi gels: significance of the combinatorial effects of chickpea protein with transglutaminase on their micro-structures, LWT-Food Sci. Technol. 199 (2024) 116103. https://doi.org/10.1016/j.lwt.2024.116103.
H. B. Mi, W. S. Yu, Y. Li, et al., Effect of modified cellulose-based emulsion on gel properties and protein conformation of Nemipterus virgatus surimi, Food Chem. 455 (2024) 139841. https://doi.org/10.1016/j.foodchem.2024.139841.
H. M. Moreno, A. J. Borderías, C. A. Tovar, Effect of frozen storage on the viscoelastic properties of mixed legume-surimi gels, LWT-Food Sci. Technol. 145 (2021) 111353. https://doi.org/10.1016/j.lwt.2021.111353.
J. Q. Zhan, J. J. Fu, D. L. Jin, et al., Surimi freshness monitoring of 4D printing material with anthocyanin, J. Food Eng. 358 (2023) 111678. https://doi.org/10.1016/j.jfoodeng.2023.111678.
X. Y. Peng, Y. Y. Li, J. Yu, et al., Assessment of the impact of whey protein hydrolysate on myofibrillar proteins in surimi during repeated freeze-thaw cycles: quality enhancement and antifreeze potential, Food Chem. 460 (2024) 140552. https://doi.org/10.1016/j.foodchem.2024.140552.
L. Yuan, X. M. Guo, Z. Y. Xiong, et al., Effects of sturgeon oil and its Pickering emulsion on the quality of sturgeon surimi gel, Food Chem.: X 22 (2024) 101451. https://doi.org/10.1016/j.fochx.2024.101451.
Y. X. Wang, X. D. Jiao, N. N. Zhang, et al., Effects of distinct lipid phases and packaging on alleviating the quality deterioration of surimi gels during frozen storage, Food Biosci. 58 (2024) 103678. https://doi.org/10.1016/j.fbio.2024.103678.
H. B. Mi, Y. H. Zhang, Y. M. Zhao, et al., Cryoprotective effect of soluble soybean polysaccharides and enzymatic hydrolysates on the myofibrillar protein of Nemipterus virgatus surimi, Food Chem. 446 (2024) 138903. https://doi.org/10.1016/j.foodchem.2024.138903.
H. B. Shi, M. X. Zhang, X. C. Liu, et al., Improved qualities of salt-reduced tilapia surimi by adding konjac glucomannan: insight into the edible traits, gel properties and anti-freezing ability, Food Hydrocoll. 153 (2024) 109971. https://doi.org/10.1016/j.foodhyd.2024.109971.
L. J. Qin, Y. Fu, F. Yang, et al., Effects of polysaccharides autoclave extracted from Flammulina velutipes mycelium on freeze-thaw stability of surimi gels, LWT-Food Sci. Technol. 169 (2022) 113941. https://doi.org/10.1016/j.lwt.2022.113941.
X. Y. Sun, Q. Li, N. Ding, et al., Cryoprotective effect of fistular onion stalk polysaccharide on frozen surimi derived from bighead carp: physicochemical properties and gel quality during storage, Food Hydrocoll. 148 (2024) 109404. https://doi.org/10.1016/j.foodhyd.2023.109404.
N. Walayat, R. Wei, Z. C. Su, et al., Effect of tea polysaccharides on fluctuated frozen storage impaired total sulfhydryl level and structural attributes of silver carp surimi proteins, Food Hydrocoll. 157 (2024) 110448. https://doi.org/10.1016/j.foodhyd.2024.110448.
N. Walayat, W. Tang, X. Wang, et al., Effective role of konjac oligosaccharide against oxidative changes in silver carp proteins during fluctuated frozen storage, Food Hydrocoll. 131 (2022) 107761. https://doi.org/10.1016/j.foodhyd.2022.107761.
J. Liu, C. Fang, Y. Luo, et al., Effects of konjac oligo-glucomannan on the physicochemical properties of frozen surimi from red gurnard ( Aspitrigla cuculus), Food Hydrocoll. 89 (2019) 668–673. https://doi.org/10.1016/j.foodhyd.2018.10.056.
N. Walayat, W. Tang, A. Nawaz, et al., Influence of konjac oligo-glucomannan as cryoprotectant on physicochemical and structural properties of silver carp surimi during fluctuated frozen storage, LWT-Food Sci. Technol. 164 (2022) 113641. https://doi.org/10.1016/j.lwt.2022.113641.
W. Lan, Y. Zhao, X. Hu, et al., Effects of carrageenan oligosaccharide on lipid, protein oxidative changes, and moisture migration of Litopenaeus vannamei during freeze-thaw cycles. J. Food Process. Preserv. 44 (2020) 14675. https://doi.org/10.1111/jfpp.14675.
Z. Zhang, Z. Xiong, N. Walayat, et al., Effects of the mixture of xylooligosaccharides and egg white protein on the physicochemical properties, conformation, and gel-forming ability of Culter alburnus myofibrillar protein during multiple freeze-thaw cycles. Foods 10 (2021) 2007. https://doi.org/10.3390/foods10092007.
W. X. Li, X. Bai, X. F. Xia, et al., Effect of sodium alginate ice glazing on the quality of the freeze-thawed fish balls, Int. J. Biol. Macromol. 254 (2024) 128097. https://doi.org/10.1016/j.ijbiomac.2023.128097.
Z. Y. Li, Q. Wang, S. T. Li, et al., Usage of nanocrystalline cellulose as a novel cryoprotective substance for the Nemipterus virgatus surimi during frozen storage, Food Chem.: X 16 (2022) 100506. https://doi.org/10.1016/j.fochx.2022.100506.
Y. Y. Zhai, W. Q. Peng, W. Luo, et al., Component stabilizing mechanism of membrane-separated hydrolysates on frozen surimi, Food Chem. 431 (2024) 137114. https://doi.org/10.1016/j.foodchem.2023.137114.
X. Zhang, Y. Zhang, Y. Dong, et al., Study on the mechanism of protein hydrolysate delaying quality deterioration of frozen surimi, LWT-Food Sci. Technol. 167 (2022) 113767. https://doi.org/10.1016/j.lwt.2022.113767.
J. Lin, H. Hong, L. T. Zhang, et al., Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp ( Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi, Food Chem. 298 (2019) 124868. https://doi.org/10.1016/j.foodchem.2019.05.142.
X. L. Shen, T. Li, X. H. Li, et al., Dual cryoprotective and antioxidant effects of silver carp ( Hypophthalmichthys molitrix) protein hydrolysates on unwashed surimi stored at conventional and ultra-low frozen temperatures, LWT-Food Sci. Technol. 153 (2022) 112563. https://doi.org/10.1016/j.lwt.2021.112563.
S. Supawong, J. Park, S. Thawornchinsombut, Effect of rice bran hydrolysates on physicochemical and antioxidative characteristics of fried fish cakes during repeated freeze-thaw cycles, Food Biosci. 32 (2019) 100471. https://doi.org/10.1016/j.fbio.2019.100471.
S. Supawong, J. Park, S. Thawornchinsombut, et al., Rice bran hydrolysates minimize freeze-denaturation of washed fish mince during extended freeze-thaw cycles, J. Aquat. Food Prod. Technol. 30 (2021) 944–953. https://doi.org/10.1080/10498850.2021.1958968.
S. Kuepethkaew, S. Klomklao, S. Benjakul, et al., Assessment of gelatin hydrolysates from threadfin bream ( Nemipterus hexodon) skin as a cryoprotectant for denaturation prevention of threadfin bream natural actomyosin subjected to different freeze-thaw cycles, Int. J. Refrig. 143 (2022) 19–27. https://doi.org/10.1016/j.ijrefrig.2022.06.027.
P. Kittiphattanabawon, S. Benjakul, W. Visessanguan, et al., Cryoprotective effect of gelatin hydrolysate from blacktip shark skin on surimi subjected to different freeze-thaw cycles, LWT-Food Sci. Technol. 47 (2012) 437–442. https://doi.org/10.1016/j.lwt.2012.02.003.
Y. N. Zhang, L. Zhao, H. Liu, et al., Effect of eel head protein hydrolysates on the denaturation of grass garp surimi during frozen storage, Procedia Eng. 37 (2012) 223–228. https://doi.org/10.1016/j.proeng.2012.04.231.
X. Chen, J. H. Wu, X. Z. Li, et al., Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides, Food Chem. 371 (2022) 131054. https://doi.org/10.1016/j.foodchem.2021.131054.
F. J. Yang, W. T. Jiang, X. Chen, et al., Investigation on the quality regulating mechanism of antifreeze peptides on frozen surimi: from macro to micro, Food Res. Int. 163 (2023) 112299. https://doi.org/10.1016/j.foodres.2022.112299.
H. Tian, F. J. Yang, X. Chen, et al., Investigation and effect on 3D printing quality of surimi ink during freeze-thaw cycles by antifreeze peptides, J. Food Eng. 337 (2023) 111234. https://doi.org/10.1016/j.jfoodeng.2022.111234.
Z. Han, Z. L. Chen, X. D. Xu, et al., Extending the freshness of tilapia surimi with pulsed electric field modified pea protein isolate-EGCG complex, Food Hydrocoll. 15 (2024) 109826. https://doi.org/10.1016/j.foodhyd.2024.109826.
S. Yan, Y. Ding, Z. Du, et al., Oxidative regulation and cytoprotective effects of γ-polyglutamic acid on surimi sol subjected to freeze-thaw process, Food Chem. 10 (2024) 140824. https://doi.org/10.1016/j.foodchem.2024.140824.
X. Feng, K. Cen, X. Yu, et al., Quinoa protein Pickering emulsion improves the freeze-thaw stability of myofibrillar protein gel: maintaining protein composition, structure, conformation and digestibility and slowing down protein oxidation, Int. J. Biol. Macromol. 253 (2023) 126682. https://doi.org/10.1016/j.ijbiomac.2023.126682.
K. Cen, X. Yu, C. Gao, et al., Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel, Food Chem. 394 (2022) 133456. https://doi.org/10.1016/j.foodchem.2022.133456.
K. Y. Cen, C. X. Huang, X. Yu, et al., Quinoa protein Pickering emulsion: a promising cryoprotectant to enhance the freeze-thaw stability of fish myofibril gels, Food Chem. 407 (2023) 135139. https://doi.org/10.1016/j.foodchem.2022.135139.
H. N. Wang, J. X. Zhang, X. R. Liu, et al., Effect of sodium starch octenyl succinate-based Pickering emulsion on the physicochemical properties of hairtail myofibrillar protein gel subjected to multiple freeze-thaw cycles, Food Sci. Hum. Wellness 13 (2024) 1018–1028. https://doi.org/10.26599/FSHW.2022.9250088.
Z. Tian, X. Jiang, M. Xiao, et al., Assessing the gel quality and storage properties of Hypophythalmalmichthys molitrix surimi gel prepared with epigallocatechin gallate subject to multiple freeze-thaw cycles, Foods 11 (2022) 1612. https://doi.org/10.3390/foods11111612.
T. Wang, Z. Li, F. Yuan, et al., Effects of brown seaweed polyphenols, α-tocopherol, and ascorbic acid on protein oxidation and textural properties of fish mince ( Pagrosomus major) during frozen storage, J. Sci. Food Agric. 97 (2017) 1102–1107. https://doi.org/10.1002/jsfa.7835.
Y. Fu, Y. Cao, Z. Y. Chang, et al., Effects of Flammulina velutipes polysaccharide with ice recrystallization inhibition activity on the quality of beef patties during freeze-thaw cycles: an emphasis on water status and distribution, Meat Sci. 209 (2024) 109420. https://doi.org/10.1016/j.meatsci.2023.109420.
W. H. Gao, Y. P. Huang, X. A. Zeng, et al., Effect of soluble soybean polysaccharides on freeze-denaturation and structure of myofibrillar protein of bighead carp surimi with liquid nitrogen freezing, Int. J. Biol. Macromol. 135 (2019) 839–844. https://doi.org/10.1016/j.ijbiomac.2019.05.186.
N. Walayat, M. Yi, X. Wang, et al., Cryoprotective role of konjac oligosaccharide on silver carp proteins during frozen storage through molecular dynamic simulation, LWT-Food Sci. Technol. 188 (2023) 115629. https://doi.org/10.1016/j.lwt.2023.115329.
Y. Wang, D. J. Wang, J. B. Liu, et al., Effects of rice bran feruloyl oligosaccharides on gel properties and microstructure of grass carp surimi, Food Chem. 407 (2023) 135003. https://doi.org/10.1016/j.foodchem.2022.135003.
C. C. Zhang, Y. R. Wang, Q. Yang, et al., Effect of bovine hide gelatin antifreeze peptides on the quality of frozen dough treated with freeze-thaw cycles and its steamed bread, J. Cereal Sci. 117 (2024) 103924. https://doi.org/10.1016/j.jcs.2024.103924.
L. Huang, H. Zhang, B. Kong, et al., Textural and sensorial quality protection in frozen dumplings through the inhibition of lipid and protein oxidation with clove and rosemary extracts, J. Sci. Food Agric. 99 (2019) 4739–4747. https://doi.org/10.1002/jsfa.9716.
S. Sharma, R. K. Majumdar, N. K. Mehta, et al., Evaluating the efficacy of citrus fruit peel extract in preserving the quality of silver carp ( Hypophthalmichthys molitrix) surimi during frozen storage, J. Agric. Food Res. 18 (2024) 101440. https://doi.org/10.1016/j.jafr.2024.101440.
Z. F. Wang, S. Q. Liu, W. G. Yang, et al., Ovalbumin/sodium alginate Pickering emulsion: structural characteristics and its contribution to enhancing the gel properties of hairtail ( Trichiurus haumela) surimi, Food Chem. 15 (2024) 140893. https://doi.org/10.1016/j.foodchem.2024.140893.
X. Y. Luo, K. Huang, Y. X. Niu, et al., Effects of freezing methods on physicochemical properties, protein/fat oxidation and odor characteristics of surimi gels with different cross-linking degrees, Food Chem. 432 (2024) 137268. https://doi.org/10.1016/j.foodchem.2023.137268.
X. Y. Luo, J. J. Li, W. L. Yan, et al., Physicochemical changes of MTGase cross-linked surimi gels subjected to liquid nitrogen spray freezing, Int. J. Biol. Macromol. 160 (2020) 642–651. https://doi.org/10.1016/j.ijbiomac.2020.05.249.
M. X. Lu, C. Zhang, B. Y. Chen, et al., Improvement of gelation properties of Penaeus vannamei surimi by magnetic field-assisted freezing in combination with curdlan, Int. J. Biol. Macromol. 257 (2024) 128323. https://doi.org/10.1016/j.ijbiomac.2023.128323.
S. M. Zhao, M. R. Hei, Y. Liu, et al., Effect of low-frequency alternating magnetic fields on the physicochemical, conformational and rheological properties of myofibrillar protein after iterative freeze-thaw cycles, Int. J. Biol. Macromol. 267 (2024) 131418. https://doi.org/10.1016/j.ijbiomac.2024.131418.
X. H. Zheng, B. W. Zou, J. W. Zhang, et al., Recent advances of ultrasound-assisted technology on aquatic protein processing: extraction, modification, and freezing/thawing-induced oxidation, Trends Food Sci. Technol. 144 (2024) 104309. https://doi.org/10.1016/j.jpgs.2023.104309.
H. Yu, J. Mei, J. Xie, New ultrasonic assisted technology of freezing, cooling and thawing in solid food processing: a review, Ultrason. Sonochem. 90 (2022) 106185. https://doi.org/10.1016/j.ultsonch.2022.106185.
S. N. Zhang, M. Meenu, T. Xiao, et al., Insight into the mechanism of pressure shift freezing on water mobility, microstructure, and rheological properties of grass carp surimi gel, Innovative Food Sci. Emerging Technol. 91 (2024) 103528. https://doi.org/10.1016/j.ifset.2023.103528.
S. N. Zhang, H. Ramaswamy, L. H. Hu, et al., Effect of pressure-shift freezing treatment on gelling and structural properties of grass carp surimi, Innovative Food Sci. Emerging Technol. 88 (2023) 103456. https://doi.org/10.1016/j.ifset.2023.103456.
S. N. Zhang, T. Xiao, J. D. Ren, et al., The influence of pressure-shift freezing based on the supercooling and pressure parameters on the freshwater surimi gel characteristics, Food Res. Int. 196 (2024) 115014. https://doi.org/10.1016/j.foodres.2024.115014.
T. Li, S. Kuang, T. Xiao, et al., The effect of pressure-shift freezing versus air freezing and liquid immersion on the quality of frozen fish during storage, Foods 11 (2022) 1842. https://doi.org/10.3390/foods11131842.
W. H. Zhu, H. F. Guo, M. L. Han, et al., Evaluating the effects of nanoparticles combined ultrasonic-microwave thawing on water holding capacity, oxidation, and protein conformation in jumbo squid ( Dosidicus gigas) mantles, Food Chem. 402 (2023) 134250. https://doi.org/10.1016/j.foodchem.2022.134250.
G. L. Jia, S. Nirasawa, X. H. Ji, et al., Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field, Food Chem. 240 (2018) 910–916. https://doi.org/10.1016/j.foodchem.2017.07.138.
Z. Y. Peng, M. M. Zhu, J. Zhang, et al., Physicochemical and structural changes in myofibrillar proteins from porcine longissimus dorsi subjected to microwave combined with air convection thawing treatment, Food Chem. 343 (2021) 128412. https://doi.org/10.1016/j.foodchem.2020.128412.
M. M. Li, S. F. He, Y. Y. Sun, et al., Effectiveness of L-arginine/ L-lysine in retarding deterioration of structural and gelling properties of duck meat myofibrillar protein during freeze-thaw cycles, Food Biosci. 51 (2023) 102302. https://doi.org/10.1016/j.fbio.2022.102302.
R. Li, D. M. Pan, Y. K. Li, et al., Injection of L-arginine or L-lysine alleviates freezing-induced deterioration of porcine longissimus lumborum muscle, J. Food Meas. Charact. 17 (2023) 1241–1252. https://doi.org/10.1007/s11694-022-01684-9.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).