Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Colon cancer is one of the leading causes of cancer-related deaths and the second most common cancer in Western countries. Despite the availability of various treatment modalities, these therapies have not been fully successful due to their limited effectiveness and serious side effects. As a result, an increasing number of researchers are focusing on the search for natural active substances as potential agents for the treatment and prevention of colon cancer. Bioactive peptides derived from proteins play an important role in maintaining body functions. Several in vivo and in vitro studies have demonstrated that protein peptides can help prevent and mitigate colon cancer. This paper, therefore, explores the mitigating effects and mechanisms of action of protein peptides from different sources on colon cancer, as well as the factors influencing their anticancer effects. It provides a scientific basis for the prevention and treatment of colon cancer and for the development of new raw materials for foods with potential anticancer properties.
N. Keum, E. H. Giovannucci, Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies, Nat. Rev. Gastroenterol. Hepatologyl. 16 (2019) 713–732. https://doi.org/10.1038/s41575-019-0189-8.
R. L. Siegel, A. N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA: Cancer J. Clin. 74 (2024) 12–49. https://doi.org/10.3322/caac.21820.
P. A. Newcomb, J. Baron, M. Cotterchio, et al., Colon cancer family registry: an international resource for studies of the genetic epidemiology of colon cancer, Cancer Epidemiol. Biomarker. Prev. 16 (2007) 2331–2343. https://doi.org/10.1158/1055-9965.EPI-07-0648.
T. Sawicki, M. Ruszkowska, A. Danielewicz, et al., A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis, Cancers 13 (2021) 2025. https://doi.org/10.3390/cancers13092025.
M. Ahmed, Colon cancer: a clinician’s perspective in 2019, Gastroenterol. Res. 13 (2020) 1–10. https://doi.org/10.14740/gr1239.
M. L. Slattery, S. L. Edwards, K. M. Boucher, et al., Lifestyle and colon cancer: an assessment of factors associated with risk, Am. J. Epidemiol. 150 (1999) 869–877. https://doi.org/10.1093/oxfordjournals.aje.a010092.
C. Cao, T. D. Yan, D. Black, et al., A systematic review and meta-analysis of cytoreductive surgery with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis of colorectal origin, Ann. Surg. Oncol. 16 (2009) 2152–2165. https://doi.org/10.1245/s10434-009-0487-4.
L. Lemoine, P. Sugarbaker, K. van der Speeten, Pathophysiology of colorectal peritoneal carcinomatosis: role of the peritoneum, World J. Gastroenterol. 22 (2016) 7692. https://doi.org/10.3748/wjg.v22.i34.7692.
P. H. Sugarbaker, Improving oncologic outcomes for colorectal cancer at high risk for local-regional recurrence with novel surgical techniques, Expert Rev. Gastroenterol. Hepatol. 10 (2016) 205–213. https://doi.org/10.1586/17474124.2016.1110019.
D. Groza, S. Gehrig, P. Kudela, et al., Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis, Oncoimmunology 7 (2018) e1424676. https://doi.org/10.1080/2162402x.2018.1424676.
T. Rustad, Utilisation of marine by-products, Electron. J. Environ. Agric. Food Chem. 2 (2003) 458–463.
M. I. Shaik, N. M. Sarbon, A review on purification and characterization of anti-proliferative peptides derived from fish protein hydrolysate, Food Rev. Int. 38 (2022) 1389–1409. https://doi.org/10.1080/87559129.2020.1812634.
A. Pihlanto-Leppälä, Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides, Trends Food Sci. Technol. 11 (2000) 347–356. https://doi.org/10.1016/S0924-2244(01)00003-6.
M. Chalamaiah, W. L. Yu, J. P. Wu, Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review, Food Chem. 245 (2018) 205–222. https://doi.org/10.1016/j.foodchem.2017.10.087.
M. Chalamaiah, R. Hemalatha, T. Jyothirmayi, Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review, Food Chem. 135 (2012) 3020–3038. https://doi.org/10.1016/j.foodchem.2012.06.100.
S. Umayaparvathi, S. Meenakshi, V. Vimalraj, et al., Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster ( Saccostrea cucullata), Biomed. Prev. Nutr. 4 (2014) 343–353. https://doi.org/10.1016/j.bionut.2014.04.006.
Z. Bhat, S. Kumar, H. F. Bhat, Bioactive peptides of animal origin: a review, J. Food Sci. Technol. 52 (2015) 5377–5392. https://doi.org/10.1007/s13197-015-1731-5.
N. Halim, H. Yusof, N. Sarbon, Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review, Trends Food Sci. Technol. 51 (2016) 24–33. https://doi.org/10.1016/j.jpgs.2016.02.007.
M. González-Montoya, B. Hernández-Ledesma, J. M. Silván, et al., Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation, Food Chem. 242 (2018) 75–82. https://doi.org/10.1016/j.foodchem.2017.09.035.
X. J. Ji, J. Wang, A. J. Ma, et al., Effects of silkworm pupa protein on apoptosis and energy metabolism in human colon cancer DLD-1 cells, Food Sci. Hum. Well. 11 (2022) 1171–1176. https://doi.org/10.1016/j.fshw.2022.04.011.
K. Hasani, P. Ariaii, M. Ahmadi, Antimicrobial, antioxidant and anti-cancer properties of protein hydrolysates from Indian mackerel ( Rastrelliger kanagurta) waste prepared using commercial enzyme, Int. J. Pept. Res. Ther. 28 (2022) 86. https://doi.org/10.1007/s10989-022-10396-z.
A. Allaoui, S. Gascón, S. Benomar, et al., Protein hydrolysates from fenugreek ( Trigonella foenum graecum) as nutraceutical molecules in colon cancer treatment, Nutrients 11 (2019) 724. https://doi.org/10.3390/nu11040724.
S. J. Rayaprolu, N. S. Hettiarachchy, P. Y. Chen, et al., Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth, Food Res. Int. 50 (2013) 282–288. https://doi.org/10.1016/j.foodres.2012.10.021.
D. A. L. Vital, E. G. de Mejía, V. P. Dia, et al., Peptides in common bean fractions inhibit human colorectal cancer cells, Food Chem. 157 (2014) 347–355. https://doi.org/10.1016/j.foodchem.2014.02.050.
V. P. Dia, E. G. de Mejia, Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression, Cancer Lett. 295 (2010) 44–53. https://doi.org/10.1016/j.canlet.2010.02.010.
R. Jahanbani, S. M. Ghaffari, M. Salami, et al., Antioxidant and anticancer activities of walnut ( Juglans regia L.) protein hydrolysates using different proteases, Plant Foods Hum. Nutr. 71 (2016) 402–409. https://doi.org/10.1007/s11130-016-0576-z.
A. Akbarmehr, S. H. Peighambardoust, B. Ghanbarzadeh, et al., Physicochemical, antioxidant, antimicrobial, and in vitro cytotoxic activities of corn pollen protein hydrolysates obtained by different peptidases, Food Sci. Nutr. 11 (2023) 2403–2417. https://doi.org/10.1002/fsn3.3252.
V. Wattayagorn, M. Kongsema, S. Tadakittisarn, et al., Riceberry rice bran protein hydrolyzed fractions induced apoptosis, senescence and G1/S cell cycle arrest in human colon cancer cell lines, Appl. Sci. 12 (2022) 6917. https://doi.org/10.3390/app12146917.
S. H. Shan, Z. W. Li, I. P. Newton, et al., A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells, Toxicol. Lett. 227 (2014) 129–138. https://doi.org/10.1016/j.toxlet.2014.03.008.
M. Zhang, T. H. Mu, Contribution of different molecular weight fractions to anticancer effect of sweet potato protein hydrolysates by six proteases on HT-29 colon cancer cells, Int. J. Food Sci. Technol. 53 (2018) 525–532. https://doi.org/10.1111/ijfs.13625.
A. Kannan, N. S. Hettiarachchy, J. O. Lay, et al., Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran, Peptides 31 (2010) 1629–1634. https://doi.org/10.1016/j.peptides.2010.05.018.
X. Fan, H. M. Guo, C. Teng, et al., Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in Caco-2 cells, Foods. 11 (2022) 194. https://doi.org/10.3390/foods11020194.
J. Xie, Z. S. Hong, J. J. Dai, et al., Isolation and identification of anti-colorectal cancer peptides from walnut proteins and associated in silico analysis, J. Funct. Foods 112 (2024) 105952. https://doi.org/10.1016/j.jff.2023.105952.
X. Fan, H. M. Guo, C. Teng, et al., Supplementation of quinoa peptides alleviates colorectal cancer and restores gut microbiota in AOM/DSS-treated mice, Food Chem. 408 (2023) 135196. https://doi.org/10.1016/j.foodchem.2022.135196.
C. Gao, R. Sun, Y. R. Xie, et al., The soy-derived peptide Vglycin inhibits the growth of colon cancer cells in vitro and in vivo, Exp. Biol. Med. 242 (2017) 1034–1043. https://doi.org/10.1177/1535370217697383.
D. A. Luna-Vital, E. González de Mejía, G. Loarca-Piña, Dietary peptides from Phaseolus vulgaris L. reduced AOM/DSS-induced colitis-associated colon carcinogenesis in Balb/c mice, Plant Foods Hum. Nutr. 72 (2017) 445–447. https://doi.org/10.1007/s11130-017-0633-2.
F. Tonolo, A. Folda, V. Scalcon, et al., Nrf2-activating bioactive peptides exert anti-inflammatory activity through inhibition of the NF-κB pathway, Int. J. Mol. Sci. 23 (2022) 4382. https://doi.org/10.3390/ijms23084382.
R. L. Jiang, B. Lönnerdal, Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways, Biochem. Cell Biol. 95 (2017) 99–109. https://doi.org/10.1139/bcb-2016-0094.
J. H. Lee, S. H. Moon, H. S. Kim, et al., Antioxidant and anticancer effects of functional peptides from ovotransferrin hydrolysates, J. Sci. Food Agric. 97 (2017) 4857–4864. https://doi.org/10.1002/jsfa.8356.
L. J. You, M. M. Zhao, R. H. Liu, et al., Antioxidant and antiproliferative activities of loach ( Misgurnus anguillicaudatus) peptides prepared by papain digestion, J. Agric. Food Chem. 59 (2011) 7948–7953. https://doi.org/10.1021/jf2016368.
M. N. Yousr, A. A. Aloqbi, U. M. Omar, et al., Antiproliferative activity of egg yolk peptides in human colon cancer cells, Nutr. Cancer 69 (2017) 674–681. https://doi.org/10.1080/01635581.2017.1295087.
B. N. P. Sah, T. Vasiljevic, S. McKechnie, et al., Antioxidant peptides isolated from synbiotic yoghurt exhibit antiproliferative activities against HT-29 colon cancer cells, Int. Dairy J. 63 (2016) 99–106. https://doi.org/10.1016/j.idairyj.2016.08.003.
H. M. Habib, W. H. Ibrahim, R. Schneider-Stock, et al., Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities, Food Chem. 141 (2013) 148–152. https://doi.org/10.1016/j.foodchem.2013.03.039.
C. Freiburghaus, C. Welinder, U. Tjörnstad, et al., Identification of ubiquitin in bovine milk and its growth inhibitory effects on human cancer cell lines, J. Dairy Sci. 93 (2010) 3442–3452. https://doi.org/10.3168/jds.2009-2878.
S. E. El-Didamony, M. H. Kalaba, M. H. Sharaf, et al., Melittin alcalase-hydrolysate: a novel chemically characterized multifunctional bioagent; antibacterial, anti-biofilm and anticancer, Front. Microbiol. 15 (2024) 1419917. https://doi.org/10.3389/fmicb.2024.1419917.
P. Maraming, S. Maijaroen, S. Klaynongsruang, et al., Antitumor ability of KT2 peptide derived from leukocyte peptide of crocodile against human HCT116 colon cancer xenografts, In Vivo 32 (2018) 1137–1144. https://doi.org/10.21873/invivo.11356.
R. Hakkak, S. Korourian, M. J. Ronis, et al., Dietary whey protein protects against azoxymethane-induced colon tumors in male rats, Cancer Epidemiol. Biomarker. Prev. 10 (2001) 555–558.
T. Kozu, G. Iinuma, Y. Ohashi, et al., Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized, placebo-controlled clinical trial, Cancer Prev. Res. 2 (2009) 975–983. https://doi.org/10.1158/1940-6207.CAPR-08-0208.
R. Suttisuwan, S. Phunpruch, T. Saisavoey, et al., Free radical scavenging properties and induction of apoptotic effects of FA fraction obtained after proteolysis of bioactive peptides from microalgae Synechococcus sp. VDW, Food Technol. Biotechnol. 57 (2019) 358–368. https://doi.org/10.17113/ftb.57.03.19.6028.
Z. J. Wang, X. W. Zhang, Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis, J. Sci. Food Agric. 97 (2017) 918–922. https://doi.org/10.1002/jsfa.7815.
S. L. Minic, D. Stanic-Vucinic, J. Mihailovic, et al., Digestion by pepsin releases biologically active chromopeptides from C-phycocyanin, a blue-colored biliprotein of microalga Spirulina, J. Proteomics 147 (2016) 132–139. https://doi.org/10.1016/j.jprot.2016.03.043.
S. Umayaparvathi, M. Arumugam, S. Meenakshi, et al., Purification and characterization of antioxidant peptides from oyster ( Saccostrea cucullata) hydrolysate and the anticancer activity of hydrolysate on human colon cancer cell lines, Int. J. Pept. Res. Ther. 20 (2014) 231–243. https://doi.org/10.1007/s10989-013-9385-5.
C. L. Li, S. R. Zhang, J. H. Zhu, et al., A novel peptide derived from Arca inflata induces apoptosis in colorectal cancer cells through mitochondria and the p38 MAPK pathway, Mar. Drugs 20 (2022) 110. https://doi.org/10.3390/md20020110.
Z. Yaghoubzadeh, F. Peyravii Ghadikolaii, H. Kaboosi, et al., Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout ( Oncorhynchus mykiss) skin hydrolysate, Int. J. Pept. Res. Ther. 26 (2020) 625–632. https://doi.org/10.1007/s10989-019-09869-5.
R. Nurdiani, T. Vasiljevic, T. Yeager, et al., Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead ( Platycephalus fuscus) by-products, Eur. Food Res. Technol. 243 (2017) 627–637. https://doi.org/10.1007/s00217-016-2776-z.
A. Kannan, N. S. Hettiarachchy, M. Marshall, et al., Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation, J. Sci. Food Agric. 91 (2011) 1920–1924. https://doi.org/10.1002/jsfa.4464.
J. Chumchalová, J. Šmarda, Human tumor cells are selectively inhibited by colicins, Folia Microbiol. 48 (2003) 111–115. https://doi.org/10.1007/BF02931286.
K. I. Villarante, F. B. Elegado, S. Iwatani, et al., Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells, World J. Microbiol. Biotechnol. 27 (2011) 975–980. https://doi.org/10.1007/s11274-010-0541-1.
S. Maher, S. McClean, Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro, Biochem. Pharmacol. 71 (2006) 1289–1298. https://doi.org/10.1016/j.bcp.2006.01.012.
Z. Norouzi, A. Salimi, R. Halabian, et al., Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines, Microb. Pathog. 123 (2018) 183–189. https://doi.org/10.1016/j.micpath.2018.07.006.
M. A. Varas, C. Muñoz-Montecinos, V. Kallens, et al., Exploiting zebrafish xenografts for testing the in vivo antitumorigenic activity of microcin E492 against human colorectal cancer cells, Front. Microbiol. 11 (2020) 405. https://doi.org/10.3389/fmicb.2020.00405.
C. Freiburghaus, B. Janicke, H. Lindmark-Månsson, et al., Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line, J. Dairy Sci. 92 (2009) 2477–2484. https://doi.org/10.3168/jds.2008-1851.
V. P. Dia, E. G. De Mejia, Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells, Mol. Nutr. Food Res. 55 (2011) 623–634. https://doi.org/10.1002/mnfr.201000419.
L. Y. Su, Y. X. Shi, M. R. Yan, et al., Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway, Acta Pharmacol. Sin. 36 (2015) 1514–1519. https://doi.org/10.1038/aps.2015.80.
D. A. Luna-Vital, K. Liang, E. G. De Mejía, et al., Dietary peptides from the non-digestible fraction of Phaseolus vulgaris L. decrease angiotensin II-dependent proliferation in HCT116 human colorectal cancer cells through the blockade of the renin-angiotensin system, Food Funct. 7 (2016) 2409–2419. https://doi.org/10.1039/C6FO00093B.
X. Y. Li, J. F. Sun, S. Q. Hu, The renin-angiotensin system blockers as adjunctive therapy for cancer: a meta-analysis of survival outcome, Eur. Rev. Med. Pharmacol. Sci. 21 (2017) 1375–1383.
R. van der Knaap, C. Siemes, J. W. W. Coebergh, et al., Renin-angiotensin system inhibitors, angiotensin I-converting enzyme gene insertion/deletion polymorphism, and cancer: the Rotterdam study, Cancer 112 (2008) 748–757. https://doi.org/10.1002/cncr.23215.
H. W. Li, Y. F. Qi, C. Y. Li, et al., Angiotensin type 2 receptor-mediated apoptosis of human prostate cancer cells, Mol. Cancer Ther. 8 (2009) 3255–3265. https://doi.org/10.1158/1535-7163.MCT-09-0237.
E. Nuti, L. Rosalia, D. Cuffaro, et al., Bifunctional inhibitors as a new tool to reduce cancer cell invasion by impairing MMP-9 homodimerization, ACS Med. Chem. Lett. 8 (2017) 293–298. https://doi.org/10.1021/acsmedchemlett.6b00446.
A. Lima, J. Mota, S. Monteiro, et al., Legume seeds and colorectal cancer revisited: protease inhibitors reduce MMP-9 activity and colon cancer cell migration, Food Chem. 197 (2016) 30–38. https://doi.org/10.1016/j.foodchem.2015.10.063.
E. B. M. Daliri, B. H. Lee, D. H. Oh, Current trends and perspectives of bioactive peptides, Crit. Rev. Food Sci. Nutr. 58 (2018) 2273–2284. https://doi.org/10.1080/10408398.2017.1319795.
L. A. Tejano, J. P. Peralta, E. E. S. Yap, et al., Prediction of bioactive peptides from Chlorella sorokiniana proteins using proteomic techniques in combination with bioinformatics analyses, Int. J. Mol. Sci. 20 (2019) 1786. https://doi.org/10.3390/ijms20071786.
M. A. Ali, M. M. Kamal, M. H. Rahman, et al., Functional dairy products as a source of bioactive peptides and probiotics: current trends and future prospectives, J. Food Sci. Technol. 59 (2022) 1263–1279. https://doi.org/10.1007/s13197-021-05091-8.
D. Bhandari, S. Rafiq, Y. Gat, et al., A review on bioactive peptides: physiological functions, bioavailability and safety, Int. J. Pept. Res. Ther. 26 (2020) 139–150. https://doi.org/10.1007/s10989-019-09823-5.
C. C. Udenigwe, V. Fogliano, Food matrix interaction and bioavailability of bioactive peptides: two faces of the same coin?, J. Funct. Foods 35 (2017) 9–12. https://doi.org/10.1016/j.jff.2017.05.029.
N. Ishak, N. Sarbon, A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing, Food Bioprocess Technol. 11 (2018) 2–16. https://doi.org/10.1007/s11947-017-1940-1.
W. Chiangjong, S. Chutipongtanate, S. Hongeng, Anticancer peptide: physicochemical property, functional aspect and trend in clinical application, Int. J. Oncol. 57 (2020) 678–696. https://doi.org/10.3892/ijo.2020.5099.
Y. X. Dai, X. G. Cai, W. Shi, et al., Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane, Amino Acids 49 (2017) 1601–1610. https://doi.org/10.1007/s00726-017-2453-y.
H. Korhonen, A. Pihlanto-Leppäla, P. Rantamäki, et al., Impact of processing on bioactive proteins and peptides, Trends Food Sci. Technol. 9 (1998) 307–319. https://doi.org/10.1016/S0924-2244(98)00054-5.
L. Liu, S. S. Li, J. X. Zheng, et al., Safety considerations on food protein-derived bioactive peptides, Trends Food Sci. Technol. 96 (2020) 199–207. https://doi.org/10.1016/j.jpgs.2019.12.022.
L. M. Beltrán-Barrientos, H. S. García, M. J. Torres-Llanez, et al., Safety of milk-derived bioactive peptides, Int. J. Dairy Technol. 70 (2017) 16–22. https://doi.org/10.1111/1471-0307.12338.
R. J. FitzGerald, B. A. Murray, D. J. Walsh, Hypotensive peptides from milk proteins, J. Nutr. 134 (2004) 980S–988S. https://doi.org/10.1093/jn/134.4.980S.
X. H. Sun, C. Acquah, R. E. Aluko, et al., Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability, J. Funct. Foods 64 (2020) 103680. https://doi.org/10.1016/j.jff.2019.103680.
L. Ramezanzade, S. F. Hosseini, M. Nikkhah, Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides, Food Chem. 234 (2017) 220–229. https://doi.org/10.1016/j.foodchem.2017.04.177.
Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).