AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Different risk potential of Bacillus cereus to the dairy industry − keeping up with the old story

Yang LiuBingxin ZhangShuo WangZhenquan YangLei Yuan( )
School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
Show Author Information

Graphical Abstract

Abstract

Bacillus cereus is one of the major spore-forming bacteria with great genetic diversity in raw milk, dairy raw materials, and finished dairy products, and is widely present in the entire dairy production line. Due to the biofilm formation of B. cereus and the heat resistance of its spores, traditional cleaning and disinfection procedures cannot completely remove the spores, resulting in the presence of B. cereus in the final dairy products. Although much work has been done to identify B. cereus from various dairy samples, an updated knowledge of this spore precursor is still needed. This review describes the prevalence of B. cereus from raw milk to commercial dairy products, the biofilm formation of B. cereus and its ability to cause spoilage in dairy products, and the possible prevention methods.

References

[1]

I. A. Haydushka, N. Markova, V. Kirina, et al., Recurrent sepsis due to Bacillus licheniformis, J. Infect Dis. 4 (2012) 82–83. https://doi.org/10.4103/0974-777x.93768.

[2]

A. Dettling, C. Wedel, C. Huptas, et al., High counts of thermophilic spore formers in dairy powders originate from persisting strains in processing lines, Int. J. Food Microbiol. 335 (2020) 108888. https://doi.org/10.1016/j.ijfoodmicro.2020.108888.

[3]

L. Yuan, L. Fan, S. Liu, et al., Bacterial community analysis of infant foods obtained from Chinese markets by combining culture-dependent and high-throughput sequence methods, Food Res. Int. 162 (2022) 112060. https://doi.org/10.1016/j.foodres.2022.112060.

[4]

S. Jha, N. Singh, S. Anand, Occurrence of aerobic bacterial endospores in dried dairy ingredients, Int. J. Dairy Technol. 76 (2023) 1025–1029. https://doi.org/10.1111/1471-0307.12963.

[5]

A. Kotiranta, K. Lounatmaa, M. Haapasalo, Epidemiology and pathogenesis of Bacillus cereus infections, Microbes Infect. 2 (2000) 189–198. https://doi.org/10.1016/S1286-4579(00)00269-0.

[6]

V. Rigourd, J. Barnier, A. Ferroni, et al., Recent actuality about Bacillus cereus and human milk bank: a new sensitive method for microbiological analysis of pasteurized milk, Eur. J. Clin. Microbiol. 37 (2018) 1297–1303. https://doi.org/10.1007/s10096-018-3249-z.

[7]

H. Dai, L. Yuan, L. Fan, J. et al., Occurrence and risk-related features of Bacillus cereus in fluid milk, Int. J. Dairy Technol. 77 (2024) 370–382. https://doi.org/10.1111/1471-0307.13054.

[8]

J. Owusu-Kwarteng, A. Wuni, F. Akabanda, et al., Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products, BMC Microbiol. 17 (2017) 1–8. https://doi.org/10.1186/s12866-017-0975-9.

[9]

J. Vidic, C. Chaix, M. Manzano, et al., Food sensing: detection of Bacillus cereus spores in dairy products, Biosensors 10 (2020) 15. https://doi.org/10.3390/bios10030015.

[10]

S. Hauge, Food poisoning caused by aerobic spore-forming bacilli, J. Appl. Bacteriol. 18 (1955) 591–595. https://doi.org/10.1111/j.1365-2672.1955.tb02116.x.

[11]

L. P. S. Arnesen, A. Fagerlund, A. P. E. Granum, From soil to gut: Bacillus cereus and its food poisoning toxins, FEMS Microbiol. Rev. 32 (2008) 579–606. https://doi.org/10.1111/j.1574-6976.2008.00112.x.

[12]

T. Li, Q. Zou, C. Chen, et al., A foodborne outbreak linked to Bacillus cereus at two middle schools in a rural area of Chongqing, China, 2021, PLoS ONE 18 (2023) e0293114. https://doi.org/10.1371/journal.pone.0293114.

[13]

K. Newell, K. Helfrich, H. Isernhagen, et al., Multipathogen outbreak of Bacillus cereus and Clostridium perfringens among hospital workers in Alaska, Public Health Rep. 139 (2024) 195–200. https://doi.org/10.1177/0033354923117022.

[14]

S. Yu, P. Yu, J. Wang, et al., A study on prevalence and characterization of Bacillus cereus in ready-to-eat foods in China, Front Microbiol. 10 (2020) 3043. https://doi.org/10.3389/fmicb.2019.03043.

[15]

M. Zou, D. Liu, A systematic characterization of the distribution, biofilm-forming potential and the resistance of the biofilms to the CIP processes of the bacteria in a milk powder processing factory, Food Res. Int. 113 (2018) 316–326. https://doi.org/10.1016/j.foodres.2018.07.020.

[16]

S. Zhao, J. Chen, P. Fei, et al., Prevalence, molecular characterization, and antibiotic susceptibility of Bacillus cereus isolated from dairy products in China, J. Dairy Sci. 103 (2020) 3994–4001. https://doi.org/10.3168/jds.2019-17541.

[17]

Z. Huang, Y. Lin, Z. Ren, et al., Benzalkonium bromide is effective in removing Bacillus cereus biofilm on stainless steel when combined with cleaning-in-place, Food Control 105 (2019) 13–20. https://doi.org/10.1016/j.foodcont.2019.05.017.

[18]

M. Bartoszewicz, B. M. Hansen, I. Swiecicka, The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk, Food Microbiol. 25 (2008) 588–596. https://doi.org/10.1016/j.fm.2008.02.001.

[19]

N. J. Turner, R. Whyte, J. A. Hudson, et al., Presence and growth of Bacillus cereus in dehydrated potato flakes and hot-held, ready-to-eat potato products purchased in New Zealand, J. Food Prot. 69 (2006) 1173–1177. https://doi.org/10.4315/0362-028X-69.5.1173.

[20]

P. Fei, X. Juan, S. Zhao, et al., Prevalence and genetic diversity of Bacillus cereus isolated from raw milk and cattle farm environments, Curr. Microbiol. 76 (2019) 1355–1360. https://doi.org/10.1007/s00284-019-01741-5.

[21]

X. Lan, J. Wang, N. Zheng, et al., Prevalence and risk factors for Bacillus cereus in raw milk in Inner Mongolia, Northern China, Int. J. Dairy Technol. 71 (2018) 269–273. https://doi.org/10.1111/1471-0307.12416.

[22]

B. Radmehr, B. Zaferanloo, B. Tran, et al., Prevalence and characteristics of Bacillus cereus group isolated from raw and pasteurised milk, Curr. Microbiol. 77 (2020) 3065–3075. https://doi.org/10.1007/s00284-020-02129-6.

[23]

G. Hassan, M. Al-Ashmawy, A. Meshref, et al., Studies on enterotoxigenic Bacillus cereus in raw milk and some dairy products, J. Food Saf. 30 (2010) 569–583. https://doi.org/10.1111/j.1745-4565.2010.00226.x.

[24]

J. Odumeru, A. K. Toner, C. A. Muckle, et al., Detection of Bacillus cereus diarrheal enterotoxin in raw and pasteurized milk, J. Food Prot. 60 (1997) 1391–1393. https://doi.org/10.4315/0362-028X-60.11.1391.

[25]

F. Carlin, J. Brillard, V. Broussolle, et al., Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment, Food Res. Int. 43 (2010) 1885–1894. https://doi.org/10.1016/j.foodres.2009.10.024.

[26]

B. Svensson, K. Ekelund, H. Ogura, et al., Characterisation of Bacillus cereus isolated from milk silo tanks at eight different dairy plants, Int. Dairy J. 14 (2004) 17–27. https://doi.org/10.1016/S0958-6946(03)00152-3.

[27]
Y. Liu, L. Fan, B. Zhang, et al., The use of organic peroxyacids for the inactivation of calcium-mediated biofilm formation by Bacillus licheniformis, Int. Dairy J. (2024) 106002. https://doi.org/10.1016/j.idairyj.2024.106002.
[28]

N. Wang, Y. Jin, G. He, et al., Dynamic tracing of bacterial community distribution and biofilm control of dominant species in milk powder processing, LWT-Food Sci. Technol. 154 (2022) 112855. https://doi.org/10.1016/j.lwt.2021.112855.

[29]

G. Zhou, H. Liu, J. He, et al., The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk, Int. J. Food Microbiol. 121 (2008) 195–200. https://doi.org/10.1016/j.ijfoodmicro.2007.11.028.

[30]

J. H. Ryu, L. R. Beuchat, Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based Sanitizer, J. Food Prot. 68 (2005) 2614–2622. https://doi.org/10.4315/0362-028X-68.12.2614.

[31]

S. Kumari, P. K. Sarkar, Prevalence and characterization of Bacillus cereus group from various marketed dairy products in India, Dairy Sci. Technol. 94 (2014) 483–497. https://doi.org/10.1007/s13594-014-0174-5.

[32]

Y. Lin, F. Ren, L. Zhao, et al., Genotypes and the persistence survival phenotypes of Bacillus cereus isolated from UHT milk processing lines, Food Control 82 (2017) 48–56. https://doi.org/10.1016/j.foodcont.2017.06.025.

[33]

L. Yuan, M. F. Hansen, H. L. Røder, et al., Mixed-species biofilms in the food industry: current knowledge and novel control strategies, Crit. Rev. Food Sci. Nutr. 60 (2020) 2277–2293. https://doi.org/10.1080/10408398.2019.1632790.

[34]

U. Husmark, U. Rönner, The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores, Biofouling 5 (1992) 335–344. https://doi.org/10.1080/08927019209378253.

[35]

S. Charlton, A. J. G. Moir, L. Baillie, et al., Characterization of the exosporium of Bacillus cereus, J. Appl. Microbiol. 87 (1999) 241–245. https://doi.org/10.1046/j.1365-2672.1999.00878.x.

[36]
Y. Huang, S. H. Flint, J. S. Palmer, Bacillus cereus spores and toxins: the potential role of biofilms, Food Microbiol. 90 (2020) 103493. https://doi.org/10.1016/j.fm.2020.103493.
[37]

E. Tirloni, C. Bernardi, E. Ghelardi, et al., Biopreservation as a potential hurdle for Bacillus cereus growth in fresh cheese, J. Dairy Sci. 103 (2020) 150–160. https://doi.org/10.3168/jds.2019-16739.

[38]

X. Y. Liu, Q. Hu, F. Xu, et al., Characterization of Bacillus cereus in dairy products in China, Toxins 12 (2020) 7. https://doi.org/10.3390/toxins12070454.

[39]

E. Tirloni, C. Bernardi, F. Celandroni, et al., Prevalence, virulence potential, and growth in cheese of Bacillus cereus strains isolated from fresh and short-ripened cheeses sold on the Italian market, Microorganisms 11 (2023) 2. https://doi.org/10.3390/microorganisms11020521.

[40]

R. Adame-Gómez, S. Muñoz-Barrios, N. Castro-Alarcón, et al., Prevalence of the strains of Bacillus cereus group in Artisanal Mexican cheese, Foodborne Pathog. Dis. 17 (2020) 8–14. https://doi.org/10.1089/fpd.2019.2673.

[41]

N. Gundogan, A. Ebru, Occurrence and antibiotic resistance of Escherichia coli, Staphylococcus aureus and Bacillus cereus in raw milk and dairy products in Turkey, Int. J. Dairy Technol. 4 (2014) 562–569. https://doi.org/10.1111/1471-0307.12149.

[42]

Z. Lepsanovic, V. Djordjevic, B. Lakicevic, et al., Detection of toxin genes and randomly amplified polymorphic DNA typing of Bacillus cereus isolates from infant milk formulas, J. Food Saf. 38 (2018) 4. https://doi.org/10.1111/jfs.12474.

[43]

M. O. Iurlina, A. I. Saiz, S. R. Fuselli, et al., Prevalence of Bacillus spp. in different food products collected in Argentina, LWT-Food Sci. Technol. 39 (2006) 105–110. https://doi.org/10.1016/j.lwt.2005.01.006.

[44]

P. Ngamwongsatit, W. Buasri, P. Pianariyanon, et al., Broad distribution of enterotoxin genes ( hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers, Int. J. Food Microbiol. 121 (2008) 352–356. https://doi.org/10.1016/j.ijfoodmicro.2007.11.013.

[45]
S. D. Bennett, K. A. Walsh, L. H. Gould, foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus-United States, 1998–2008, Clin. Infect. Dis. 57 (2013) 425–433. https://doi.org/10.1093/cid/cit244.
[46]

T. Gao, Y. Ding, Q. Wu, et al., Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Bacillus cereus isolated from pasteurized milk in China, Front Microbiol. 9 (2018) 533. https://doi.org/10.3389/fmicb.2018.00533.

[47]

G. Yaman, Prevalence, enterotoxin production and antibiotic resistance of Bacillus cereus isolated from milk and cheese, Kafkas Univ. Vet. Fak. 24 (2017) 635–652. https://doi.org/10.9775/kvfd.2017.17480.

[48]
H. Dai, L. Ma, Z. Xu, et al., Invited review: role of Bacillus licheniformis in the dairy industry-friends or foes?, J. Dairy Sci. 107 (2024) 7520–7532. https://doi.org/10.3168/jds.2024-24826.
[49]

C. Fernández, M. Guarddon, K. Böhme, et al., Detection and quantification of spoilage and pathogenic Bacillus cereus, Bacillus subtilis and Bacillus licheniformis by real-time PCR, Food Microbiol. 28 (2011) 605–610. https://doi.org/10.1016/j.fm.2010.10.014.

[50]

K. Oliwa-Stasiak, C. I. Molnar, K. Arshak, et al., Development of a PCR assay for identification of the Bacillus cereus group species, J. Appl. Microbiol. 108 (2010) 266–273. https://doi.org/10.1111/j.1365-2672.2009.04419.x.

[51]

J. F. Martínez-Blanch, G. Sánchez, E. Garay, et al., Evaluation of a real-time PCR assay for the detection and quantification of Bacillus cereus group spores in food, J. Food Prot. 73 (2010) 1480. https://doi.org/10.4315/0362-028x-73.8.1480.

[52]

C. Fischer, T. Hünniger, J. H. Jarck, et al., Food sensing: aptamer-based trapping of Bacillus cereus spores with specific detection via real time PCR in milk, J. Agric. Food Chem. 63 (2015) 8050–8057. https://doi.org/10.1021/acs.jafc.5b03738.

[53]

J. Vidic, P. Vizzini, M. Manzano, et al., Point-of-need DNA testing for detection of foodborne pathogenic bacteria, Sensors 19 (2019) 1100. https://doi.org/10.3390/s19051100.

[54]

J. Chan, A. Esposito, C. Talley, et al., Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers raman spectroscopy, Anal. Chem. 76 (2004) 599–603. https://doi.org/10.1021/ac0350155.

[55]
K. H. Teh, S. Flint, J. Palmer, et al., Biofilm-an unrecognised source of spoilage enzymes in dairy products?, Int. Dairy J. 34 (2014) 32–40. https://doi.org/10.1016/j.idairyj.2013.07.002.
[56]

L. Yuan, F. A. Sadiq, M. Burmølle, et al., Insights into bacterial milk spoilage with particular emphasis on the roles of heat-stable enzymes, biofilms, and quorum sensing, J. Food Prot. 81 (2018) 1651–1660. https://doi.org/10.4315/0362-028X.JFP-18-094.

[57]

H. Hayrapetyan, L. Muller, M. Tempelaars, et al., Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron, Int. J. Food Microbiol. 200 (2015) 72–79. https://doi.org/10.1016/j.ijfoodmicro.2015.02.005.

[58]
H. Hayrapetyan, M. Tempelaars, M. Nierop Groot, et al., Bacillus cereus ATCC 14579 RpoN (Sigma 54) is apleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production, PloS ONE 10 (2015) e0134872. https://doi.org/10.1371/journal.pone.0134872.
[59]
R. Majed, C. Faille, M. Kallassy, et al., Bacillus cereus biofilms-same, only different, Front. Microbiol. 7 (2016) 1054. https://doi.org/10.3389/fmicb.2016.01054.
[60]
S. Vilain, J. M. Pretorius, J. Theron, et al., DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms, Appl. Environ. Microbiol. 75 (2009) 2861–2868. https://doi.org/10.1128/AEM.01317-08.
[61]

S. Marchand, J. de Block, V. de Jonghe, et al., Biofilm formation in milk production and processing environments; influence on milk quality and safety, Compr. Rev. Food Sci. 11 (2012) 133–147. https://doi.org/10.1111/j.1541-4337.2011.00183.x.

[62]

M. P. Silva, P. É. Fernandes, N. Pimentel-Filho, et al., Modelling adhesion and biofilm formation by Bacillus cereus isolated from dairy products as a function of pH, temperature and time, Int. Dairy J. 134 (2022) 105472. https://doi.org/10.1016/j.idairyj.2022.105472.

[63]

J. Zhou, Y. Wu, D. Liu, et al., The effect of carbon source and temperature on the formation and growth of Bacillus licheniformis and Bacillus cereus biofilms, LWT-Food Sci. Technol. 186 (2023) 115239. https://doi.org/10.1016/j.lwt.2023.115239.

[64]

R. Shaheen, B. Svensson, M. A. Andersson, et al., Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks, Food Microbiol. 27 (2010) 347–355. https://doi.org/10.1016/j.fm.2009.11.004.

[65]
B. Raymond, R. S. Lijek, R. I. Griffiths, et al., Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host, J. Invertebr. (2008) 103–111. https://doi.org/10.1016/j.jip.2008.04.007.
[66]

M. Simões, L. C. Simões, M. O. Pereira, et al., Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms, Biofouling 24 (2008) 339–349. https://doi.org/10.1080/08927010802239154.

[67]
S. Kumari, P. K. Sarkar, Bacillus cereus hazard and control in industrial dairy processing environment, Food Control 69 (2016) 20–29. https://doi.org/10.1016/j.foodcont.2016.04.012.
[68]
F. Ben Taheur, B. Kouidhi, K. Fdhila, et al., Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens, Microbial Pathogenesis 97 (2016) 213–220. https://doi.org/10.1016/j.micpath.2016.06.018.
[69]

L. Yuan, H. Dai, G. He, et al., Invited review: current perspectives for analyzing the dairy biofilms by integrated multiomics, J. Dairy Sci. 106 (2023) 8181–8192. https://doi.org/10.3168/jds.2023-23306.

[70]

F. Yan, Y. Yu, K. Gozzi, et al., Genome-wide investigation of biofilm formation in Bacillus cereus, Appl. Environ. Microbiol. 83 (2017) e00561–17. https://doi.org/10.1128/AEM.00561-17.

[71]

T. Lindbäck, M. Mols, C. Basset, et al., CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus, Environ. Microbiol. 14 (2012) 2233–2246. https://doi.org/10.1111/j.1462-2920.2012.02766.x.

[72]

Y. Qi, J. Zhou, Y. Wu, et al., Transcriptomic analysis of biofilm formation by Bacillus cereus under different carbon source conditions, Food Qual. Saf. 8 (2024) fyad038. https://doi.org/10.1093/fqsafe/fyad038.

[73]

Z. Xu, Q. Yang, Y. Zhu, Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus, Food Res. Int. 151 (2022) 110840. https://doi.org/10.1016/j.foodres.2021.110840.

[74]

L. Yuan, L. Fan, H. Dai, et al., Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations, Sci. Total Environ. 899 (2023) 165695. https://doi.org/10.1016/j.scitotenv.2023.165695.

[75]

N. Martin, P. Torres-Frenzel, M. Wiedmann, Invited review: controlling dairy product spoilage to reduce food loss and waste, J. Dairy Sci. 104 (2021) 1251–1261. https://doi.org/10.3168/jds.2020-19130.

[76]

D. Porcellato, S. B. Skeie, H. Mellegård, et al., Characterization of Bacillus cereus sensu lato isolates from milk for consumption; phylogenetic identity, potential for spoilage and disease, Food Microbiol. 93 (2021) 103604. https://doi.org/10.1016/j.fm.2020.103604.

[77]

M. Ziyaina, B. N. Govindan, B. Rasco, et al., Monitoring shelf life of pasteurized whole milk under refrigerated storage conditions: predictive models for quality loss, J. Food Sci. 83 (2018) 409–418. https://doi.org/10.1111/1750-3841.13981.

[78]

X. Yang, Z. Wang, C. Zhang, et al., Assessment of the production of Bacillus cereus protease and its effect on the quality of ultra-high temperature-sterilized whole milk, J. Dairy Sci. 104 (2021) 6577–6587. https://doi.org/10.3168/jds.2020-19818.

[79]

D. Jayakumar, S. K. Sachith, V. K. Nathan, et al., Statistical optimization of thermostable alkaline protease from Bacillus cereus KM 05 using response surface methodology, Biotechnol. Lett. 43 (2021) 2053–2065. https://doi.org/10.1007/s10529-021-03172-4.

[80]

Y. Huang, S. H. Flint, J. S. Palmer, The heat resistance of spores from biofilms of Bacillus cereus grown in tryptic soy broth and milk, Int. Dairy J. 123 (2021) 105169. https://doi.org/10.1016/j.idairyj.2021.105169.

[81]

H. Mellegård, C. From, B. E. Christensen, et al., Inhibition of Bacillus cereus spore outgrowth and multiplication by chitosan, Int. J. Food Microbiol. 149 (2011) 218–225. https://doi.org/10.1016/j.ijfoodmicro.2011.06.013.

[82]

N. Ardila, F. Daigle, M. C. Heuzey, et al., Effect of chitosan physical form on its antibacterial activity against pathogenic bacteria, Carbohyd. Polym. 82 (2017) 679–686. https://doi.org/10.1111/1750-3841.13635.

[83]

Z. Fan, Y. Qin, S. Liu, et al., Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives, Carbohyd. Polym. 190 (2018) 1–11. https://doi.org/10.1016/j.carbpol.2018.02.056.

[84]

M. I. Valdez, J. Garcia, M. Ubeda-Manzanaro, et al., Insect chitosan as a natural antimicrobial against vegetative cells of Bacillus cereus in a cooked rice matrix, Food Microbiol. 107 (2022) 104077. https://doi.org/10.1016/j.fm.2022.104077.

[85]

J. C. Fernandes, P. Eaton, A. M. Gomes, et al., Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation, Ultramicroscopy 109 (2009) 854–860. https://doi.org/10.1016/j.ultramic.2009.03.015.

[86]

H. Zhang, G. Fu, D. Zhang, Cloning, characterization, and production of a novel lysozyme by different expression hosts, J. Microbiol. Biotechn. 24 (2014) 1405–1412. https://doi.org/10.4014/jmb.1404.04039.

[87]

N. Khorshidian, E. Khanniri, M. R. Koushki, et al., An overview of antimicrobial activity of lysozyme and its functionality in cheese, Front. Nutr. 9 (2022) 833618. https://doi.org/10.3389/fnut.2022.833618.

[88]

R. Vilcacundo, P. Méndez, W. Reyes, et al., Antibacterial activity of hen egg white lysozyme denatured by thermal and chemical treatments, Sci. Pharm. 86 (2018) 48. https://doi.org/10.3390/scipharm86040048.

[89]

A. M. Abdou, S. Higashiguchi, A. Aboueleinin, et al., Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species, Food Control 18 (2007) 173–178. https://doi.org/10.1016/j.foodcont.2005.09.010.

[90]

G. F. Mehyar, A. A. Al Nabulsi, M. Saleh, et al., Effects of chitosan coating containing lysozyme or natamycin on shelf-life, microbial quality, and sensory properties of halloumi cheese brined in normal and reduced salt solutions, J. Food Process Preserv. 42 (2018) e13324. https://doi.org/10.1111/jfpp.13324.

[91]
S. G. Lopez-Brea, N. Gómez-Torres, M. Á. Arribas, Spore-forming bacteria in dairy products, in: P. Poltronieri (Ed.), Microbiology in dairy processing: challenges and opportunities, IFT Press, Hoboken, 2017, pp. 11–36. https://doi.org/10.1002/9781119115007.ch2.
[92]

S. N. Khanal, S. Anand, K. Muthukumarappan, et al., Inactivation of thermoduric aerobic sporeformers in milk by ultrasonication, Food control 27 (2014) 232–239. https://doi.org/10.1016/j.foodcont.2013.09.022.

[93]

R. Lü, M. Zou, T. Chantapakul, et al., Effect of ultrasonication and thermal and pressure treatments, individually and combined, on inactivation of Bacillus cereus spores, Appl. Microbiol. Biot. 103 (2019) 2329–2338. https://doi.org/10.1007/s00253-018-9559-3.

[94]

R. Roohi, S. M. B. Hashemi, Experimental, heat transfer and microbial inactivation modeling of microwave pasteurization of carrot slices as an efficient and clean process, Food Bioprod. Process. 121 (2020) 113–122. https://doi.org/10.1016/j.fbp.2020.01.015.

[95]

I. van Opstal, C. F. Bagamboula, S. C. M. Vanmuysen, et al., Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments, Int. J. Food Microbiol. 92 (2004) 227–234. https://doi.org/10.1016/j.ijfoodmicro.2003.09.011.

[96]

L. Yuan, F. A. Sadiq, N. Wang, et al., Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry, Crit. Rev. Food Sci. Nutr. 61 (2021) 3876–3891. https://doi.org/10.1080/10408398.2020.1809345.

[97]

Y. Li, L. Luo, W. Wang, et al., Synergistic antibacterial activity of cell wall hydrolase Lys14579 combined with cinnamaldehyde against emetic Bacillus cereus and their application in foods, Food Control 164 (2024) 110562. https://doi.org/10.1016/j.foodcont.2024.110562.

[98]

M. C. Pina-Pérez, A. B. Silva-Angulo, B. Muguerza-Marquínez, et al., Synergistic effect of high hydrostatic pressure and natural antimicrobials on inactivation kinetics of Bacillus cereus in a liquid whole egg and skim milk mixed beverage, Foodborne Pathog. Dis. 6 (2009) 649–656. https://doi.org/10.1089/fpd.2009.0268.

[99]

S. Pechook, K. Sudakov, I. Polishchuk, et al., Bioinspired passive anti-biofouling surfaces preventing biofilm formation, J. Mater. Chem. B 3 (2015) 1371–1378. https://doi.org/10.1039/c4tb01522c.

[100]

K. Huang, L. A. McLandsborough, J. M. Goddard, Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel, Biofouling 32 (2016) 523–533. https://doi.org/10.1080/08927014.2016.1160284.

[101]
M. Magnusson, B. Svensson, C. Kolstrup, et al., Bacillus cereus in free-stall bedding, J. Dairy Sci. 90 (2007) 5473–5482. https://doi.org/10.3168/jds.2007-0284.
[102]

J. P. Sutherland, A. Aherne, A. L. Beaumont, Preparation and validation of a growth model for Bacillus cereus: the effects of temperature, pH, sodium chloride and carbon dioxide, Int. J. Food Microbiol. 10 (1996) 359–372. https://doi.org/10.1016/0168-1605(96)00962-2.

Food Science of Animal Products
Article number: 9240085
Cite this article:
Liu Y, Zhang B, Wang S, et al. Different risk potential of Bacillus cereus to the dairy industry − keeping up with the old story. Food Science of Animal Products, 2024, 2(4): 9240085. https://doi.org/10.26599/FSAP.2024.9240085

432

Views

68

Downloads

1

Crossref

Altmetrics

Received: 12 September 2024
Revised: 26 September 2024
Accepted: 29 September 2024
Published: 08 January 2025
© Beijing Academy of Food Sciences 2024.

Food Science of Animal Products published by Tsinghua University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return