AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

Tribo-informatics empowered research on triboelectrification

Nian Yin1,2Zhangli Hou2Xin Wang2Shumin Zhang3Zhinan Zhang1,2( )
Stake Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Beijing Key Laboratory of Long-Life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 10009, China
Show Author Information

Graphical Abstract

Abstract

The triboelectric effect, known since ancient Greece, is the accumulation of electric charges due to electron transfer when materials contact and separate. With technological advancements, the triboelectric effect has been applied in energy harvesting equipment, sensors, and smart devices, including triboelectric nanogenerators (TENGs). This effect shows potential for sustainable energy and next-generation intelligent systems. Triboelectric systems, as a type of tribological system, require state monitoring, behavior prediction, and system optimization. Tribo-informatics is an interdisciplinary field that combines tribology and informatics. By clarifying information representations and flows within tribological systems, tribo-informatics addresses the connections between physical tribological systems and embedded information systems. With a focus on the triboelectric effect, this paper proposes a method for information representation in triboelectric systems from a tribo-informatics perspective and suggests a research approach based on tribo-informatics to achieve research goals. The aim is to enable researchers to collect, process, and analyze tribological information more effectively to achieve specific research objectives.

References

[1]

Bhushan B, Ko P L. Introduction to tribology. Appl Mech Rev 56(1): B6–B7 (2003)

[2]
Czichos H. Tribology: A Systems Approach to the Science and Technology of Friction, Lubrication and Wear. Berlin (Germany): Elsevier, 2009.
[3]

Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)

[4]

Vakis A I, Yastrebov V A, Scheibert J, Nicola L, Dini D, Minfray C, Almqvist A, Paggi M, Lee S, Limbert G, et al. Modeling and simulation in tribology across scales: An overview. Tribol Int 125: 169–199 (2018)

[5]
Xie Y. Three axioms in tribology. In: Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference, Jeonju, Republic of Korea, 2000: 3–10.
[6]

Zhang Z N, Yin N, Chen S, Liu C L. Tribo-informatics: Concept, architecture, and case study. Friction 9(3): 642–655 (2021)

[7]

Yin N, Xing Z G, He K, Zhang Z N. Tribo-informatics approaches in tribology research: A review. Friction 11(1): 596 (2023)

[8]

Yin N, Yang P F, Liu S K, Pan S H, Zhang Z N. AI for tribology: Present and future. Friction 12(6): 1060–1097 (2024)

[9]

Kügler P, Marian M, Schleich B, Tremmel S, Wartzack S. tribAIn—Towards an explicit specification of shared tribological understanding. Appl Sci 10(13): 4421 (2020)

[10]

Pasha M B, Rao R N, Ismail S, Gupta M, Prasad P S. Tribo-informatics approach to predict wear and friction coefficient of Mg/Si3N4 composites using machine learning techniques. Tribol Int 196: 109696 (2024)

[11]

Hasan M S, Kordijazi A, Rohatgi P K, Nosonovsky M. Triboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithms. Tribol Int 161: 107065 (2021)

[12]

Mahakur V K, Bhowmik S, Patowari P K. Tribo-informatics evaluation of dry sliding friction of silanized jute filler reinforced epoxy composites using machine learning techniques. Tribol Int 183: 108388 (2023)

[13]

Pan S H, Zhang Z N. Triboelectric effect: A new perspective on electron transfer process. J Appl Phys 122(14): 144302 (2017)

[14]

Wu C S, Wang A C, Ding W B, Guo H Y, Wang Z L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv Energy Mater 9(1): 1802906 (2019)

[15]

Cheng T H, Shao J J, Wang Z L. Triboelectric nanogenerators. Nat Rev Methods Primers 3: 39 (2023)

[16]

Zhou L L, Liu D, Wang J, Wang Z L. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 8(3): 481–506 (2020)

[17]

Zhao K, Yang Y, Liu X, Wang Z L. Triboelectrification-enabled self-charging lithium-ion batteries. Adv Energy Mater 7(21): 1700103 (2017)

[18]

Pan S H, Zhang Z N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1): 2–17 (2019)

[19]

Li X J, Zhang L Q, Feng Y G, Hu H Y, Wang X W, Zheng Y B, Wang N N, Zhang C Y, Yu Q L, Zhou F, et al. Mechanism and control of triboelectrification on oil−solid interface and self-powered early-warning sensor in petroleum industry. Nano Energy 104: 107930 (2022)

[20]

Zhang Q, Xin C F, Shen F, Gong Y, Zi Y L, Guo H Y, Li Z J, Peng Y, Zhang Q, Wang Z L. Human body IoT systems based on the triboelectrification effect: Energy harvesting, sensing, interfacing and communication. Energy Environ Sci 15(9): 3688–3721 (2022)

[21]

Li K X, Gong S Q, Fu S K, Guo H Y, Shan C C, Wu H Y, Wang J, Xu S Y, Li G, Zhao Q H, et al. Charge target collection from different triboelectrification domains by electrostatic induction and polarization enabled air discharges. Energy Environ Sci 17(22): 8942–8953 (2024)

[22]

Hu Z H, Hui X D, Li S M, Tang L R, Sun J F, Zeng H J, Chen J, Guo H Y. A self-powered, high-precision and minimum-channel touch panel coupling triboelectrification and uniform resistance film. Nano Energy 114: 108676 (2023)

[23]

Zhang J, Zhang L Q, Du C H, Feng Y G, Wan Y, Li X J, Yu T T, Wang D A, Zhou F. Reversal mechanism of triboelectrification in steel-polymer frictional interface for in situ monitoring of transfer films. Nano Energy 120: 109139 (2024)

[24]

Zhang Z N, Yin N, Wu Z S, Pan S H, Wang D A. Research methods of contact electrification: Theoretical simulation and experiment. Nano Energy 79: 105501 (2021)

[25]

Hu S T, Yuan Z H, Li R N, Cao Z, Zhou H L, Wu Z Y, Wang Z L. Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines. Nano Lett 22(13): 5584–5591 (2022)

[26]

Yang W X, Wang J Y, Wang X L, Chen P. Anisotropic tribology and electrification properties of sliding-mode triboelectric nanogenerator with groove textures. Friction 12(8): 1828–1837 (2024)

[27]

Liu Y H, Shen Y W, Ding W, Zhang X K, Tian W L, Yang S, Hui B, Zhang K W. All-natural phyllosilicate-polysaccharide triboelectric sensor for machine learning-assisted human motion prediction. npj Flex Electron 7: 21 (2023)

[28]

Cui N Y, Liu J M, Lei Y M, Gu L, Xu Q, Liu S H, Qin Y. High-performance triboelectric nanogenerator with a rationally designed friction layer structure. ACS Appl Energy Mater 1(6): 2891–2897 (2018)

[29]

Zhang Z, Jiang D D, Zhao J Q, Liu G X, Bu T Z, Zhang C, Wang Z L. Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv Energy Mater 10(9): 1903713 (2020)

[30]

Hasan B M S, Abdulazeez A M. A review of principal component analysis algorithm for dimensionality reduction. J Soft Comput Data Min 2(1): 20–30 (2021)

[31]

Salem N, Hussein S. Data dimensional reduction and principal components analysis. Procedia Comput Sci 163: 292–299 (2019)

[32]

Salloum S, Dautov R, Chen X J, Peng P X, Huang J Z. Big data analytics on apache spark. Int J Data Sci Anal 1(3): 145–164 (2016)

[33]

Raptis T P, Passarella A. A survey on networked data streaming with Apache Kafka. IEEE Access 11: 85333–85350 (2023)

[34]
Il-Agure Z, Dempere J. Review of data visualization techniques in IoT data. In: Proceedings of the 8th International Conference on Information Technology Trends, Dubai, United Arab Emirates, 2022: 167–171.
[35]

Hariri S, Kind M C, Brunner R J. Extended isolation forest. IEEE Trans Knowl Data Eng 33(4): 1479–1489 (2021)

[36]

Hearst M A, Dumais S T, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl 13(4): 18–28 (1998)

[37]

Jamison D C. Structured query language (SQL) fundamentals. Curr Protoc Bioinformatics: 9.2.1–9.2.29 (2003)

[38]

Zaït M, Messatfa H. A comparative study of clustering methods. Future Gener Comput Syst 13(2–3): 149–159 (1997)

[39]

Cieslak M C, Castelfranco A M, Roncalli V, Lenz P H, Hartline D K. T-distributed stochastic neighbor embedding (t-SNE): A tool for eco-physiological transcriptomic analysis. Mar Genom 51: 100723 (2020)

[40]

Trinchero R, Canavero F. Machine learning regression techniques for the modeling of complex systems: An overview. IEEE Electromagn Compat Mag 10(4): 71–79 (2021)

[41]

Abdolrasol M G M, Suhail Hussain S M, Ustun T S, Sarker M R, Hannan M A, Mohamed R, Ali J A, Mekhilef S, Milad A. Artificial neural networks based optimization techniques: A review. Electronics 10(21): 2689 (2021)

Friction
Article number: 9441045
Cite this article:
Yin N, Hou Z, Wang X, et al. Tribo-informatics empowered research on triboelectrification. Friction, 2025, 13(2): 9441045. https://doi.org/10.26599/FRICT.2025.9441045

233

Views

65

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 October 2024
Revised: 14 November 2024
Accepted: 25 November 2024
Published: 07 January 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return