AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (5.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Environmental limitations of PTFE for ultralow friction composites and alternatives to using liquid lubricants

Yuri Park1,2,Si-Geun Choi3,Chan-Hyun Cho2,3,4Jong-Hyoung Kim3Jin-Young Park3Myoung-Hwan Park1,2,4,5( )
Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea
NBChem Co., Ltd., Seoul 01795, Republic of Korea
High-Tech Bearing Technology Center, Korea Institute of Industrial Technology, Yeongju 36144, Republic of Korea
Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea

† Yuri Park and Si-Geun Choi contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The importance of reducing energy-related environmental and economic issues by extending the lifetime and efficiency of mechanical systems has increased. The use of ultralow friction composite materials is one approach to eliminate frictional wear. Polytetrafluoroethylene (PTFE) has excellent low friction properties and has been used to reduce frictional wear in various industrial fields. However, degradation of PTFE in natural environments poses challenges owing to its stable chemical structure, which is characterized by strong C‒F bonds. Furthermore, PTFE can accumulate in the living body and environment over a long period of time. Consequently, it is resistant to physiological filtration or decomposition. Hence, it is sometimes called a “forever chemical”. Therefore, PTFE, which is a type of poly- and perfluoroalkyl substance (PFAS), is increasingly being adopted as a regulated substance. This review focuses on several aspects of PTFE and PFAS, reasons for their adoption as regulated chemicals, and research on alternatives to PTFE, particularly the use of liquid lubricants.

References

[1]

Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology: Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)

[2]

Zeng Q F, Zhang W L. A systematic review of the recent advances in superlubricity research. Coatings 13(12): 1989 (2023)

[3]

Holmberg K, Erdemir A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int 135: 389–396 (2019)

[4]

Zheng Z J, Guo Z G, Liu W M, Luo J B. Low friction of superslippery and superlubricity: A review. Friction 11(7): 1121–1137 (2023)

[5]

Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K, Erdemir A. Global energy consumption due to friction and wear in the mining industry. Tribol Int 115: 116–139 (2017)

[6]

Gao R, Huang Y F, Zhou X Y, Ma G Z, Jin G, Li T H, Wang H D, Liu M. Material system and tribological mechanism of plasma sprayed wear resistant coatings: Overview. Surf Coat Tech 483: 130758 (2024)

[7]

Erdemir A. The role of hydrogen in tribological properties of diamond-like carbon films. Surf Coat Tech 146: 292–297 (2001)

[8]

Zheng Q K, Chhattal M, Bai C N, Zheng Z W, Qiao D, Gong Z B, Zhang J Y. Superlubricity of PTFE triggered by green ionic liquids. Appl Surf Sci 614: 156241 (2023)

[9]

Ren Y L, Zhang L, Xie G X, Li Z B, Chen H, Gong H J, Xu W H, Guo D, Luo J B. A review on tribology of polymer composite coatings. Friction 9(3): 429–470 (2021)

[10]

Ahmad S, Habib S, Nawaz M, Shakoor R A, Kahraman R, Mohammed Al Tahtamouni T. The role of polymeric matrices on the performance of smart self-healing coatings: A review. J Ind Eng Chem 124: 40–67 (2023)

[11]

Lu X Y, Gu X L, Shi Y J. A review on the synthesis of MXenes and their lubrication performance and mechanisms. Tribol Int 179: 108170 (2023)

[12]
Vafaeenezhad H, Eslami-Farsani R. Self-healing and self-lubricating nano-hybrid smart coatings. In: Nano-Hybrid Smart Coatings: Advancements in Industrial Efficiency and Corrosion Resistance. Washington (USA): American Chemical Society, 2024: 303–352.
[13]

Shan Z Q, Jia X H, Li S, Li Y, Yang J, Fan H Z, Song H J. Self-lubricating and wear-resistant epoxy resin coatings based on the “soft–hard” synergistic mechanism for rapid self-healing under photo-thermal conditions. Chem Eng J 481: 148664 (2024)

[14]
Kumar A, Kumar M, Tailor S. Self-lubricating composite coatings: A review of deposition techniques and material advancement. Mater Today Proc, https://doi.org/10.1016/j.matpr.2023.01.035 (2023)
[15]

Lee S J, Kim G M, Kim C L. Self-lubrication and tribological properties of polymer composites containing lubricant. RSC Adv 13(6): 3541–3551 (2023)

[16]

Hossain K R, Jiang P, Yao X L, Wu J Y, Hu D L, Yang X X, Wu T, Wang X L. Additive manufacturing of polymer-based lubrication. Macromol Mater Eng 308(11): 2300147 (2023)

[17]

Massocchi D, Lecis N, Lattuada M, Scaglia D, Chatterton S, Pennacchi P. Friction and wear performance of polyether ether ketone (PEEK) polymers in three lubrication regimes. Friction 12(4): 670–682 (2024)

[18]

Yu SJ, Cao J, Li S X, Huang H B, Li X J. The tribological and mechanical properties of PI/PAI/EP polymer coating under oil lubrication, seawater corrosion and dry sliding wear. Polymers 15(6): 1507 (2023)

[19]

Nar K, Majewski C, Lewis R. Evaluating the effect of solid lubricant inclusion on the friction and wear properties of laser sintered polyamide-12 components. Wear 522: 204873 (2023)

[20]

Deshwal D, Belgamwar S U, Bekinal S I, Doddamani M. Role of reinforcement on the tribological properties of polytetrafluoroethylene composites: A comprehensive review. Polym Composite 45(16): 14475–14497 (2024)

[21]

Sinha S K, Hatano N, Hirayama T. Tribological studies of hybrid composites of epoxy with solid (UHMWPE) and liquid (squalane) lubricant fillers. Tribol Online 18(7): 469–481 (2023)

[22]

Zolotarenko O D, Sigareva N V, Terets M I, Shvachko N A, Gavrylyuk N A, Starokadomsky D L, Shulha S V, Hora O V, Zolotarenko A D, Schur D V, et al. Modern fillers of metal and polymer matrices. Usp Fiz Met 24(3): 493–529 (2023)

[23]

Yadav R, Singh M, Shekhawat D, Lee S Y, Park S J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Compos Part A—Appl S 175: 107775 (2023)

[24]

Nikonovich M, Costa J F S, Fonseca A C, Ramalho A, Emami N. Structural, thermal, and mechanical characterisation of PEEK-based composites in cryogenic temperature. Polym Test 125: 108139 (2023)

[25]

Qi Y, Sun B G, Zhang Y, Gao G, Zhang P, Zheng X B. Study of tribological properties and evolution of morphological characteristics of transfer films in PTFE composites synergistically reinforced with nano-ZrO2 and PEEK particles. Polymers 15(17): 3626 (2023)

[26]

Qi Y, Sun B G, Zhang Y, Gao G, Zhang P, Zheng X B. Tribological properties of nano-ZrO2 and PEEK reinforced PTFE composites based on molecular dynamics. Lubricants 11(5): 194 (2023)

[27]

Améduri B. Fluoropolymers as unique and irreplaceable materials: Challenges and future trends in these specific per or poly-fluoroalkyl substances. Molecules 28(22): 7564 (2023)

[28]

Gaines L G. Historical and current usage of per‐and polyfluoroalkyl substances (PFAS): A literature review. Am J Ind Med 66(5): 353–378 (2023)

[29]

Hanford W E, Joyce R M. Polytetrafluoroethylene. J Am Chem Soc 68(10): 2082–2085 (1946)

[30]

Renfrew M M, Lewis E E. Polytetrafluoroethylene. heat resistant, chemically inert plastic. Ind Eng Chem 38(9): 870–877 (1946)

[31]

Shooter K V, Tabor D. The frictional properties of plastics. Proc Phys Soc B 65(9): 661–671 (1952)

[32]

Bunn C W, Howells E R. Structures of molecules and crystals of fluoro-carbons. Nature 174(4429): 549–551 (1954)

[33]

Flom D G, Porile N T. Friction of teflon sliding on teflon. J Appl Phys 26(9): 1088–1092 (1955)

[34]

Bunn C W, Cobbold A J, Palmer R P. The fine structure of polytetrafluoroethylene. J Polym Sci 28(117): 365–376 (1958)

[35]

Qu F, Liu L, Tao G Y, Zhan W, Zhan S P, Li Y H, Li C C, Lv X K, Shi Z M, Duan H T. Effect of thermal oxidative ageing on the molecular structure and tribological properties of polytetrafluoroethylene. Tribol Int 188: 108850 (2023)

[36]

Rahman N A, Hashim H, Zubairi S I. Optimization of concentration and exposure time of polytetrafluoroethylene (PTFE) for the development of hydrophobic coating of drying chamber of spray dryer. IOP C Ser Earth Env 1200(1): 012044 (2023)

[37]

Ito A, Sakuragi M, Kimura D, Toda K, Shimatani S, Nitta K H. Structural and morphological changes at initial state under uniaxial elongation of rolled polytetrafluoroethylene. Polym Test 128: 108208 (2023)

[38]

Yang Y, Strobel M, Kirk S, Kushner M J. Fluorine plasma treatments of poly(propylene) films, 2–modeling reaction mechanisms and scaling. Plasma Process Polym 7(2): 123–150 (2010)

[39]

Liu G C, Gao C J, Li X M, Guo C G, Chen Y, Lv J L. Preparation and properties of porous polytetrafluoroethylene hollow fiber membrane through mechanical operations. J Appl Polym Sci 132(43): 42696 (2015)

[40]

Feng S S, Zhong Z X, Wang Y, Xing W H, Drioli E. Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J Membr Sci 549: 332–349 (2018)

[41]

Sârbu F A, Arnăuţ F, Deaconescu A, Deaconescu T. Theoretical and experimental research concerning the friction forces developed in hydraulic cylinder coaxial sealing systems made from polymers. Polymers 16(1): 157 (2024)

[42]

Liu M, Tan X Y, Li X Y, Geng J L, Han M M, Wei K, Chen X B. Transparent superhydrophobic EVA/SiO2/PTFE/KH-570 coating with good mechanical robustness, chemical stability, self-cleaning effect and anti-icing property fabricated by facile dipping method. Colloid Surface A 658: 130624 (2023)

[43]

Chai J L, Wang G L, Zhao J C, Wang G Z, Wei C, Zhang A M, Zhao G Q. Robust, breathable, and chemical-resistant polytetrafluoroethylene (PTFE) films achieved by novel in situ fibrillation strategy for high-performance triboelectric nanogenerators. Nano Res 17(3): 1942–1951 (2024)

[44]
Ebnesajjad S. Fluoroplastics, Volume 2: Melt Processible Fluoropolymers—The Definitive User’s Guide and Data Book. New York (USA): William Andrew, 2015.
[45]

Liu L, Li H B, Avgouropoulos G. A review of porous polytetrafluoroethylene reinforced sulfonic acid-based proton exchange membranes for fuel cells. Int J Hydrog Energy 50: 501–527 (2024)

[46]

Liu F H, Jin Y H, Li J Y, Jiang W, Zhao W W. Improved coefficient thermal expansion and mechanical properties of PTFE composites for high-frequency communication. Compos Sci Technol 241: 110142 (2023)

[47]

Dhanumalayan E, Joshi G M. Performance properties and applications of polytetrafluoroethylene (PTFE): A review. Adv Compos Hybrid Mater 1(2): 247–268 (2018)

[48]

Arzhakova O V, Dolgova A A, Rukhlya E G, Volynskii A L. Environmental crazing and properties of mesoporous and nanocomposite materials based on poly(tetrafluoroethylene) films. Polymer 161: 151–161 (2019)

[49]

King R F, Tabor D. The effect of temperature on the mechanical properties and the friction of plastics. Proc Phys Soc B 66(9): 728–736 (1953)

[50]

Krick B A, Sawyer W G. Space tribometers: Design for exposed experiments on orbit. Tribol Lett 41(1): 303–311 (2011)

[51]

Liu M, Wang W. Effects of sliding velocity on microscratch responses of thermoplastics by Berkovich indenter. Polym Bull 80(7): 7901–7926 (2023)

[52]

Wang F, Niu Y P, Liu Q, Du Y B, Hu X Q, Xie G, Xue Y J, Xu J, Xue B. A polytetrafluoroethylene@polyacrylonitrile core-shell composite with high tribological performance. Polymer 289: 126493 (2023)

[53]

Biswas S K, Vijayan K. Friction and wear of PTFE: A review. Wear 158(1–2): 193–211 (1992)

[54]

Akram M W, Meyer J L, Polycarpou A A. Tribological interactions of advanced polymeric coatings with polyalkylene glycol lubricant and r1234yf refrigerant. Tribol Int 97: 200–211 (2016)

[55]

Beckford S, Cai J Y, Chen J Y, Zou M. Use of Au nanoparticle-filled PTFE films to produce low-friction and low-wear surface coatings. Tribol Lett 56(2): 223–230 (2014)

[56]

Beckford S, Cai J Y, Fleming R A, Zou M. The effects of graphite filler on the tribological properties of polydopamine/PTFE coatings. Tribol Lett 64: 42 (2016)

[57]

Ding Q J, Zhang Y D, Zhao G, Wang F. Properties of POB reinforced PTFE-based friction material for ultrasonic motors. J Polym Eng 37(7): 681–687 (2017)

[58]

Lim W S, Khadem M, Anle Y, Kim D E. Fabrication of polytetrafluoroethylene–carbon nanotube composite coatings for friction and wear reduction. Polym Compos 39(S2): E710–E722 (2018)

[59]

Luo Z Z, Zhang Z Z, Wang W J, Liu W M. Effect of polytetrafluoroethylene gradient-distribution on the hydrophobic and tribological properties of polyphenylene sulfide composite coating. Surf Coat Tech 203(10–11): 1516–1522 (2009)

[60]

Nemati N, Emamy M, Yau S, Kim J K, Kim D E. High temperature friction and wear properties of graphene oxide/polytetrafluoroethylene composite coatings deposited on stainless steel. RSC Adv 6(7): 5977–5987 (2016)

[61]

Peng S G, Zhang L, Xie G X, Guo Y, Si L N, Luo J B. Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate). Compos Part B—Eng 172: 316–322 (2019)

[62]

Su F H, Zhang S H. Tribological properties of polyimide coatings filled with PTFE and surface-modified nano-Si3N4. J Appl Polym Sci 131(12): 40410 (2014)

[63]

Yu C Y, Wan H Q, Chen L, Li H X, Cui H X, Ju P F, Zhou H D, Chen J M. Marvelous abilities for polyhedral oligomeric silsesquioxane to improve tribological properties of polyamide-imide/polytetrafluoroethylene coatings. J Mater Sci 53(17): 12616–12627 (2018)

[64]

Zhang D Y, Ho J K L, Dong G N, Zhang H, Hua M. Tribological properties of Tin-based Babbitt bearing alloy with polyurethane coating under dry and starved lubrication conditions. Tribol Int 90: 22–31 (2015)

[65]

Schiavone C, Portesi C. PFAS: A review of the state of the art, from legislation to analytical approaches and toxicological aspects for assessing contamination in food and environment and related risks. Appl Sci 13(11): 6696 (2023)

[66]

Thompson D, Zolfigol N, Xia Z H, Lei Y. Recent progress in per- and polyfluoroalkyl substances (PFAS) sensing: A critical mini-review. Sens Actuat Rep 7: 100189 (2024)

[67]

Dias D, Bons J, Kumar A, Kabir M, Liang H. Forever chemicals, per-and polyfluoroalkyl substances (PFAS), in lubrication. Lubricants 12(4): 114 (2024)

[68]

Dhore R, Murthy G S. Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresour Technol 341: 125808 (2021)

[69]

Glüge J, Scheringer M, Cousins I T, DeWitt J C, Goldenman G, Herzke D, Lohmann R, Ng C A, Trier X, Wang Z Y. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci—Proc Imp 22(12): 2345–2373 (2020)

[70]

Aryal N, Wood J, Rijal I, Deng D Y, Jha M K, Ofori-Boadu A. Fate of environmental pollutants: A review. Water Environ Res 92(10): 1587–1594 (2020)

[71]

Johnson G R. PFAS in soil and groundwater following historical land application of biosolids. Water Res 211: 118035 (2022)

[72]

Mahmoudnia A. The role of PFAS in unsettling ocean carbon sequestration. Environ Monit Assess 195(2): 310 (2023)

[73]

Bowles K C, Anderson J K, Anderson R, Bani B, Barnes C M, Brusseau M, Cousins I T, Cushing P, DiGuiseppi B, Gray B, et al. Implications of grouping per- and polyfluoroalkyl substances for contaminated site regulation. Remediat J 34(3): e21783 (2024)

[74]

Benaafi M, Bafaqeer A. Comprehensive review of global perspectives on per- and polyfluoroalkyl compounds: Occurrence, fate, and remediation in groundwater systems. Water 16(11): 1583 (2024)

[75]

Savvidou P, Dotro G, Campo P, Coulon F, Lyu T. Constructed wetlands as nature-based solutions in managing per-and poly-fluoroalkyl substances (PFAS): Evidence, mechanisms, and modelling. Sci Total Environ 934: 173237 (2024)

[76]

Brennan N M, Evans A T, Fritz M K, Peak S A, von Holst H E. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review. Int J Env Res Pub He 18(20): 10900 (2021)

[77]

Bălan S A, Mathrani V C, Guo D F, Algazi A M. Regulating PFAS as a chemical class under the California safer consumer products program. Environ Health Persp 129(2): 025001 (2021)

[78]

Khair Biek S, Khudur L S, Ball A S. Challenges and remediation strategies for per- and polyfluoroalkyl substances (PFAS) contamination in composting. Sustainability 16(11): 4745 (2024)

[79]

Schlezinger J J, Gokce N. Perfluoroalkyl/polyfluoroalkyl substances: Links to cardiovascular disease risk. Circ Res 134(9): 1136–1159 (2024)

[80]

Ling A L, Vermace R R, McCabe A J, Wolohan K M, Kyser S J. Is removal and destruction of perfluoroalkyl and polyfluoroalkyl substances from wastewater effluent affordable. Water Environ Res 96(1): e10975 (2024)

[81]

Weitz K, Kantner D, Kessler A, Key H, Larson J, Bodnar W, Parvathikar S, Davis L, Robey N, Taylor P, et al. Review of per- and poly-fluoroalkyl treatment in combustion-based thermal waste systems in the United States. Sci Total Environ 932: 172658 (2024)

[82]

Malik P, Nandini D, Tripathi B P. Firefighting aqueous film forming foam composition, properties and toxicity: A review. Environ Chem Lett 22(4): 2013–2033 (2024)

[83]

Gao W, Yu L H, Lin H, Meng L Y, Yu S F, Li J J, Lin Y F, Zheng Y X. A review on the impacts of fluorinated organic additives in lithium battery industry: An emerging source of per-and polyfluoroalkyl substances. Crit Rev Environ Sci Technol 54(17): 1285–1305 (2024)

[84]

Rahman M F, Peldszus S, Anderson W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res 50: 318–340 (2014)

[85]

Winchell L J, Ross J J, Wells M J M, Fonoll X, Norton J W Jr, Bell K Y. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review. Water Environ Res 93(6): 826–843 (2021)

[86]

Buttle E, Sharp E L, Fisher K. Managing ubiquitous ‘forever chemicals’: More-than-human possibilities for the problem of PFAS. N Z Geogr 79(2): 97–106 (2023)

[87]

Renfrew D, Pearson T W. The social life of the “forever chemical”: PFAS pollution legacies and toxic events. Environment and Society 12(1): 146–163 (2021)

[88]

Husøy T, Caspersen I H, Thépaut E, Knutsen H, Haug L S, Andreassen M, Gkrillas A, Lindeman B, Thomsen C, Herzke D, et al. Comparison of aggregated exposure to perfluorooctanoic acid (PFOA) from diet and personal care products with concentrations in blood using a PBPK model—Results from the Norwegian biomonitoring study in EuroMix. Environ Res 239: 117341 (2023)

[89]

Kookana R S, Navarro D A, Kabiri S, McLaughlin M J. Key properties governing sorption–desorption behaviour of poly- and perfluoroalkyl substances in saturated and unsaturated soils: A review. Soil Res 61(2): 107–125 (2023)

[90]

van Larebeke N, Koppen G, Decraemer S, Colles A, Bruckers L, Den Hond E, Govarts E, Morrens B, Schettgen T, Remy S, et al. Per- and polyfluoroalkyl substances (PFAS) and neurobehavioral function and cognition in adolescents (2010–2011) and elderly people (2014): Results from the Flanders Environment and Health Studies (FLEHS). Environ Sci Eur 34(1): 98 (2022)

[91]

Chirikona F, Quinete N, Gonzalez J, Mutua G, Kimosop S, Orata F. Occurrence and distribution of per- and polyfluoroalkyl substances from multi-industry sources to water, sediments and plants along Nairobi River Basin, Kenya. Int J Env Res Pub He 19(15): 8980 (2022)

[92]

Androulakakis A, Alygizakis N, Bizani E, Thomaidis N S. Current progress in the environmental analysis of poly- and perfluoroalkyl substances (PFAS). Environ Sci: Adv 1(5): 705–724 (2022)

[93]

Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser A M, Hauzenberger I, Hartmann C, et al. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 22(1): 19 (2023)

[94]

Iulini M, Russo G, Crispino E, Paini A, Fragki S, Corsini E, Pappalardo F. Advancing PFAS risk assessment: Integrative approaches using agent-based modelling and physiologically-based kinetic for environmental and health safety. Comput Struct Biotechnol J 23: 2763–2778 (2024)

[95]

Place B J, Field J A. Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ Sci Technol 46(13): 7120–7127 (2012)

[96]

Dean W S, Adejumo H A, Caiati A, Garay P M, Harmata A S, Li L, Rodriguez E E, Sundar S. A framework for regulation of new and existing PFAS by EPA. J Sci Policy Gov 16(1): 1–14 (2020)

[97]

Presentato A, Lampis S, Vantini A, Manea F, Daprà F, Zuccoli S, Vallini G. On the ability of perfluorohexane sulfonate (PFHxS) bioaccumulation by two pseudomonas sp. strains isolated from PFAS-contaminated environmental matrices. Microorganisms 8(1): 92 (2020)

[98]

Coimbra M C R, Brazil T R, Morgado G F M, Martins E F, Anjos E G R, Oyama I M C, Rodrigues J S, Botaro V R, Montagna L S, Rezende M C. Establishment of the synthesis route of furfuryl resin in acidic medium to minimize the exothermy of reaction. Matéria (Rio de Janeiro) 27: e20220054 (2022)

[99]

Koulini G V, Nambi I M. Occurrence of forever chemicals in Chennai waters, India. Environ Sci Eur 36(1): 60 (2024)

[100]

Kotthoff M, Bücking M. Four chemical trends will shape the next decade’s directions in perfluoroalkyl and polyfluoroalkyl substances research. Front Chem 6: 103 (2018)

[101]

Folkerson A P, Schneider S R, Abbatt J P D, Mabury S A. Avoiding regrettable replacements: Can the introduction of novel functional groups move PFAS from recalcitrant to reactive. Environ Sci Technol 57(44): 17032–17041 (2023)

[102]

Verma S, Lee T E, Sahle-Demessie E, Ateia M, Nadagouda M N. Recent advances on PFAS degradation via thermal and nonthermal methods. Chem Eng J Adv 13: 100421 (2023)

[103]
National Center for Environmental Health, USA. Fourth national report on human exposure to environmental chemicals. 2021. Available at https://stacks.cdc.gov/view/cdc/105345
[104]
Information on http://chm.pops.int/Implementation/IndustrialPOPs/PFOS/Decisions/tabid/5222/Default.aspx
[105]

Forster A L B, Zhang Y, Westerman D C, Richardson S D. Improved total organic fluorine methods for more comprehensive measurement of PFAS in industrial wastewater, river water, and air. Water Res 235: 119859 (2023)

[106]

Zarębska M, Bajkacz S. Poly- and perfluoroalkyl substances (PFAS) - Recent advances in the aquatic environment analysis. Trac Trends Anal Chem 163: 117062 (2023)

[107]

Uwayezu J N, Carabante I, van Hees P, Karlsson P, Kumpiene J. Validation of UV/persulfate as a PFAS treatment of industrial wastewater and environmental samples. J Water Process Eng 53: 103614 (2023)

[108]

Ehsan M N, Riza M, Pervez M N, Liang Y. Source identification and distribution of per- and polyfluoroalkyl substances (PFAS) in the freshwater environment of USA. Int J Environ Sci Technol 22(3): 2021–2046 (2025)

[109]

Amen R, Ibrahim A, Shafqat W, Hassan E B. A critical review on PFAS removal from water: Removal mechanism and future challenges. Sustainability 15(23): 16173 (2023)

[110]

Moghadasi R, Mumberg T, Wanner P. Spatial prediction of concentrations of per- and polyfluoroalkyl substances (PFAS) in European soils. Environ Sci Technol Lett 10(11): 1125–1129 (2023)

[111]

Cordner A, Brown P, Cousins I T, Scheringer M, Martinon L, Dagorn G, Aubert R, Hosea L, Salvidge R, Felke C, et al. PFAS contamination in Europe: Generating knowledge and mapping known and likely contamination with “expert-reviewed” journalism. Environ Sci Technol 58(15): 6616–6627 (2024)

[112]

Xu N, Pan Z L, Guo W J, Li S Y, Li D B, Dong Y R, Sun W L. Impacts of rapidly urbanizing watershed comprehensive management on per- and polyfluoroalkyl substances pollution: Based on PFAS “diversity” assessment. Water Res 261: 122010 (2024)

[113]

Nannaware M, Mayilswamy N, Kandasubramanian B. PFAS: Exploration of neurotoxicity and environmental impact. Environ Sci Pollut Res 31(9): 12815–12831 (2024)

[114]

Barrett E S, Ames J L, Eick S M, Peterson A K, Rivera-Núñez Z, Starling A P, Buckley J P, O‟Brien B, Peterson L, Parsons P, et al. Advancing understanding of chemical exposures and maternal-child health through the U. S. environmental influences on child health outcomes (ECHO) program: A scoping review. Curr Environ Health Rep 11(3): 390–403 (2024)

[115]

Li L, Guo Y K, Ma S, Wen H, Li Y P, Qiao J H. Association between exposure to per- and perfluoroalkyl substances (PFAS) and reproductive hormones in human: A systematic review and meta-analysis. Environ Res 241: 117553 (2024)

[116]

Hoadley L, Watters M, Rogers R, Siegmann Werner L, Markiewicz K V, Forrester T, McLanahan E D. Public health evaluation of PFAS exposures and breastfeeding: A systematic literature review. Toxicol Sci 194(2): 121–137 (2023)

[117]

Zheng Q Q, Yan W, Gao S H, Li X N. The effect of PFAS exposure on glucolipid metabolism in children and adolescents: A meta-analysis. Front Endocrinol 15: 1261008 (2024)

[118]

Forthun I H, Roelants M, Haug L S, Knutsen H K, Schell L M, Jugessur A, Bjerknes R, Sabaredzovic A, Bruserud I S, Juliusson P B. Levels of per- and polyfluoroalkyl substances (PFAS) in Norwegian children stratified by age and sex—Data from the Bergen Growth Study 2. Int J Hyg Environ Health 252: 114199 (2023)

[119]

Oh J, Shin H M, Kannan K, Calafat A M, Schmidt R J, Hertz-Picciotto I, Bennett D H. Per- and polyfluoroalkyl substances (PFAS) in serum of 2- to 5-year-old children: Temporal trends, determinants, and correlations with maternal PFAS concentrations. Environ Sci Technol 58(7): 3151–3162 (2024)

[120]

McAdam J, Bell E M. Determinants of maternal and neonatal PFAS concentrations: A review. Environ Health 22(1): 41 (2023)

[121]

Yang L, Chen Y, Ji H L, Zhang X, Zhou Y, Li J H, Wang Y, Xie Z Z, Yuan W, Liang H, et al. Per- and poly-fluoroalkyl substances and bile acid profiles in pregnant women. Environ Sci Technol 57(42): 15869–15881 (2023)

[122]

DeLuca N M, Thomas K, Mullikin A, Slover R, Stanek L W, Pilant A N, Cohen Hubal E A. Geographic and demographic variability in serum PFAS concentrations for pregnant women in the United States. J Expo Sci Environ Epidemiol 33(5): 710–724 (2023)

[123]

Hu Y, Han F, Wang Y X, Zhong Y X, Zhan J, Liu J Y. Trimester-specific hemodynamics of per- and polyfluoroalkyl substances and its relation to lipid profile in pregnant women. J Hazard Mater 460: 132339 (2023)

[124]

Luo Y D, Li X N, Li J, Gong X L, Wu T C, Li X N, Li Z, Zhai Y J, Wei Y, Wang Y W, et al. Prenatal exposure of PFAS in cohorts of pregnant women: Identifying the critical windows of vulnerability and health implications. Environ Sci Technol 58(31): 13624–13635 (2024)

[125]

Hall A M, Braun J M. Per- and polyfluoroalkyl substances and outcomes related to metabolic syndrome: A review of the literature and current recommendations for clinicians. Am J Lifestyle Med 19(2): 211–229 (2025)

[126]

Hsu C N, Tain Y L. Adverse impact of environmental chemicals on developmental origins of kidney disease and hypertension. Front Endocrinol 12: 745716 (2021)

[127]

Jane L Espartero L, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. Environ Res 212: 113431 (2022)

[128]

Niu S, Cao Y X, Chen R W, Bedi M, Sanders A P, Ducatman A, Ng C. A state-of-the-science review of interactions of per- and polyfluoroalkyl substances (PFAS) with renal transporters in health and disease: Implications for population variability in PFAS toxicokinetics. Environ Health Perspect 131(7): 076002 (2023)

[129]

Saliu T D, Sauvé S. A review of per- and polyfluoroalkyl substances in biosolids: Geographical distribution and regulations. Front Environ Chem 5: 1383185 (2024)

[130]

Sunderland E M, Hu X C, Dassuncao C, Tokranov A K, Wagner C C, Allen J G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol 29(2): 131–147 (2019)

[131]

Chang E T, Adami H O, Boffetta P, Cole P, Starr T B, Mandel J S. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and cancer risk in humans. Crit Rev Toxicol 44(sup1): 1–81 (2014)

[132]

Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, et al. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: What do we know and what not. Crit Rev Toxicol 51(2): 141–164 (2021)

[133]

Brunn H, Arnold G, Körner W, Rippen G, Steinhäuser K G, Valentin I. PFAS: Forever chemicals: Persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environ Sci Eur 35(1): 20 (2023)

[134]

Seyyedsalehi M S, Boffetta P. Per- and poly-fluoroalkyl substances (PFAS) exposure and risk of kidney, liver, and testicular cancers: A systematic review and meta-analysis. Med Lav 114(5): e2023040 (2023)

[135]

Spyrakis F, Dragani T A. The EU’s per- and polyfluoroalkyl substances (PFAS) ban: A case of policy over science. Toxics 11(9): 721 (2023)

[136]

Suffill E, White M P, Hale S, Pahl S. Regulating “forever chemicals”: Social data are necessary for the successful implementation of the essential use concept. Environ Sci Eur 36(1): 111 (2024)

[137]

Miladinova S, Garcia-Gorriz E, Macias-Moy D, Stips A. Transport and dispersion of PFOA and PFOS in the black sea. Environ Res 252: 118100 (2024)

[138]

Tarapore P, Ouyang B. Perfluoroalkyl chemicals and male reproductive health: Do PFOA and PFOS increase risk for male infertility. Int J Env Res Pub He 18(7): 3794 (2021)

[139]

Land M, de Wit C A, Bignert A, Cousins I T, Herzke D, Johansson J H, Martin J W. What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environ Evid 7(1): 4 (2018)

[140]
National Academies of Sciences, Engineering, and Medicine. PFAS Exposure Reduction. In: Guidance on PFAS Exposure, Testing, and Clinical Follow-Up. National Academies Press, 2022.
[141]

Cousins I T, DeWitt J C, Glüge J, Goldenman G, Herzke D, Lohmann R, Miller M, Ng C A, Scheringer M, Vierke L, et al. Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ Sci—Proc Imp 22(7): 1444–1460 (2020)

[142]

Watson A F. Remediation for PFAS contamination: The role of CERCLA enforcement in environmental justice. Ga L Rev 58: 803 (2023)

[143]

Pollack J B, Carey I Q, Xu V Y. Regulation of products with PFAS. Env't L Rep 54: 10148 (2024)

[144]
Choi H Y, Lyo I W, Park M H, Park Y R, Lim G W, Cho C H. Method using an organic solvent emulsion process for manufacturing oilgel capsules and method for manufacturing contact parts for a vehicle including the oilgel capsules. U. S. Patent 18 077 870, Sep. 2023.
[145]

Li H Y, Cui Y X, Wang H Y, Zhu Y J, Wang B H. Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloid Surface A 518: 181–187 (2017)

[146]

Mu B, Li X, Yang B P, Cui J F, Wang X, Guo J H, Bao X M, Chen L. Tribological behaviors of polyurethane composites containing self-lubricating microcapsules and reinforced by short carbon fibers. J Appl Polym Sci 134(43): 45331 (2017)

[147]

Matsumura Y, Shiraishi T, Morishita S. Stiffness and damping of liquid crystal lubricating film under electric field. Tribol Int 54: 32–37 (2012)

[148]

Yang H J, Mo Q F, Li W Z, Gu F M. Preparation and properties of self-healing and self-lubricating epoxy coatings with polyurethane microcapsules containing bifunctional linseed oil. Polymers 11(10): 1578 (2019)

[149]

Gorges R, Latham D, Laing I, Brock R. Lubrication on demand: A novel polymeric bearing coating with oil-filled microcapsules. SAE Int J Fuels Lubr 9(1): 32–40 (2016)

[150]

Zhang L, Xie G X, Wu S, Peng S G, Zhang X Q, Guo D, Wen S Z, Luo J B. Ultralow friction polymer composites incorporated with monodispersed oil microcapsules. Friction 9(1): 29–40 (2021)

[151]

Cao X, Yang X G, Li Y N, Zhang X, Ai T C, Pan G S, Guo D, Xie G X. Tribological properties and synergetic self-lubricating mechanism of PS–PAO based nanocapsules with MoDTC addtives. Tribol Int 186: 108606 (2023)

[152]

Grünewald M, Herbig D, Heilig M, Rudloff J, Bastian M, Engelmann G, Hirsekorn M, Latnikova A. Self-lubricating polyamide 6 and polyamide 6.6 microcapsule-based composites. J Appl Polym Sci 141(35): e55894 (2024)

[153]

Li H Y, Li S, Li Z K, Zhu Y J, Wang H Y. Polysulfone/SiO2 hybrid shell microcapsules synthesized by the combination of Pickering emulsification and the solvent evaporation technique and their application in self-lubricating composites. Langmuir 33(49): 14149–14155 (2017)

[154]

Guo Q B, Lau K T, Zheng B F, Rong M Z, Zhang M Q. Imparting ultra-low friction and wear rate to epoxy by the incorporation of microencapsulated lubricant. Macromol Mater Eng 294(1): 20–24 (2009)

[155]

Li H Y, Wang Q, Li M L, Cui Y X, Zhu Y J, Wang B H, Wang H Y. Preparation of high thermal stability polysulfone microcapsules containing lubricant oil and its tribological properties of epoxy composites. J Microencapsul 33(3): 286–291 (2016)

[156]

Li H Y, Li S, Li F B, Li Z K, Wang H Y. Fabrication of SiO2 wrapped polystyrene microcapsules by Pickering polymerization for self-lubricating coatings. J Colloid Interface Sci 528: 92–99 (2018)

[157]

Liu J Q, Wu K Y, Liu R, Sun G Q, Luo J. Robust SiO2/polymer hybrid microcapsule synthesized via emulsion photo-polymerization and its application in self-lubricating coatings. Prog Org Coat 184: 107856 (2023)

[158]

Liu H C, Wang X Y, Yang T, Chen S W, Yang S Y, Zhang X. Tribological properties of Pickering emulsion constructed with ZnO nanoparticles modified by magnetic surfactants. Colloid Surface A 695: 134206 (2024)

[159]

Zhang G L, Xie G X, Si L N, Wen S Z, Guo D. Ultralow friction self-lubricating nanocomposites with mesoporous metal–organic frameworks as smart nanocontainers for lubricants. ACS Appl Mater Inter 9(43): 38146–38152 (2017)

[160]

Li K K, Liu Z J, Wang C J, Fan W H, Liu F T, Li H Y, Zhu Y J, Wang H Y. Preparation of smart coatings with self-healing and anti-wear properties by embedding PU–fly ash absorbing linseed oil microcapsules. Prog Org Coat 145: 105668 (2020)

[161]

Wang Q, Li Q Y, Du G, Zhang X, Li J Z. Oil-loaded mesoporous silica to enhance the lubrication of polypropylene resin composite materials. Tribol Trans 67(4): 775–786 (2024)

[162]

Li H Y, Ma Y J, Cui Y X, Li Z K, Wang H Y. Ultralow tribological properties of polymer composites containing [BMIm] PF6-loaded multilayer wall microcapsule. Macromol Mater Eng 304(4): 1800791 (2019)

[163]

Zhang W L, Qi X W, Li X L, Dong Y, Yao W G, Liang L, Zhang Y. Surface modification of polysulfone/PAO40 microcapsules via polydopamine to improve thermal stability and used to prepare polyamide 6-based self-lubricating composite. Colloid Surface A 625: 126906 (2021)

[164]

Wan Q, Tian J W, Liu M Y, Zeng G J, Huang Q, Wang K, Zhang Q S, Deng F J, Zhang X Y, Wei Y. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Appl Surf Sci 346: 335–341 (2015)

[165]

Tian J W, Zhang H X, Liu M Y, Deng F J, Huang H Y, Wan Q, Li Z, Wang K, He X H, Zhang X Y, et al. A bioinspired strategy for surface modification of silica nanoparticles. Appl Surf Sci 357: 1996–2003 (2015)

[166]

Yang M M, Yuan J Y, Guo F, Wang K, Zhang Z Z, Men X H, Liu W M. A biomimetic approach to improving tribological properties of hybrid PTFE/Nomex fabric/phenolic composites. Eur Polym J 78: 163–172 (2016)

[167]

Liao C Y, Zhang Z Z, Yang M M, Yuan J Y, Liu M, He Y H, Li P L, Jiang W, Liu W M. The cooperatively crosslinking between GO-COOH/TiO2@PAO microcapsules and polyimide to improve the mechanical and tribological properties of PEEK/PI composites. Tribol Int 191: 109209 (2024)

[168]
An J U, Lee H W, Lyo I W, Yeo K K, Wang D Y, An J Y, Park M H, Park Y R. Method for manufacturing oil gel capsules and method for manufacturing contact part for vehicle, including oil gel capsules. U. S. Patent No. 11, 186, 801, Nov. 2021.
Friction
Article number: 9441022
Cite this article:
Park Y, Choi S-G, Cho C-H, et al. Environmental limitations of PTFE for ultralow friction composites and alternatives to using liquid lubricants. Friction, 2025, 13(6): 9441022. https://doi.org/10.26599/FRICT.2025.9441022

803

Views

176

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 April 2024
Revised: 14 August 2024
Accepted: 14 October 2024
Published: 14 April 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return