AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (10.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Magnetic lubricants: Preparation, physical mechanism, and application

Lingyi Sun1Yanbin Zhang1( )Xin Cui1Qinglong An2Yun Chen3Dongzhou Jia4Peng Gong1Mingzheng Liu1Yusuf Suleiman Dambatta1,5Changhe Li1( )
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
Chengdu Tool Research Institute Co., Ltd., Chengdu 610500, China
College of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, China
Mechanical Engineering Department, Ahmadu Bello University, Zaria 810106, Nigeria
Show Author Information

Graphical Abstract

Abstract

Magnetic lubricants are emerging as advanced lubricants with controlled flowability and enhanced lubrication and heat transfer capabilities, showing potential for use in extreme conditions such as aerospace. Although their excellent properties have been preliminarily confirmed, the mechanisms by which these properties influence performance—including fluid dynamics, electromagnetism, and chemistry—require systematic investigation. This paper addresses this gap by systematically reviewing the preparation, physicochemical properties, and potential applications of magnetic lubricants. First, the formulations of magnetic lubricants, including the base fluid and stabilizing additives, are thoroughly examined, considering various magnetic materials and preparation methods to elucidate the mechanisms influencing dispersion stability and magnetic response. Next, the physical properties, such as saturation magnetization, viscosity, and flowability, are analyzed through theoretical and experimental studies, and constitutive models for the fluid dynamics of magnetic lubricants are summarized. Furthermore, the advanced tribological and thermal properties, as well as the physical behavior under magnetic fields, are discussed, highlighting the superior antifriction, antiwear, cooling, and controlled flowability performance compared to traditional lubricants. Finally, current applications and potential fields, such as bearings, machining, and heat exchangers, are reviewed. This paper provides a valuable reference for both theoretical studies and engineering applications of magnetic lubricants.

References

[1]

Li B, Sun Y L, Yao J B, Wu H L, Shen Y Q, Zhi C, Li J Y. An environment-friendly chemical modification method for thiol groups on polypeptide macromolecules to improve the performance of regenerated keratin materials. Mater Des 217: 110611 (2022)

[2]
Chavhan N, Mokashi A, Chandak S, Chaware B, Bongarde P, Bodhe S. Development of bio lubricant from castor oil via chemical softening: An ease towards sustainable substitute. Mater Today Proc, https://doi.org/10.1016/j.matpr.2023.09.061.
[3]

Chen T, Wang X W, Zhao B, Ding W F, Xiong M Y, Xu J H, Liu Q, Xu D D, Zhao Y J, Zhu J H. Material removal mechanisms in ultrasonic vibration-assisted high-efficiency deep grinding γ-TiAl alloy. Chin J Aeronaut 37(11): 462–476 (2024)

[4]

Zhao B, Ding W F, Shan Z D, Wang J, Yao C F, Zhao Z C, Liu J, Xiao S H, Ding Y, Tang X W, et al. Collaborative manufacturing technologies of structure shape and surface integrity for complex thin-walled components of aero-engine: Status, challenge and tendency. Chin J Aeronaut 36(7): 1–24 (2023)

[5]

Cao Y, Ding W F, Zhao B, Wen X B, Li S P, Wang J Z. Effect of intermittent cutting behavior on the ultrasonic vibration-assisted grinding performance of Inconel718 nickel-based superalloy. Precis Eng 78: 248–260 (2022)

[6]

Wei Y M, Chen K Y, Kang J N, Chen W M, Wang X Y, Zhang X Y. Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering 14: 52–63 (2022)

[7]

He J K, Li Z, Zhang X L, Wang H L, Dong W J, Du E S, Chang S Y, Ou X M, Guo S Y, Tian Z Y, et al. Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environ Sci Ecotechnol 9: 100134 (2022)

[8]

Hu W F, Fang J H, Zhang T Z, Liu Z Y, Tan J R. A new quantitative digital twin maturity model for high-end equipment. J Manuf Syst 66: 248–259 (2023)

[9]

Hu Z S, Wu Z Y, Mo Z Y, Cai X M, Wei J T. Experimental investigations on viscosity properties of NiFe2O4 magnetic fluid. J Eng Thermophys 39(06): 1205–1212 (2018)

[10]

Yang H, Huang K L, Li W. A new type of intelligent material-magnetic fluid. Enterprise Technology Development (04): 6–8 (2002) (in Chinese)

[11]

Máximo F, Bastida J, Montiel C, Gómez M, Murcia M D, Barqueros C, Ortega-Requena S. Branched saturated esters and diesters: Sustainable synthesis of excellent biolubricants. Catal Today 429: 114509 (2024)

[12]

Feng, X J, Yang, Z Y. Tribological properties of MnZnFe2O4 nano magnetic particles as an additive in base oil. Lubr Eng 32(3): 122–124 (2007)

[13]

Peng H, Shangguan L J, Zhang H. Device for simulating fluid microgravity environment based on magnetic compensation method and research on magnetic fluid lubrication performance of oil film bearing. Adv Mater Sci Eng 2022(1): 2388622 (2022)

[14]

Ali S H, Yao Y, Wu B F, Zhao B, Ding W F, Jamil M, Khan A, Baig A, Liu Q, Xu D D. Recent developments in MQL machining of aeronautical materials: A comparative review. Chin J Aeronaut 38(1): 102918 (2025)

[15]

Zhao G L, Zhao B, Ding W F, Xin L J, Nian Z W, Peng J H, He N, Xu J H. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: A comparative analysis. Int J Extrem Manuf 6(2): 022007 (2024)

[16]

Wang S Y, Ren G L, Li W Q, Wang B, Wei F H, Liang Z, Chen D. A green modification technology of carbon nanotubes toward enhancing the tribological properties of aqueous-based lubricants. Tribol Int 180: 108268 (2023)

[17]

Menon K S, Rajasekaran A. Evaluation of tribological properties and sustainability of bio-lubricant developed from neem seed oil for real-life application. Tribol Int 190: 108998 (2023)

[18]

Bai Y Y, Chen Q, Lang X J, Liang Y J, Zhang M, Yu Q L, Cai M R, Zhou F, Liu W M. Dispersion stability and tribological behavior of nanocomposite supramolecular gel lubricants and molecular dynamic simulation. Tribol Int 191: 109150 (2024)

[19]

Zhang C, Sun Q C, Sun W, Shi Z H, Mu X K. Performance-oriented digital twin assembly of high-end equipment: A review. Int J Adv Manuf Technol 126(11): 4723–4748 (2023)

[20]

Liu L, Wang X, Wang Z G. Recent progress and emerging strategies for carbon peak and carbon neutrality in China. Greenh Gases Sci Technol 13(5): 732–759 (2023)

[21]

Ahmad U, Naqvi S R, Ali I, Naqvi M, Asif S, Bokhari A, Juchelková D, Klemeš J J. A review on properties, challenges and commercial aspects of eco-friendly biolubricants productions. Chemosphere 309: 136622 (2022)

[22]

Xie M, Luo Y X, Gao T T, Li R Y. Investigation on the lubrication component and mechanism for a biolubricant isolated from the agro-waste resource of Codonopsis pilosula. Sci Total Environ 902: 166014 (2023)

[23]

Ren G L, Zhou C J, Wang S Y, Fan X Q, Han Y, Jin G H. Improving the rheological and tribological properties of lithium complex grease via complexing agent. Tribol Int 175: 107826 (2022)

[24]

Yang W, Geng Z S, Li Y, Liu X, Tian X J, Wang S Y, Wu N, Wang Y F, Xu R, Yang F, et al. Facile synthesis of lipophilic alkylated boron nitride nanosheets as lubricating oil additive to greatly enhance the friction and heat-conducting properties. Tribol Int 173: 107655 (2022)

[25]

Zhang C Y, Yang Z Q, Huang Q, Wang X W, Yang W F, Zhou C Y, Yu B, Yu Q L, Cai M R, Zhou F. Lignin composite ionic liquid lubricants with excellent anti-corrosion, anti-oxidation, and tribological properties. Friction 11(7): 1239–1252 (2023)

[26]

Huai W J, Zhang C H, Wen S Z. Graphite-based solid lubricant for high-temperature lubrication. Friction 9(6): 1660–1672 (2021)

[27]

Lu Q, Zhang T T, He B L, Xu F, Liu S J, Ye Q, Zhou F. Enhanced lubricity and anti-wear performance of zwitterionic polymer-modified N-enriched porous carbon nanosheets as water-based lubricant additive. Tribol Int 167: 107421 (2022)

[28]

Jia D Z, Zhang Y B, Li C H, Yang M, Gao T, Said Z, Sharma S. Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribol Int 169: 107461 (2022)

[29]

Cui X, Li C H, Zhang Y B, Ding W F, An Q L, Liu B, Li H N, Said Z, Sharma S, Li R Z, et al. Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant. Front Mech Eng 18(1): 3 (2022)

[30]

Zhu L L, Dong J, Zeng Q F, Chao M R, Gong K L, Li W M, Wang X B. A comprehensive study of amino acids based ionic liquids as green lubricants for various contacts. Tribol Int 162: 107137 (2021)

[31]

Zhang Y B, Li H N, Li C H, Huang C Z, Ali H M, Xu X F, Mao C, Ding W F, Cui X, Yang M, et al. Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms. Friction 10(6): 803–841 (2022)

[32]

Cyriac F, Yi T X, Poornachary S K, Chow P S. Behavior and interaction of boundary lubricating additives on steel and DLC-coated steel surfaces. Tribol Int 164: 107199 (2021)

[33]

Faig J J, Zhang Y Y, Ng M K, Luo S J, Shough A M, Schilowitz A, Dierolf M, Uhrich K E. Thermocleavable friction modifiers for controlled release in lubricants. Tribol Int 120: 58–69 (2018)

[34]

P B, B S R, K S, P B S, Magadevan D. The significance of low and high temperature solid lubricants for brake friction applications and their tribological investigation. Tribol Int 191: 109109 (2024)

[35]
Tabrez S, Gaur K K, Kumar V, Jha P, Nautiyal H, Salam A, Singh S. Nickel metal matrix composites reinforced with solid lubricants: A comprehensive review. Mater Today Proc, https://doi.org/10.1016/j.matpr.2023.07.081.
[36]

Silva-Alvarez D F, Dominguez-Lopez I, Vidales Hurtado M A, Gutierrez-Antonio C, Flores-Garay K A, Garcia-Garcia A L. A review on the menagerie of green fluids and nanoparticles to develop sustainable biolubricant technologies. Environ Technol Innov 33: 103532 (2024)

[37]

Monteiro R R C, Berenguer-Murcia Á, Rocha-Martin J, Vieira R S, Fernandez-Lafuente R. Biocatalytic production of biolubricants: Strategies, problems and future trends. Biotechnol Adv 68: 108215 (2023)

[38]

Nor N M, Salih N, Salimon J. Optimization and lubrication properties of Malaysian crude palm oil fatty acids based neopentyl glycol diester green biolubricant. Renew Energy 200: 942–956 (2022)

[39]

Luo Z W, Dubey R, Gunasekaran A, Childe S J, Papadopoulos T, Hazen B, Roubaud D. Sustainable production framework for cement manufacturing firms: A behavioural perspective. Renew Sustain Energy Rev 78: 495–502 (2017)

[40]

Bai M J, Liu J L, Jiang H, Li W J, Wei J J, Chen L X, Miao J Y, Li C M. Irradiation enhanced the anti-friction performance of GO and FND codispersed nanofluids. Tribol Int 176: 107910 (2022)

[41]

Wen P, Zhang C Y, Yang Z G, Dong R, Wang D M, Fan M J, Wang J Q. Triazine-based covalent-organic frameworks: A novel lubricant additive with excellent tribological performances. Tribol Int 111: 57–65 (2017)

[42]
Xu W H, Li C H, Zhang Y B, Yang M, Zhou Z M, Chen Y, Liu B, Zhang N Q, Xu X F. Research progress and application of electrostatic atomization minimum quantity lubrication. Journal of Mechanical Engineering (2023) (in Chinese)
[43]
Wang X M, Li C H, Zhang Y B, Yang M, Zhou Z M, Chen Y, Liu B, Wang D Z. Research progress on enabled atomization and supply system of minimum quantity lubrication. Surface Technology (2022) (in Chinese)
[44]

Xu W H, Li C H, Zhang Y B, Ali H M, Sharma S, Li R Z, Yang M, Gao T, Liu M Z, Wang X M, et al. Electrostatic atomization minimum quantity lubrication machining: From mechanism to application. Int J Extrem Manuf 4(4): 042003 (2022)

[45]

Wang X M, Song Y X, Li C H, Zhang Y B, Ali H M, Sharma S, Li R Z, Yang M, Gao T, Liu M Z, et al. Nanofluids application in machining: A comprehensive review. Int J Adv Manuf Technol 131(5): 3113–3164 (2024)

[46]

Wang X M, Li C H, Zhang Y B, Ali H M, Sharma S, Li R Z, Yang M, Said Z, Liu X. Tribology of enhanced turning using biolubricants: A comparative assessment. Tribol Int 174: 107766 (2022)

[47]

Gou M L, Xie Z, Wang H, Gong C. Preparation of a magnetic fluid by chemical Co-deposition method. West China Medical Journal (02): 343–344 (2007) (in Chinese)

[48]
Shen H, Deng Z D, Wu S X, Ying T Z, Liu L H, Lai S L. Magnetic fluids and their preparation methods. In The 3rd China Academic Conference on Functional Materials and Their Applications Chongqing, China, 1998: 390–394.
[49]
Yuan, S X, Fan, Y G, Cheng, X M. Preparation and application technologies of nanoferrofluid. J Xi'an Petrol Inst 17(6): 75–79 (2002) (in Chinese)
[50]

Carrell J, Lewis R, Slatter T. Elastomer solubility and stress relaxation in bio-lubricants. Tribol Int 141: 105947 (2020)

[51]

Chang Z, Liu K, Sun Z H, Yuan K P, Cheng S W, Gao Y F, Zhang X L, Shen C, Zhang H B, Wang N, et al. First-principles investigation of the significant anisotropy and ultrahigh thermoelectric efficiency of a novel two-dimensional Ga2I2S2 at room temperature. Int J Extrem Manuf 4(2): 025001 (2022)

[52]

Gunda R K, Narala S K R. Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions. Surf Coat Technol 332: 341–350 (2017)

[53]
Tang B L, Liu S J, Yang Z Y. Preparation of Fe3O4 Nanomagnetic Particle Magnetic Fluid Lubrication. In National Powder Equipment-Technology-Product Information Exchange Conference, Shanghai, China, 2003: 44-51.
[54]
Zhao D L, Zhao H, Xia Q S, Tang J T. Synthesis of Magnetitie Nanoparticles and Their Inducive Heating Property in Alternating Current Magnetic Field. In National Academic Conference on Functional Materials, Lanzhou, China, 2006: 3.
[55]

Si S F, Li C H, Wang X, Yu D P, Peng Q, Li Y D. Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5(2): 391–393 (2005)

[56]

Yan A G, Liu X H, Qiu G Z, Wu H Y, Yi R, Zhang N, Xu J. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J Alloys Compd 458(1–2): 487–491 (2008)

[57]

Zhao Y Q, Wang J M, Hou D B, Luo Y C. Research on the effect of external magnetic field on the performance of magnetic fluid oil film bearings. Journcal of TaiYuan University of Science and Technology 40(05): 358–362 (2019) (in Chinese)

[58]

Jian G X, Wang Y Q, Yu X, Li Y K, Luo H. Coupling on ferrofluid lubrication and dynamics of gear system. Tribology 41(03): 325–333 (2021) (in Chinese)

[59]

Lv T, Xu X F, Yu A B, Niu C C, Hu X D. Ambient air quantity and cutting performances of water-based Fe3O4 nanofluid in magnetic minimum quantity lubrication. Int J Adv Manuf Technol 115(5): 1711–1722 (2021)

[60]

Amin A R, Ali A, Ali H M. Application of nanofluids for machining processes: A comprehensive review. Nanomaterials 12(23): 4214 (2022)

[61]

Sajid M U, Ali H M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew Sustain Energy Rev 103: 556–592 (2019)

[62]

Baldin V, da Silva L R R, Machado A R, Houck C F. State of the art of biodegradable nanofluids application in machining processes. Int J Precis Eng Manuf Green Technol 10(5): 1299–1336 (2023)

[63]

Zhou G H, Zhu Y F, Wang X M, Xia M J, Zhang Y, Ding H Y. Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil. Wear 301(1–2): 753–757 (2013)

[64]

Ke H J, Huang W, Wang X L. Controlling lubricant migration using ferrofluids. Tribol Int 93: 318–323 (2016)

[65]

Hu D W, Wang Y M, Yu R P. Synthesis of Fe3O4 nanoparticles in oxidative Co-precipitation with weakly magnetic field assistance. The Chinese Journal of Process Engineering 9(S2): 1–6 (2009) (in Chinese)

[66]

Wang Z L. Research on magnetic fluid lubrication and sealing of rolling bearings. Tribology 25(01): 88–91 (2005) (in Chinese)

[67]

Weng X Y. Current and future development of magnetic fluid technology and applications. Magnetic Materials and Devices 29(06): 35–39 (1998)

[68]

Cao T, Lian M, Liu K, Lou X C, Guo Y M, Guo D M. Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces. Int J Extrem Manuf 4(1): 015402 (2022)

[69]

Sun Q S, Xue Z X, Chen Y, Xia R D, Wang J M, Xu S, Zhang J, Yue Y N. Modulation of the thermal transport of micro-structured materials from 3D printing. Int J Extrem Manuf 4(1): 015001 (2022)

[70]

Bahiuddin I, Mazlan S A, Shapiai M I, Choi S B, Imaduddin F, Rahman M A A, Ariff M H M. A new constitutive model of a magneto-rheological fluid actuator using an extreme learning machine method. Sens Actuat A Phys 281: 209–221 (2018)

[71]

Asiaban R, Khajehsaeid H, Ghobadi E, Jabbari M. New magneto-rheological fluids with high stability: Experimental study and constitutive modelling. Polym Test 87: 106512 (2020)

[72]

Zhang Y J, Li D C, Cui H C, Yang J W. A new modified model for the rheological properties of magnetorheological fluids based on different magnetic field. J Magn Magn Mater 500: 166377 (2020)

[73]

Zhao H, Cui C H, Wang Y Q. Friction performance analysis of lubricated coated gear with magnetic fluid in CNC machine tools. Manufacturing Technology and Machine Tools (12): 127–131 (2021) (in Chinese)

[74]

He Y, Wang Y Q, Mo J, Zhao T, Zhu Y L, Li M J. Preparation and tribological properties of glycerol based Fe3O4 magnetic fluid. Functional materials 53(07): 7013–7018 (2022) (in Chinese)

[75]

Liu J R, Wang X J, Tang X, Hong R Y, Wang Y Q, Feng W G. Preparation and characterization of carbonyl iron/strontium hexaferrite magnetorheological fluids. Particuology 22: 134–144 (2015)

[76]

Trivedi K. Analyzing lubrication properties of magnetic lubricant synthesized in two lubricating oils. Wear 477: 203861 (2021)

[77]

Yao Y W, Wu Z Y, Zhu Q C, Wang T Y, Zhang L Z. Experimental study on stability and viscosity properties of phase change of Ni0.5Zn0.5Fe2O4 magnetic fluid. Journal of Engerineering Thermophysics 43(03): 817–823 (2022) (in Chinese)

[78]

Zhang L, Huang Z, Shao H P, Li Y, Zheng H. Effects of γ-Fe2O3 on γ-Fe2O3/Fe3O4 composite magnetic fluid by low-temperature low-vacuum oxidation method. Mater Des 105: 234–239 (2016)

[79]

Rwei S P, Shiu J W, Sasikumar R, Hsueh H C. Characterization and preparation of carbonyl iron-based high magnetic fluids stabilized by the addition of fumed silica. J Solid State Chem 274: 308–314 (2019)

[80]

Sharma K, Pathak A, Rawat A P, Chaubey J, Sharma A, Tomar H, Singh S. “Development approach and application of magnetic nanoparticles and encapsulation method”. Mater Today Proc 103: 500–505 (2024)

[81]

Gómez A, Barón A, Berasategi J, Blanco M, García A, Gutiérrez J, Iglesias-Rojas D, Insausti M, Lanceros-Mendez S, Tubio C R, et al. Influence of nanoparticles morphology in magnetic fluids. J Magn Magn Mater 593: 171881 (2024)

[82]

Jafari Eskandari M, Hasanzadeh I. Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation. Mater Sci Eng B 266: 115050 (2021)

[83]

Liu S X, Yu B, Wang S, Shen Y Q, Cong H L. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci 281: 102165 (2020)

[84]

Hu S G, Li C H, Li B K, Yang M, Wang X M, Gao T, Xu W H, Suleiman Dambatta Y, Zhou Z M, Xu P M. Digital twins enabling intelligent manufacturing: From methodology to application. Intell Sustain Manuf 1(1): 10007 (2024)

[85]

Tang X X, Li D L, Liu T G, Liu S J. Investigation of lubricating characteristics of magnetic fluid. Coal Mine Machinery 29(12): 64–66 (2008)

[86]

Shahnazar S, Bagheri S, Abd Hamid S B. Enhancing lubricant properties by nanoparticle additives. Int J Hydrog Energy 41(4): 3153–3170 (2016)

[87]

Htwe Y Z N, Al-Janabi A S, Wadzer Y, Mamat H. Review of tribological properties of nanoparticle-based lubricants and their hybrids and composites. Friction 12(4): 569–590 (2024)

[88]

Jin B, Chen G Y, Zhao J, He Y Y, Huang Y Y, Luo J B. Improvement of the lubrication properties of grease with Mn3O4/graphene (Mn3O4#G) nanocomposite additive. Friction 9(6): 1361–1377 (2021)

[89]

Jiang Z Q, Sun Y K, Liu B K, Yu L G, Tong Y P, Yan M M, Yang Z Z, Hao Y X, Shangguan L J, Zhang S M, et al. Research progresses of nanomaterials as lubricant additives. Friction 12(7): 1347–1391 (2024)

[90]

Tang J, Liu S W, Liu W, Wang Y C, Li L, Li Z P, Wang J Q. Comparative study on tribological performance and mechanism of eco-friendly solvent-free covalent MXene nanofluids in glycerin and polyethylene glycol. Tribol Int 190: 109051 (2023)

[91]
Li X T, Preparation and Performance Study of Fe3O4 Magnetic Fluid. Master Thesis. Jinan (China): ShanDong University, 2007.
[92]

Thyashan N, Yu H J, Liu X Q, Abeykoon C. Ionic liquids modified CNTs and graphene as additives in vegetable lubricating oil: A route for sustainable tribology. Results Surf Interfaces 11: 100119 (2023)

[93]

Jia D Z, Li C H, Zhang Y B, Yang M, Wang Y G, Guo S M, Cao H J. Specific energy and surface roughness of minimum quantity lubrication grinding Ni-based alloy with mixed vegetable oil-based nanofluids. Precis Eng 50: 248–262 (2017)

[94]

Zhang Y B, Li C H, Yang M, Jia D Z, Wang Y G, Li B K, Hou Y L, Zhang N Q, Wu Q D. Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil. J Clean Prod 139: 685–705 (2016)

[95]

Gao T, Li C H, Zhang Y B, Yang M, Jia D Z, Jin T, Hou Y L, Li R Z. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131: 51–63 (2019)

[96]

Wang Y G, Li C H, Zhang Y B, Li B K, Yang M, Zhang X P, Guo S M, Liu G T, Zhai M G. Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. J Manuf Process 26: 94–104 (2017)

[97]

Alves S M, Barros B S, Trajano M F, Ribeiro K S B, Moura E. Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int 65: 28–36 (2013)

[98]

Xie Z W, Wu Z Y, Zhu Q C, Jiang J J, Liang T, Liu Z Y. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid. Chemical Industry and Engineering Progress 42(07): 3623–3633 (2023) (in Chinese)

[99]

Zhang X T, Li C H, Zhou Z M, Liu B, Zhang Y B, Yang M, Gao T, Liu M Z, Zhang N Q, Said Z, et al. Vegetable oil-based nanolubricants in machining: From physicochemical properties to application. Chin J Mech Eng 36(1): 76 (2023)

[100]

Du J C, Zhang Y P, Zhu L J. Preparation methods of magnetic fluids and their main applications in engineering. Journal of Beijing T echnology and Business University (Natural Science Edition) 21(04): 49–53 (2003) (in Chinese)

[101]

Yang J L, Huang W. Progress of magnetic fluids lubrication technology. Surface Technology 46(06): 61–68 (2017) (in Chinese)

[102]

Bolotov A N, Novikov V V, Novikova O O. Dielectric criteria of colloidal stability of nanodispersed ferrofluid lubricating oils. Procedia Eng 206: 600–605 (2017)

[103]

Joseph A, Mathew S. Ferrofluids: Synthetic strategies, stabilization, physicochemical features, characterization, and applications. ChemPlusChem 79(10): 1382–1420 (2014)

[104]

Wang J H, Zhuang W P, Liang W F, Yan T T, Li T, Zhang L X, Li S. Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction 10(5): 645–676 (2022)

[105]

Su F H, Chen G F, Huang P. Lubricating performances of graphene oxide and onion-like carbon as water-based lubricant additives for smooth and sand-blasted steel discs. Friction 8(1): 47–57 (2020)

[106]

Wang H D, Liu Y H. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 8(6): 1007–1024 (2020)

[107]

Wang Y X, Lu Q, Xie H J, Liu S J, Ye Q, Zhou F, Liu W M. In-situ formation of nitrogen doped microporous carbon nanospheres derived from polystyrene as lubricant additives for anti-wear and friction reduction. Friction 12(3): 439–451 (2024)

[108]

Zhao J H, Yang G B, Zhang Y J, Zhang S M, Zhang C L, Gao C P, Zhang P Y. Controllable synthesis of different morphologies of CuO nanostructures for tribological evaluation as water-based lubricant additives. Friction 9(5): 963–977 (2021)

[109]

Xia Y Q, Xu X C, Feng X, Chen G X. Leaf-surface wax of desert plants as a potential lubricant additive. Friction 3(3): 208–213 (2015)

[110]

Xu K, Liu J J, Xu T, He H L, Tan H. Preparation of nanometer zinc ferrite powder by shock wave synthesis—A new method for preparing nanometer powder. Journal of Inorfanic Materials 12(05): 759–762 (1997)

[111]

Wang, X Y, Yang, G Q, Zhang, Z S, Yan, L M, Meng, J H. Surface treatment of magnetic particles in preparation of magnetic fluids. Chin J Appl Chem 22(5): 525–529 (2005)

[112]

Guo Q J, Zheng S H, Tao W H. Nano-magnetic liquid and its application. Technological Development of Enterprise 24(07): 8–10 (2005) (in Chinese)

[113]

Victory M, Pant R P, Phanjoubam S. Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. Mater Chem Phys 240: 122210 (2020)

[114]

Yao Z Q, Wang Q, Zhong B. Preparation of ultrafine powder of MnZn ferrite by supercritical fluid drying method Ⅱ. Study of phase structure. Magnetic Materials and Devices (01): 30–33 (1999) (in Chinese)

[115]

Hong R Y, Li J H, Li H Z, Ding J, Zheng Y, Wei D G. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids. J Magn Magn Mater 320(9): 1605–1614 (2008)

[116]

Yang C C, Ji J Y, Huang C Y, Ido Y, Iwamoto Y. Experimental investigation of sub-millimeter thermomagnetic pumps with temperature-sensitive magnetic fluid. Appl Therm Eng 219: 119461 (2023)

[117]

Kuznetsov A A, Pshenichnikov A F. Nonlinear response of a dilute ferrofluid to an alternating magnetic field. J Mol Liq 346: 117449 (2022)

[118]

Chang X F, Renqing D J, Liao L X, Zhu P Y, Lin B J, Huang Y B, Luo S M. Study on hydrodynamic lubrication and friction reduction performance of spur gear with groove texture. Tribol Int 177: 107978 (2023)

[119]

Liu R Y, Zhou C L, Zhang Y, Cui Z, Wu X H, Yi H L. Near-field radiative heat transfer in hyperbolic materials. Int J Extrem Manuf 4(3): 032002 (2022)

[120]

Monteverde F, Gaboardi M, Saraga F, Feng L, Fahrenholtz W, Hilmas G. Anisotropic thermal expansion in high-entropy multicomponent AlB2-type diboride solid solutions. Int J Extrem Manuf 5(1): 015505 (2023)

[121]

Tan C L, Deng C, Li S, Abena A, Jamshidi P, Essa K, Wu L K, Xu G H, Attallah M M, Liu J. Mechanical property and biological behaviour of additive manufactured TiNi functionally graded lattice structure. Int J Extrem Manuf 4(4): 045003 (2022)

[122]

Rakpakdee W, Motozawa M, Fukuta M, Chaiworapuek W. Characteristics of heat transfer and flow resistance of magnetic fluid flow through porous media combined with magnetic field effect. Exp Therm Fluid Sci 144: 110851 (2023)

[123]

Ben Khedher N, Ullah Z, Mahrous Y M, Dhahbi S, Ahmad S, Abu-Zinadah H, Faqihi A A. Viscous dissipation effect on amplitude and oscillating frequency of heat transfer and electromagnetic waves of magnetic driven fluid flow along the horizontal circular cylinder. Case Stud Therm Eng 55: 104142 (2024)

[124]

Ryapolov P A, Polunin V M, Shel’deshova E V. An alternative way to study magnetic fluid magnetization and viscosity. J Magn Magn Mater 496: 165924 (2020)

[125]

Yoshida T, Bai S, Hirokawa A, Tanabe K, Enpuku K. Effect of viscosity on harmonic signals from magnetic fluid. J Magn Magn Mater 380: 105–110 (2015)

[126]

Sunil, Anupama, Sharma R C. The effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluid. Appl Math Comput 163(3): 1197–1214 (2005)

[127]

Saeed M, Ahmad B, ul Hassan Q M. Variable thermal effects of viscosity and radiation of ferrofluid submerged in porous medium. Ain Shams Eng J 13(4): 101653 (2022)

[128]

Ren F L, Wei K, Jian G X, Wang Y Q. Coupling research on lubrication and gear dynamics under different-carrier ferrofluids. Journal ofMechanical Transmission 46(12): 45–52 (2022) (in Chinese)

[129]

Zhang P G, Gu B Q, Zhou J F, Wei L, Feng X. Calculation of angular deformation of seal ring in a spiral groove mechanical seal lubricated by magnetic fluid. Journal of NanJing Tech University (Natural Science Edition) 44(04): 405–411 (2022) (in Chinese)

[130]

Wang J M, Kang J F, Zhang Y J, Huang X J. Viscosity monitoring and control on oil-film bearing lubrication with ferrofluids. Tribol Int 75: 61–68 (2014)

[131]

Xu Y M, Li T, Li Y Y, Ma J E, Fang Y T. Analysis of magnetic field and lubrication characteristic of magnetic fluid bearings. Journal of Mechanical & Electrical Engineering 33(03): 259–264 (2016) (in Chinese)

[132]

Zhu Q C, Wu Z Y, Cai X M, Zhang L Z, Mo Z Y. Experimental study on the correlation between temperature and viscosity of Ni0.5Zn0.5Fe2O4 magnetic fluid. Journal of Materials Science and Engineering 38(06): 989–994 (2020) (in Chinese)

[133]

Syam Sundar L, Singh M K, Sousa A C M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf 44: 7–14 (2013)

[134]

Wang L J, Wang Y H, Yan X K, Wang X Y, Feng B. Investigation on viscosity of Fe3O4 nanofluid under magnetic field. Int Commun Heat Mass Transf 72: 23–28 (2016)

[135]

Liu Z Y, Wang X, Gao H T, Yan Y Y. Experimental study of viscosity and thermal conductivity of water based Fe3O4 nanofluid with highly disaggregated particles. Case Stud Therm Eng 35: 102160 (2022)

[136]
Zhu Q C. Experimental Study on Preparation and Magnetic Viscosity Characteristics of Magnetic Fluid Hydraulic Medium. Master Thesis. Kunming (China): Kunming University of Science and Technology, 2020.
[137]

Župan J, Renjo M M. Thermal and rheological properties of water-based ferrofluids and their applicability as quenching media. Phys Procedia 75: 1458–1467 (2015)

[138]

Du W W, Tu J, Qiu M J, Zhou S Y, Luo Y W, Ong W L, Zhao J J. Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity. Int J Extrem Manuf 5(2): 025101 (2023)

[139]

An Q L, Yang J, Li J L, Liu G, Chen M, Li C H. A state-of-the-art review on the intelligent tool holders in machining. Intell Sustain Manuf 1(1): 10002 (2024)

[140]

Syam Sundar L, Singh M K, Sousa A C M. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf 52: 73–83 (2014)

[141]
Zhao Y Q. Study on Lubrication Mechanism of Micro-nano Magnetic Liquid at Solid-liquid Interface. Master Thesis. Taiyuan (China): Taiyuan University of science and technology, 2020.
[142]
Mitra A, Shaw A, Greneche J M, Chakrabarti P K. Structural, magnetic, electric and hyperfine behavior of a new multiferroic nanocomposite (Ni0.5Zn0.5Fe2O4)0.5(TiO2)0.5. Materials Science and Engineering: 273 (2021)
[143]

Lenin R, Joy P A. Role of base fluid on the thermal conductivity of oleic acid coated magnetite nanofluids. Colloids Surf A Physicochem Eng Aspects 529: 922–929 (2017)

[144]

Rong Z W, Iwamoto Y, Ido Y. Thermal flow analysis of self-driven temperature-sensitive magnetic fluid around two cylinders arranged in tandem. Results Eng 16: 100660 (2022)

[145]

Alam J, Murtaza M G, Tzirtzilakis E E, Ferdows M. Application of Biomagnetic Fluid Dynamics modeling for simulation of flow with magnetic particles and variable fluid properties over a stretching cylinder. Math Comput Simul 199: 438–462 (2022)

[146]

Mousavi S M, Farhadi M, Sedighi K. Effect of non-uniform magnetic field on biomagnetic fluid flow in a 3D channel. Appl Math Model 40(15–16): 7336–7348 (2016)

[147]

Chang C M, Cheng W T, Liu W J, Cheng H W, Huang C E, Du S W. Thermal flow of fluid with magnetic particles in the presence of magnetic field. Int Commun Heat Mass Transf 37(7): 801–808 (2010)

[148]

Zhang J K, Li B W, Hu Z M. Effects of optical parameters on fluid flow and heat transfer of participating magnetic fluid. Int J Heat Mass Transf 59: 126–136 (2013)

[149]

Selimli S, Recebli Z, Arcaklioglu E. Combined effects of magnetic and electrical field on the hydrodynamic and thermophysical parameters of magnetoviscous fluid flow. Int J Heat Mass Transf 86: 426–432 (2015)

[150]

Alharbi S O. Impact of hybrid nanoparticles on transport mechanism in magnetohydrodynamic fluid flow exposed to induced magnetic field. Ain Shams Eng J 12(1): 995–1000 (2021)

[151]

Lv T, Xu X F, Weng H Z, Yu A B, Niu C C, Hu X D. A study on lubrication and cooling performance and machining characteristics of magnetic field–assisted minimum quantity lubrication using Fe3O4 nanofluid as cutting fluid. Int J Adv Manuf Technol 123(11): 3857–3869 (2022)

[152]

Gal S, Cabaleiro D, Hassen W, Rault L, Ba H, Estellé P. Surface tension of graphene/ Fe3O4 water-based hybrid nanofluids. Journal of Molecular Liquids 417: 126630 (2015)

[153]

Shi X, Huang W, Wang X L. Ionic liquids–based magnetic nanofluids as lubricants. Lubr Sci 30(2): 73–82 (2018)

[154]

Hou J S, Wang J M, He S, Chang J J. Effect of magnetic particle content on the lubrication performance of ferrofluid. Lubrication Engineering 47(04): 60–65 (2022) (in Chinese)

[155]

Zhang Y B, Li C H, Jia D Z, Li B K, Wang Y G, Yang M, Hou Y L, Zhang X W. Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232: 100–115 (2016)

[156]

He Y, Wang Y Q, Mo J, Zhao T, Zhu Y L, Li M J. P reparation and boundary lubrication performance study on Fe3O4@CuO magnetic fluid. Materials Reports 38(08): 1–15 (2024)

[157]

Shen C, Huang W, Ma G L, Wang X L. A novel surface texture for magnetic fluid lubrication. Surf Coat Technol 204(4): 433–439 (2009)

[158]

Shahrivar K, Ortiz A L, de Vicente J. A comparative study of the tribological performance of ferrofluids and magnetorheological fluids within steel–steel point contacts. Tribol Int 78: 125–133 (2014)

[159]

Zhang P, Lee K H, Lee C H. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths. J Magn Magn Mater 421: 13–18 (2017)

[160]

Yang Y F, Qin Y, Yang Y, Wu M X, Yang G. Enhancing the wear resistance of a cemented carbide/titanium alloy under magnetofluid lubrication via the magnetic response. Wear 500: 204370 (2022)

[161]

Hu Z D, Yan H, Qiu H Z, Zhang P, Liu Q. Friction and wear of magnetorheological fluid under magnetic field. Wear 278: 48–52 (2012)

[162]

Wang L J, Guo C W, Ryuichiro Y, Wu Y. Tribological properties of Mn–Zn–Fe magnetic fluids under magnetic field. Tribol Int 42(6): 792–797 (2009)

[163]

Chen S F, Wang Z L, Gu B M. Experiment study on friction properties of magnetic fluid under uniform magnetic field gradient. Lubrication Engineering 39(11): 55–58 (2014) (in Chinese)

[164]

Meng X, Hao L, Ling H, Zhou J F, Wu S S. Experimental study on hydro-dynamical end surface lubricating characteristics of magnetic fluid. Lubrication Engineering 44(12): 37–41 (2019) (in Chinese)

[165]

Zhang K D, Li Z H, Wang S S, Wang P, Zhang Y P, Guo X H. Study on the cooling and lubrication mechanism of magnetic field-assisted Fe3O4@CNTs nanofluid in micro-textured tool cutting. J Manuf Process 85: 556–568 (2023)

[166]
Shi X. Study on the Preparation and Lubricating Properties of Ionic Liquid based Ferrofluid. Master, Nanjing University of Aeronautics and Astronautics, 2019.
[167]
Shen C. Study on Lubrication Performance of Magnetic Fluid with Magnetic Surface Texture. Master, Nanjing University of Aeronautics and Astronautics, 2011.
[168]

Huang W, Shen C, Liao S J, Wang X L. Study on the ferrofluid lubrication with an external magnetic field. Tribol Lett 41(1): 145–151 (2011)

[169]

Huang W, Wu W B, Wang X L. Tribological properties of magnetic surface lubricated by ferrofluids. Eur Phys J Appl Phys 59(3): 31301 (2012)

[170]

Liao S J, Huang W, Wang X L. Micro-magnetic field arrayed surface for ferrofluids lubrication. J Tribol 134(2): 021701 (2012)

[171]

Li J B, Dai Q W, Huang W, Wang X L. Feasibility study of magnetic fluid support and lubrication behaviors on micro magnet arrays. Tribol Int 150: 106407 (2020)

[172]

van der Meer G H G, Quinci F, Litwin W, Wodtke M, van Ostayen R A J. Experimental comparison of the transition speed of a hydrodynamic journal bearing lubricated with oil and magnetorheological fluid. Tribol Int 189: 108976 (2023)

[173]
Jan B, Ewa B-P, Anna S. Investigation on magnetic fluid as lubricant. Indian Journal of Engineering & Materials Sciences 338–342 (2004)
[174]
Hou J S. Tribological characterisation of the solid-liquid interface for magnetic fluid lubrication. Master, Taiyuan University of Science and Technology, 2022.
[175]

Wang L J, Guo C W, Yang Z Y, Zhang D H. Research on the tribological properties of the oils adding Fe3O4 nanoparticles. Lubrication Engineering (09): 30–31 (2006)

[176]
Wang Y Q, Xu Y, Mo J, He Y, Zhao T, Ni C B. Experimental study on the effect of water-based magnetic fluid on the tribological properties of TC4 and Si3N4 under the action of a magnetic field. Journal of Mechanical Engineering 59 (2023)
[177]

Huang W, Wang X L, Ma G L, Shen C. Study on the synthesis and tribological property of Fe3O4 based magnetic fluids. Tribol Lett 33(3): 187–192 (2009)

[178]

Bombard A J F, de Vicente J. Boundary lubrication of magnetorheological fluids in PTFE/steel point contacts. Wear 296(1–2): 484–490 (2012)

[179]

Trivedi K, Kothari A, Parekh K, Upadhyay R V. Effect of particle concentration on lubricating properties of magnetic fluid. J Nanofluids 7(3): 420–427 (2018)

[180]

Wang L-J, Guo C-W, Yamane R. Experimental research on tribological properties of Mn0.78Zn0.22Fe2O4 magnetic fluids. J Tribol 130(3): 031801 (2008)

[181]

Hu M C, Qing S, Zhang X H, Zhang H, Shi Z C. Thermal conductivity and photothermal characteristic of core-shell Fe3O4@C nanofluids in different particle size. Powder Technology 438: 119631 (2024)

[182]

Song W L, Choi S B, Choi J Y, Lee C H. Wear and friction characteristics of magnetorheological fluid under magnetic field activation. Tribol Trans 54(4): 616–624 (2011)

[183]

Chen W, Huang W, Wang X L. Effects of magnetic arrayed films on lubrication transition properties of magnetic fluid. Tribol Int 72: 172–178 (2014)

[184]

Bolotov A N, Gorlov I V, Novikov V V. Nanodispersed ferrofluid oil lubricity improvement with processing methods. Procedia Eng 206: 606–610 (2017)

[185]

Wang Z L, Gu B M, Zhang L Q, Chen S F. Experimental investigation on thermal conductivity of magnetic fluids under external uniform magnetic field. Journal of Magnetic Materials and Devices 42(03): 24–26 (2011) (in Chinese)

[186]

Chen M F, Niu X D, Yu P, Wang Y P, Khan A, Yamasaki H, Yamaguchi H. Effect of fluid-particle interaction on 2D Rayleigh-Bénard laminar convection of a temperature-sensitive magnetic fluid. Int J Therm Sci 197: 108752 (2024)

[187]

Zeeshan A, Majeed A, Ellahi R. Effect of magnetic dipole on viscous Ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215: 549–554 (2016)

[188]

Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: A review. J Magn Magn Mater 374: 125–138 (2015)

[189]

Zhang X L, Zhang Y L. Heat transfer and flow characteristics of Fe3O4-water nanofluids under magnetic excitation. Int J Therm Sci 163: 106826 (2021)

[190]

Sheikholeslami M, Rashidi M M, Ganji D D. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3 O4–water nanofluid. Comput Meth Appl Mech Eng 294: 299–312 (2015)

[191]

Ghorbani B, Ebrahimi S, Vijayaraghavan K. CFD modeling and sensitivity analysis of heat transfer enhancement of a ferrofluid flow in the presence of a magnetic field. Int J Heat Mass Transf 127: 544–552 (2018)

[192]

Gu G Q, Wang D Z, Wu S J, Zhou S, Zhang B X. Research status and prospect of ultrasonic vibration and minimum quantity lubrication processing of nickel-based alloys. Intell Sustain Manuf 1(1): 10006 (2024)

[193]

Pan Z D, Nkurikiyimfura I, Wang Y M. A study on the thermal conductivity of magnetic nanofluids in magnetic fields. Functional materials 44(11): 1554–1557 (2013)

[194]

Sahin F, Genc O. Experimentally determining the thermal properties of NiFe2O4 magnetic nanofluid under suitable stability conditions: Proposal the new correlation for thermophysical properties. Powder Technol 427: 118706 (2023)

[195]

Karimi A, Afghahi S S S, Shariatmadar H, Ashjaee M. Experimental investigation on thermal conductivity of MFe2O4 (M=Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochim Acta 598: 59–67 (2014)

[196]

Gavili A, Zabihi F, Isfahani T D, Sabbaghzadeh J. The thermal conductivity of water base ferrofluids under magnetic field. Exp Therm Fluid Sci 41: 94–98 (2012)

[197]

Ebrahimi S. Thermal conductivity of water base Ni-np@MWCNT magnetic nanofluid. Mater Res Bull 150: 111781 (2022)

[198]

Fang X P, Xuan Y M, Li Q. Anisotropic thermal conductivity of magnetic fluids. Prog Nat Sci 19(2): 205–211 (2009)

[199]

Manoj Kumar P, Parameshwaran R, Sreedhar I. Thermal conductivity enhancement of magnetic nanofluids for energy applications. Mater Today Proc 72: 67–73 (2023)

[200]

Lei J J, Luo Z M, Qing S, Huang X Y, Li F Y. Effect of surfactants on the stability, rheological properties, and thermal conductivity of Fe3O4 nanofluids. Powder Technol 399: 117197 (2022)

[201]

Zhu H T, Zhang C Y, Liu S Q, Tang Y M, Yin Y S. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89(2): 023123 (2006)

[202]

Chinnasamy V, Ham J, Cho H. Comparative investigation of convective heat transfer and pressure drop characteristics of MWCNT, Fe3O4, and MWCNT/Fe3O4 nanofluids. Case Stud Therm Eng 47: 103095 (2023)

[203]

Lajvardi M, Moghimi-Rad J, Hadi I, Gavili A, Dallali Isfahani T, Zabihi F, Sabbaghzadeh J. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J Magn Magn Mater 322(21): 3508–3513 (2010)

[204]

Altan C L, Elkatmis A, Yüksel M, Aslan N, Bucak S. Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J Appl Phys 110(9): 093917 (2011)

[205]

Krichler M, Odenbach S. Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement. J Magn Magn Mater 326: 85–90 (2013)

[206]

Alsangur R, Doğanay S, Ates I, Turgut A, Cetin L. 3D Helmholtz coil system setup for thermal conductivity measurements of magnetic nanofluids. Mechatronics 94: 103019 (2023)

[207]

Gavili A, Lajvardi M, Sabbaghzadeh J. The effect of magnetic field gradient on ferrofluids heat transfer in a two-dimensional enclosure. Jnl Comp & Theo Nano 7(8): 1425–1435 (2010)

[208]

Liu W I, Alsarraf J, Shahsavar A, Rostamzadeh M, Afrand M, Nguyen T K. Impact of oscillating magnetic field on the thermal-conductivity of water-Fe3O4 and water-Fe3O4/CNT Ferro-fluids: Experimental study. J Magn Magn Mater 484: 258–265 (2019)

[209]

Ido Y, Iwamoto Y, Kondoh S. Thermal conduction of the magnetic fluids mixing micrometer size particles. J Magn Magn Mater 508: 166864 (2020)

[210]

Shima P D, Philip J, Raj B. Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J Phys Chem C 114(44): 18825–18833 (2010)

[211]

Nkurikiyimfura I, Wang Y M, Pan Z D. Effect of chain-like magnetite nanoparticle aggregates on thermal conductivity of magnetic nanofluid in magnetic field. Exp Therm Fluid Sci 44: 607–612 (2013)

[212]

Philip J, Shima P D, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett 91(20): 203108 (2007)

[213]

Malvandi A, Heysiattalab S, Ganji D D. Effects of magnetic field strength and direction on anisotropic thermal conductivity of ferrofluids (magnetic nanofluids) at filmwise condensation over a vertical cylinder. Adv Powder Technol 27(4): 1539–1546 (2016)

[214]

Sahin F, Genc O, Gökcek M, Çolak A B. From experimental data to predictions: Artificial intelligence supported new mathematical approaches for estimating thermal conductivity, viscosity and zeta potential in Fe3O4-water magnetic nanofluids. Powder Technol 430: 118974 (2023)

[215]

Xu M C, Jin G H, Dai Q W, Huang W, Wang X L. Ferrofluid lubrication for ball bearings to avoid starvation. Ind Lubr Tribol 72(10): 1227–1231 (2020)

[216]

Fan, H L, Zhou, J F, Wang, Y. Design of non-contact mechanical seal lubricated by magnetic fluid. Lubr Eng 41(1): 90–95 (2016)

[217]

Xu H, Bao J S, Yin Y, Liu T G. Design and simulation of seal and lubrication of idler based on nano magnetic liquid. Lubrication Engineering 44(06): 109–112 (2019) (in Chinese)

[218]

Cui X, Li C H, Yang M, Liu M Z, Gao T, Wang X M, Said Z, Sharma S, Zhang Y B. Enhanced grindability and mechanism in the magnetic traction nanolubricant grinding of Ti-6Al-4 V. Tribol Int 186: 108603 (2023)

[219]

Shi L, Hu Y W, He Y R. Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid. Nano Energy 71: 104582 (2020)

[220]

Xiong L, Hu R, Xu C X, Xiong Z, Huang Z K. Research progress on lubricating characteristics of magnetic fluid and its application in bearings. Bearing (07): 61–67 (2020) (in Chinese)

[221]

Deysarkar A K, Clampitt B H. Evaluation of ferrofluids as lubricants. J Synth Lubr 5(2): 105–114 (1988)

[222]

Uhlmann E, Spur G, Bayat N, Patzwald R. Application of magnetic fluids in tribotechnical systems. J Magn Magn Mater 252: 336–340 (2002)

[223]

Säynätjoki M, Holmberg K. Magnetic fluids in sealing and lubrication–a state of the art review. J Synth Lubr 10(2): 119–132 (1993)

[224]

Miyake S, Takahashi S. Sliding bearing lubricated with ferromagnetic fluid. S L E Trans 28(4): 461–466 (1985)

[225]

Zapoměl J, Ferfecki P. A new concept of a hydrodynamic bearing lubricated by composite magnetic fluid for controlling the bearing load capacity. Mech Syst Signal Process 168: 108678 (2022)

[226]

König F, Wirsing F, Jacobs G, He R, Tian Z G, Zuo M J. Bayesian inference-based wear prediction method for plain bearings under stationary mixed-friction conditions. Friction 12(6): 1272–1282 (2024)

[227]

Zhao S D, Bao J S, Xu H, Yin Y, Xie H K, Liu T G. Magnetic fluid lubrication and sealing performance of mining belt conveyor roller. J Mech Eng 57(21): 211 (2021)

[228]

Li, T, Ma, J E, Zhang, Y, Fang, Y T. Lubrication characteristics analyses of ferrofluid bearing based on CFD simulation. China Mech Eng 27(7): 939–944 (2016)

Friction
Article number: 9441010
Cite this article:
Sun L, Zhang Y, Cui X, et al. Magnetic lubricants: Preparation, physical mechanism, and application. Friction, 2025, 13(7): 9441010. https://doi.org/10.26599/FRICT.2025.9441010

1061

Views

237

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 May 2024
Revised: 17 August 2024
Accepted: 22 September 2024
Published: 23 May 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return