AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (4.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Superlubricating electrical contact between graphite layers

Yanmin Liu1,2Dong Wang3Ke Zhang1Haijun Wu2Guoqing Yu1Qiang Zhang1Yuanzi Zhou1Tianbao Ma2Aisheng Song2( )
Beijing Institute of Control Engineering, Beijing 100094, China
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

High-conductivity sliding electrical contact with low friction plays a significant role in the long life and high reliability of electromechanical systems. Reducing friction needs weak interfacial electronic coupling; in contrast, enhancing conductivity requires strong coupling; thus it is a serious challenge to achieve high conductivity with low friction. Here, using our self-developed thermally assisted mechanical exfoliation and transfer (TAMET) method, we experimentally achieved superlubricating electrical contact by establishing a sliding electrical system between graphite layers (Gr); the friction coefficient was as low as 0.0004, and the electric current density was as high as 510 A/cm2. Compared with the commercial Ir atomic force microscopy (AFM) tip–Gr contact, the friction force of incommensurate graphene layer friction is an order of magnitude lower, yet it has a similar high electrical conductivity. On the basis of the electronic property fluctuation (EPF) model and first principles calculations, we revealed that the sliding energy barrier remains almost unchanged under an applied current because of the negligible electron transfer variation during the sliding process. We offer a method for achieving superlubricating electrical contact with high conductivity and low friction, shedding light on improving the service life and reliability of sliding electrical contacts in a wide range of electromechanical systems.

Electronic Supplementary Material

Download File(s)
F0989_ESM.pdf (199.7 KB)

References

[1]

Fernández-Medina M, Ramos-Docampo M A, Hovorka O, Salgueiriño V, Städler B. Recent advances in nano- and micromotors. Adv Funct Mater 30(12): 1908283 (2020)

[2]

Li R, Guo F, Yu C X, He Y, Ye Z, Yuan S. Development and validation of a mechatronic solar array drive assembly for mini/micro-satellites. Acta Astronaut 134: 54–64 (2017)

[3]

Yang X Z, Li S B, Cui Y, Kang Y Q, Li Z Y, Li H W, Dong H Y. Measurement and interpretation of the effect of electrical sliding speed on contact characteristics of on-load tap changers. Coatings 12(10): 1436 (2022)

[4]

Li S B, Yang X Z, Kang Y Q, Li Z Y, Li H W. Progress on current-carry friction and wear: An overview from measurements to mechanism. Coatings 12(9): 1345 (2022)

[5]

Xue P D, Chen C, Fan X, Diao D F. Current-carrying friction in carbon coated ball bearing. Friction 11(11): 2008–2020 (2023)

[6]

Zhang Y Z, Yang Z H, Song K X, Pang X J, Shangguan B. Triboelectric behaviors of materials under high speeds and large currents. Friction 1(3): 259–270 (2013)

[7]

Grandin M, Wiklund U. Wear phenomena and tribofilm formation of copper/copper–graphite sliding electrical contact materials. Wear 398: 227–235 (2018)

[8]

Miyake S, Shindo T, Saito Y. Low friction wear resistant electroconductive gold and silver nanoperiod multilayer solid lubricant films. Tribol—Mater Surf Interfaces 5(3): 114–120 (2011)

[9]
Holzapfel C, Heinbuch P, Holl S. Sliding electrical contacts: Wear and electrical performance of noble metal contacts. In: Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, Charleston, USA, 2010: 534–550.
[10]

Park JY, Ogletree DF, Thiel PA, Salmeron M. Electronic control of friction in silicon pn junctions. Science 313(5784): 186 (2006)

[11]

Zeng Y M, He F, Wang Q, Yan X H, Xie G X. Friction and wear behaviors of molybdenum disulfide nanosheets under normal electric field. Appl Surf Sci 455: 527–532 (2018)

[12]

Qi Y B, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M. Electronic contribution to friction on GaAs: An atomic force microscope study. Phys Rev B 77(18): 184105 (2008)

[13]

Lang H, Peng Y, Cao X, Zou K. Atomic-scale friction characteristics of graphene under conductive AFM with applied voltages. ACS Appl Mater Inter 12(22): 25503–25511 (2020)

[14]

Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A, Zandbergen H W. Superlubricity of graphite. Phys Rev Lett 92(12): 126101 (2004)

[15]

Liu Y, Song A, Xu Z, Zong R, Zhang J, Yang W, Wang R, Hu Y, Luo J, Ma T. Interlayer friction and superlubricity in single-crystalline contact enabled by two-dimensional flake-wrapped atomic force microscope tips. ACS Nano 12(8): 7638–7646 (2018)

[16]

Liu Y M, Wang K, Xu Q, Zhang J, Hu Y Z, Ma T B, Zheng Q S, Luo J B. Superlubricity between graphite layers in ultrahigh vacuum. ACS Appl Mater Inter 12(38): 43167–43172 (2020)

[17]

Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C H, Geng D C, Yu Z W, Zhang S G, Wang W Z, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8: 14029 (2017)

[18]

Liu Z, Yang J R, Grey F, Liu J Z, Liu Y L, Wang Y B, Yang Y L, Cheng Y, Zheng Q S. Observation of microscale superlubricity in graphite. Phys Rev Lett 108(20): 205503 (2012)

[19]

Berman D, Deshmukh S A, Sankaranarayanan S K, Erdemir A, Sumant A V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348(6239): 1118–1122 (2015)

[20]

Ge X Y, Chai Z Y, Shi Q Y, Liu Y F, Wang W Z. Graphene superlubricity: A review. Friction 11(11): 1953–1973 (2023)

[21]

Zheng Z J, Guo Z G, Liu W M, Luo J B. Low friction of superslippery and superlubricity: A review. Friction 11(7): 1121–1137 (2023)

[22]

Palacios T. Thinking outside the silicon box. Nat Nanotechnol 6: 464–465 (2011)

[23]

Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11): 3499–3503 (2007)

[24]

Berman D, Erdemir A, Sumant A V. Graphene as a protective coating and superior lubricant for electrical contacts. Appl Phys Lett 105(23): 231907 (2014)

[25]

Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, van den Brink J, Kelly PJ. Doping graphene with metal contacts. Phys Rev Lett 101(2): 026803 (2008)

[26]

Gong C, Lee G, Shan B, Vogel E M, Wallace R M, Cho K. First-principles study of metal–graphene interfaces. Appl Phys Lett 108(12): 123711 (2010)

[27]

Léonard F, Talin A A. Electrical contacts to one- and two-dimensional nanomaterials. Nat Nanotechnol 6: 773–783 (2011)

[28]

Xia F N, Perebeinos V, Lin Y M, Wu Y Q, Avouris P. The origins and limits of metal–graphene junction resistance. Nat Nanotechnol 6: 179–184 (2011)

[29]

Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, et al. One-dimensional electrical contact to a two-dimensional material. Science 342(6158): 614–617 (2013)

[30]

Lang H J, Xu Y M, Zhu P Z, Peng Y T, Zou K, Yu K, Huang Y. Superior lubrication and electrical stability of graphene as highly effective solid lubricant at sliding electrical contact interface. Carbon 183: 53–61 (2021)

[31]

Huang S D, Chu E D, Wang Y H, Liou J W, Wang R S, Woon W Y, Chiu H C. Variations in the effective work function of graphene in a sliding electrical contact interface under ambient conditions. ACS Appl Mater Inter 14(23): 27328–27338 (2022)

[32]

Song A S, Shi R Y, Lu H L, Wang X Y, Hu Y Z, Gao H J, Luo J B, Ma T B. Fluctuation of interfacial electronic properties induces friction tuning under an electric field. Nano Lett 22(5): 1889–1896 (2022)

[33]

Butt H J, Jaschke M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1): 1–7 (1995)

[34]

Varenberg M, Etsion I, Halperin G. An improved wedge calibration method for lateral force in atomic force microscopy. Rev Sci Instrum 74(7): 3362–3367 (2003)

[35]

Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K. Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16): 165401 (2002)

[36]
Synopsys. QuantumATK (formerly Atomistix ToolKit or ATK) version 2018.06. Available at https://www.synopsys.com/manufacturing/quantumatk.html
[37]

Song A, Gao L, Zhang J, Liu X, Hu YZ, Ma TB, Zheng Q, Luo J. Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: A computational investigation. Nanoscale 12(14): 7857–7863 (2020)

[38]

Song A, Shi R, Lu H, Gao L, Li Q, Guo H, Liu Y, Zhang J, Ma Y, Tang X, et al. Modeling atomic-scale electrical contact quality across two-dimensional interfaces. Nano Lett 19(6): 3654–3662 (2019)

Friction
Article number: 9440989
Cite this article:
Liu Y, Wang D, Zhang K, et al. Superlubricating electrical contact between graphite layers. Friction, 2025, 13(7): 9440989. https://doi.org/10.26599/FRICT.2025.9440989

1506

Views

191

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 May 2024
Revised: 04 July 2024
Accepted: 20 August 2024
Published: 14 March 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return