AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Onion-shell nuclei on monolayer MoS2 facilitate friction reduction

Haowen Luo1Shenghong Liu2Zhihuan Li1Yuan Li2Alain Dubois3Yadong Xu1Nan Kang4Mohamed El Mansori4Feng Zhou5Jianxi Liu1( )
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Laboratory of Physical Chemistry – Matter and Radiation, Sorbonne Université, CNRS, Paris 75005, France
Arts et Metiers Institute of Technology, MSMP, HESAM Université, Châlons-en-Champagne F-51006, France
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Show Author Information

Graphical Abstract

Abstract

Monolayer MoS2 has garnered significant interest because of its exceptional optoelectronic and tribological properties and potential application as a lubrication layer in micro- and nanoelectromechanical systems. Although the nanotribological performance of chemical vapor deposition (CVD)-grown MoS2 and the characteristics associated with CVD growth have been extensively studied, challenges remain in designing specific regions on the monolayer MoS2 surface with reduced friction. Here, we develop nuclei with an onion-shell structure on CVD-grown monolayer MoS2 to achieve remarkable friction and adhesion reduction. These nuclei, dispersed on high-quality and crystalline MoS2, consist of an oxi-sulfide core surrounded by a multilayer MoS2 shell. Lateral force microscopy results indicate that onion-shell nuclei create an ensemble effect that decreases friction and adhesion by up to 45% and 20%, respectively, compared with those of MoS2 because of the multilayer structure and in-plane tensile strain, both of which minimize out-of-plane deformation. Derjaguin–Müller–Toporov (DMT) model calculations and step-down load‒friction correlations illustrate that the work of adhesion, shear strength, and coefficient of friction on the nucleus decrease by more than 22%, 19%, and 34%, respectively, compared with those on MoS2. The onion-shell nucleus presents a novel lubrication strategy to mitigate friction and adhesion in CVD-grown two-dimensional (2D) materials, with potential applications in lubricating nanoscale friction pairs.

Electronic Supplementary Material

Download File(s)
F0981-ESM.pdf (1.3 MB)

References

[1]

Dai C H, Liu Y Q, Wei D C. Two-dimensional field-effect transistor sensors: The Road toward commercialization. Chem Rev 122(11): 10319–10392 (2022)

[2]

Xiao Y, Xiong C Y, Chen M M, Wang S F, Fu L, Zhang X H. Structure modulation of two-dimensional transition metal chalcogenides: Recent advances in methodology, mechanism and applications. Chem Soc Rev 52(4): 1215–1272 (2023)

[3]

Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6): 404–409 (2004)

[4]

Mak K F, Lee C G, Hone J, Shan J, Heinz T F. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett 105(13): 136805 (2010)

[5]

Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. Science 328(5974): 76–80 (2010)

[6]

Bunch J S, Dunn M L. Adhesion mechanics of graphene membranes. Solid State Commun 152(15): 1359–1364 (2012)

[7]

Wang W, Zhang Y, Li Z H, Qian L M. Controllable friction on graphene via adjustable interfacial contact quality. Adv Sci 10(30): 2303013 (2023)

[8]

Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D W, Zhou J D, et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl 4: 29 (2020)

[9]

Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4): 1271–1275 (2010)

[10]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotech 6(3): 147–150 (2011)

[11]

Liu S H, Wang J, Shao J F, Ouyang D C, Zhang W J, Liu S Y, Li Y, Zhai T Y. Nanopatterning technologies of 2D materials for integrated electronic and optoelectronic devices. Adv Mater 34(52): e2200734 (2022)

[12]

Daus A, Jaikissoon M, Khan A I, Kumar A, Grady R W, Saraswat K C, Pop E. Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett 22(15): 6135–6140 (2022)

[13]

Kim S H, Ahn H S. Nanotribological properties and scratch resistance of MoS2 bilayer on a SiO2/Si substrate. Friction 11(1): 154–164 (2023)

[14]

Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J. The evolving quality of frictional contact with graphene. Nature 539(7630): 541–545 (2016)

[15]

Shi B, Gan X H, Lang H J, Zou K, Wang L F, Sun J H, Lu Y Y, Peng Y T. Ultra-low friction and patterning on atomically thin MoS2 via electronic tight-binding. Nanoscale 13(40): 16860–16871 (2021)

[16]

Cao X A, Gan X H, Lang H J, Yu K, Ding S Y, Peng Y T, Yi W M. Anisotropic nanofriction on MoS2 with different thicknesses. Tribol Int 134: 308–316 (2019)

[17]

Liao M Z, Nicolini P, Polcar T. Separating anisotropic and isotropic friction between atomic force microscope tips and atomically flat surfaces. Phys Rev B 107(19): 195442 (2023)

[18]

Zhang S, Hou Y, Li S Z, Liu L Q, Zhang Z, Feng X Q, Li Q Y. Tuning friction to a superlubric state via in-plane straining. P Natl Acad Sci USA 116(49): 24452–24456 (2019)

[19]

Xu M Y, Zhang D L, Wang Y, Zhang Y G, Li Q, Dong M D. Nanoscale friction of strained molybdenum disulfide induced by nanoblisters. Appl Phys Lett 120(15): 151601 (2022)

[20]

Khac B C T, Chung K H. Quantitative assessment of friction characteristics of single-layer MoS2 and graphene using atomic force microscopy. J Nanosci Nanotechnol 16(5): 4428–4433 (2016)

[21]

Wang W X, Ma X J, Dai Z H, Zhang S, Hou Y, Wang G R, Li Q Y, Zhang Z, Wei Y G, Liu L Q. Mechanical behavior of blisters spontaneously formed by multilayer 2D materials. Adv Mater Interfaces 9(12): 2101939 (2022)

[22]

Ky D L C, Tran Khac B C, Le C T, Kim Y S, Chung K H. Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction 6(4): 395–406 (2018)

[23]

Zhou B X, Zhou J Y, Wang L Y, Kang J H, Zhang A, Zhou J X, Zhang D H, Xu D, Hu B Y, Deng S B, et al. A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat Synth 3(1): 67–75 (2023)

[24]

Liu L, Li T T, Ma L, Li W S, Gao S, Sun W J, Dong R K, Zou X L, Fan D X, Shao L W, et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605(7908): 69–75 (2022)

[25]

Hoang A T, Hu L, Kim B J, Van T T N, Park K D, Jeong Y, Lee K, Ji S, Hong J, Katiyar A K, et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat Nanotechnol 18(12): 1439–1447 (2023)

[26]

Lee J H, Lee S, Jeon J H, Oh D Y, Shin M, Lee M J, Shinde S, Ahn J H, Roh C J, Lee J S, et al. Universality of strain-induced anisotropic friction domains on 2D materials. NPG Asia Mater 10(11): 1069–1075 (2018)

[27]

Zhang R J, Lai Y J, Chen W J, Teng C J, Sun Y J, Yang L S, Wang J Y, Liu B L, Cheng H M. Carrier trapping in wrinkled 2D monolayer MoS2 for ultrathin memory. ACS Nano 16(4): 6309–6316 (2022)

[28]

Cain J D, Shi F Y, Wu J S, Dravid V P. Growth mechanism of transition metal dichalcogenide monolayers: The role of self-seeding fullerene nuclei. ACS Nano 10(5): 5440–5445 (2016)

[29]

Wang S S, Rong Y M, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem Mater 26(22): 6371–6379 (2014)

[30]

Wagner K, Cheng P, Vezenov D. Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 27(8): 4635–4644 (2011)

[31]

Zeng H L, Cui X D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev 44(9): 2629–2642 (2015)

[32]

Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv Funct Mater 22(7): 1385–1390 (2012)

[33]

Frindt R F. Single crystals of MoS2 several molecular layers thick. J Appl Phys 37(4): 1928–1929 (1966)

[34]

Lee H, Jeong H, Suh J, Doh W H, Baik J, Shin H J, Ko J H, Wu J Q, Kim Y H, Park J Y. Nanoscale friction on confined water layers intercalated between MoS2 flakes and silica. J Phys Chem C 123(14): 8827–8835 (2019)

[35]

Gallagher P, Li Y L, Watanabe K, Taniguchi T, Heinz T F, Goldhaber-Gordon D. Optical imaging and spectroscopic characterization of self-assembled environmental adsorbates on graphene. Nano Lett 18(4): 2603–2608 (2018)

[36]

Zhang D L, Zhang Y G, Li Q, Dong M D. Origin of friction hysteresis on monolayer graphene. Friction 10(4): 573–582 (2022)

[37]

Wu Z S, Yu T T, Wu W, Liu J X, Zhang Z N, Wang D A, Liu W M. Nanotribology of SiP nanosheets: Effect of thickness and sliding velocity. Friction 10(12): 2033–2044 (2022)

[38]

Chen Z, Khajeh A, Martini A, Kim S H. Chemical and physical origins of friction on surfaces with atomic steps. Sci Adv 5(8): eaaw0513 (2019)

[39]

Xu C C, Ye Z J, Egberts P. Friction hysteretic behavior of supported atomically thin nanofilms. npj 2D Mater Appl 7: 1 (2023)

[40]

Lang H J, Peng Y T, Zou K, Chen R L, Huang Y. Friction of graphene oxide with water nanodroplets under high relative humidity. Tribol Int 188: 108837 (2023)

[41]

Wang L, Zhang D W, Luo Z D, Sharma P, Seidel J. Inhomogeneous friction behaviour of nanoscale phase separated layered CuInP2S6. Adv Funct Mater 33(38): 2303583 (2023)

[42]

Greenwood G, Kim J M, Nahid S M, Lee Y, Hajarian A, Nam S, Espinosa-Marzal R M. Dynamically tuning friction at the graphene interface using the field effect. Nat Commun 14: 5801 (2023)

[43]

Fu B X, Espinosa-Marzal R M. Velocity-weakening and-strengthening friction at single and multiasperity contacts with calcite single crystals. P Natl Acad Sci USA 119(22): e2112505119 (2022)

[44]

Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2): 314–326 (1975)

[45]

Castellanos-Gomez A, Poot M, Steele GA, van der Zant HS, Agraït N, Rubio-Bollinger G. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res Lett 7: 233 (2012)

[46]

Shi B, Gan X H, Yu K, Lang H J, Cao X A, Zou K, Peng Y T. Electronic friction and tuning on atomically thin MoS2. npj 2D Mater Appl 6: 39 (2022)

[47]

Enăchescu M, Oetelaar R V D, Carpick R, Ogletree D, Flipse C, Salmeron M. Atomic force microscopy study of an ideally hard contact: The diamond(111)/tungsten carbide interface. Phys Rev Lett 81: 1877–1880 (1998)

Friction
Cite this article:
Luo H, Liu S, Li Z, et al. Onion-shell nuclei on monolayer MoS2 facilitate friction reduction. Friction, 2025, https://doi.org/10.26599/FRICT.2025.9440981

516

Views

71

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 June 2024
Revised: 16 July 2024
Accepted: 09 August 2024
Published: 22 January 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return