Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polymers have complex molecular structures that often lead to interchain friction and hinder movement, making it difficult to achieve superlubricity. However, in the field of hydration lubrication, the electronegative interface of ceramics readily adsorbs water molecules, creating a protective water film that covers the frictional interface and effectively reduces friction. To achieve hydration lubrication, it is essential to create a continuous lubricating film by selectively enriching specific functional groups of adsorbed water molecules from the polymer solution onto the ceramic surface. By adsorbing a hydrophilic layer composed of polyvinylpyrrolidone with pyrrolidone groups onto a negatively charged Si3N4/sapphire interface, we formed a continuous lubricating film. Research has shown that the interaction between the polymer chain structure of polyvinylpyrrolidone molecules (such as PVP10000) in solution and water molecules could result in excellent superlubricity. When the contact pressure exceeds 198 MPa, the coefficients of friction (COF) can be reduced to 0.004–0.007. Through detailed surface analyses and sophisticated simulations, we uncovered the underlying mechanism involved. The pyrrolidone moieties of polyvinyl pyrrolidone (PVP) formed hydrogen bonds with the Si3N4 surface, transforming the initially difficult frictional interface into a PVP/sapphire interface with significantly reduced sliding energy barriers. These findings highlight the vital role of PVP in superlubricity and hydration lubrication and provide a theoretical and experimental basis for the design of materials and lubricants with exceptional lubricating properties.
Luo J B, Zhou X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 8(4): 643–665 (2020)
Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)
Luo J B, Liu M, Ma L. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021).
Hirano M. Superlubricity: A state of vanishing friction. Wear 254(10): 932–940 (2003)
Zheng Q S, Liu Z. Experimental advances in superlubricity. Friction 2(2): 182–192 (2014)
Hod O, Meyer E, Zheng Q S, Urbakh M. Structural superlubricity and ultralow friction across the length scales. Nature 563(7732): 485–492 (2018)
Ruan X, Shi J, Wang X, Wang WY, Fan X, Zhou F. Robust superlubricity and Moiré lattice’s size dependence on friction between graphdiyne layers. ACS Appl Mater Inter 13(34): 40901–40908 (2021)
Hirano M, Shinjo K. Atomistic locking and friction. Phys Rev B Condens Matter 41(17): 11837–11851 (1990)
Liu L, Zhang Y, Qiao Y J, Tan S C, Feng S F, Ma J, Liu Y H, Luo J B. 2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 40(4): 101262 (2021)
Liu L, Wang K P, Liu Y H, Luo J B. The relationship between surface structure and superlubrication performance based on 2D MOFs. Applied Materials Today 26: 101382 (2022)
Wang H D, Liu Y H, Guo F M, Sheng H P, Xia K L, Liu W R, Wen J G, Shi Y J, Erdemir A, Luo J B. Catalytically active oil-based lubricant additives enabled by calcining Ni–Al layered double hydroxides. J Phys Chem Lett 11(1): 113–120 (2020)
Li S, Ren L L, Bai Z M. Friction performance and mechanisms of calcined products of Mg/Al layered double hydroxides as lubricant additives. Appl Surf Sci 470: 979–990 (2019)
Wang H, Liu Y, Liu W, Liu Y, Wang K, Li J, Ma T, Eryilmaz OL, Shi Y, Erdemir A, et al. Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets. ACS Appl Mater Inter 11(22): 20249–20256 (2019)
Peng S G, Guo Y, Xie G X, Luo J B. Tribological behavior of polytetrafluoroethylene coating reinforced with black phosphorus nanoparticles. Appl Surf Sci 441: 670–677 (2018)
Wang W, Xie G X, Luo J B. Superlubricity of black phosphorus as lubricant additive. ACS Appl Mater Inter 10(49): 43203–43210 (2018)
Liu S, Ou J F, Li Z P, Yang S R, Wang J Q. Layer-by-layer assembly and tribological property of multilayer ultrathin films constructed by modified graphene sheets and polyethyleneimine. Appl Surf Sci 258(7): 2231–2236 (2012)
Stevens B, Dessiatova E, Hagen D A, Todd A D, Bielawski C W, Grunlan J C. Low-temperature thermal reduction of graphene oxide nanobrick walls: Unique combination of high gas barrier and low resistivity in fully organic polyelectrolyte multilayer thin films. ACS Appl Mater Inters 6(13): 9942–9945 (2014)
Malaki M, Varma R S. Mechanotribological aspects of mxene-reinforced nanocomposites. Adv Mater 32(38): 2003154 (2020)
Wyatt B C, Rosenkranz A, Anasori B. 2D MXenes: Tunable mechanical and tribological properties. Adv Mater 33(17): 2007973 (2021)
Monti J M, Robbins M O. Sliding friction of amorphous asperities on crystalline substrates: Scaling with contact radius and substrate thickness. ACS Nano 14(12): 16997–17003 (2020)
Cihan E, Dietzel D, Jany B R, Schirmeisen A. Effect of amorphous-crystalline phase transition on superlubric sliding. Phys Rev Lett 130(12): 126205 (2023)
Saravanan P, Selyanchyn R, Tanaka H, Darekar D, Staykov A, Fujikawa S, Lyth S M, Sugimura J. Macroscale superlubricity of multilayer polyethylenimine/graphene oxide coatings in different gas environments. ACS Appl Mater Inter 8(40): 27179–27187 (2016)
Dhanola A, Khanna N, Gajrani K K. A critical review on liquid superlubricitive technology for attaining ultralow friction. Renewable and Sustainable Energy Reviews 165: 112626 (2022)
Chen H Y, Cai T, Li H, Ruan X X, Jiao C C, Atkin R, Wang Y D, Gong P, Zhou X Y, Yu J H, et al. Macroscale superlubricity of steel by polymer-based ionic liquids without a running-in period. Tribol Int 182: 108349 (2023)
Du C H, Yu T T, Zhang L Q, Shen R L, Wu Z S, Li X J, He X J, Feng Y G, Wang D A. Robust and universal macroscale superlubricity with natural phytic acid solutions. Tribol Int 183: 108387 (2023)
Li J C, Zhu Y B, Xia J, Fan J C, Wu H A, Wang F C. Anomalously low friction of confined monolayer water with a quadrilateral structure. J Chem Phys 154(22): 224508 (2021)
Hua J, Björling M, Larsson R, Shi Y J. Controllable superlubricity achieved with mixtures of green ionic liquid and glycerol aqueous solution via humidity. J Mol Liq 345: 117860 (2022)
Ma L, Gaisinskaya-Kipnis A, Kampf N, Klein J. Origins of hydration lubrication. Nat Commun 6: 6060 (2015)
Li J J, Zhang C H, Deng M M, Luo J B. Reduction of friction stress of ethylene glycol by attached hydrogen ions. Sci Rep 4: 7226 (2014)
Ge X Y, Li J J, Zhang C H, Wang Z N, Luo J B. Superlubricity of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid induced by tribochemical reactions. Langmuir 34(18): 5245–5252 (2018)
Fang Y F, Ma L R, Luo J B. Modelling for water-based liquid lubrication with ultra-low friction coefficient in rough surface point contact. Tribol Int 141: 105901 (2020)
Li J J, Zhang C H, Luo J B. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 27(15): 9413–9417 (2011)
Gao Y, Ma L R, Luo J B. Pitted surfaces produced by lactic acid lubrication and their effect on ultra-low friction. Tribol Lett 57(2): 20 (2015)
Ge X Y, Li J J, Zhang C H, Luo J B. Liquid superlubricity of polyethylene glycol aqueous solution achieved with boric acid additive. Langmuir 34(12): 3578–3587 (2018)
Li J J, Zhang C H, Sun L, Lu X C, Luo J B. Tribochemistry and superlubricity induced by hydrogen ions. Langmuir 28(45): 15816–15823 (2012)
Liu X Y. Surface forces between bottlebrush polymer layers. Curr Opin Colloid In 47: 16–26 (2020)
Beheshti A, Huang Y, Blakey I, Stokes J R. Macroscale superlubricity induced by film-forming polymer brush-grafted colloidal additives. J Colloid Interf Sci 634: 703–714 (2023)
Liu W R, Simič R, Liu Y H, Spencer N D. Effect of contact geometry on the friction of acrylamide hydrogels with different surface structures. Friction 10(3): 360–373 (2022)
Han T. Y Zhang S W, Zhang C H. Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction 10(8): 1137–1165 (2022)
Zheng Z W, Liu X L, Huang G W, Chen H J, Yu H X, Feng D P, Qiao D. Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface. Friction 10(9): 1365–1381 (2022)
Li H, Wood R J, Rutland M K, Atkin R. An ionic liquid lubricant enables superlubricity to be “switched on” in situ using an electrical potential. Chem Commun (Camb) 50(33): 4368–4370 (2014)
Cai H Y, Zhang C X, Li F P, Liu M M, Zhang T, Chua H Y, Liu Z F. Study on the microcosmic superlubricity mechanism of PVPA affected by metal cations. Friction 11(7): 1150–1164 (2023)
Liu M M, Zhang C X, Chen J M, Liu Z F, Cheng Y H, Wu X Y. Mechanisms of cation-induced superlubricity transition of poly(vinylphosphonic acid) coatings. J Mol Liq 357: 119117 (2022)
Li S W, Bai P P, Li Y Z, Jia W P, Meng Y G, Ma L R, Tian Y. Extreme-pressure superlubricity of polymer solution enhanced with hydrated salt ions. Langmuir 36(24): 6765–6774 (2020)
Han T Y, Zhang C H, Chen X C, Li J J, Wang W Q, Luo J B. Contribution of a tribo-induced silica layer to macroscale superlubricity of hydrated ions. J Phys Chem C 123(33): 20270–20277 (2019)
Han T, Zhang C, Luo J. Macroscale superlubricity enabled by hydrated alkali metal ions. Langmuir 34(38): 11281–11291 (2018)
Raviv U, Klein J. Fluidity of bound hydration layers. Science 297(5586): 1540–1543 (2002)
Wang K, Liu L, Liu Y, Luo J. Simple but effective: Liquid superlubricity with high load capacity achieved by ionic liquids. Materials Today Nano 20: 100257 (2022)
Ge X Y, Chai Z Y, Shi Q Y, Liu Y F, Wang W Z. Graphene superlubricity: A review. Friction 11(11): 1953–1973 (2023)
Zhao F Y, Zhang L G, Li G T, Guo Y X, Qi H M, Zhang G. Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide. Carbon 136: 309–319 (2018)
Ge X Y, Li J J, Luo R, Zhang C H, Luo J B. Macroscale superlubricity enabled by the synergy effect of graphene-oxide nanoflakes and ethanediol. ACS Appl Mater Inter 10(47): 40863–40870 (2018)
Han T Y, Zhang C H, Li J J, Yuan S H, Chen X C, Zhang J Y, Luo J B. Origins of superlubricity promoted by hydrated multivalent ions. J Phys Chem Lett 11(1): 184–190 (2020)
Wang B L, Liu X S, Ji Y, Ren K F, Ji J. Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydr Polym 90(1): 8–15 (2012)
Cristescu R, Negut I, Visan A I, Nguyen A K, Sachan A, Goering P L, Chrisey D B, Narayan R J. Matrix-assisted pulsed laser evaporation-deposited rapamycin thin films maintain antiproliferative activity. Int J Bioprint 6(1): 188 (2020)
Sterner O, Karageorgaki C, Zürcher M, Zürcher S, Scales C W, Fadli Z, Spencer N D, Tosatti S G P. Reducing friction in the eye: A comparative study of lubrication by surface-anchored synthetic and natural ocular mucin analogues. ACS Appl Mater Inter 9(23): 20150–20160 (2017)
Tian J W, Li C G, Xian G J. Reciprocating friction and wear performances of nanometer sized-TiO2 filled epoxy composites. Polym Composite 42(4): 2061–2072 (2021)
Ge X Y, Li J J, Wang H D, Zhang C H, Liu Y H, Luo J B. Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon 151: 76–83 (2019)
Du C H, Yu T T, Wu Z S, Zhang L Q, Shen R L, Li X J, Feng M, Feng Y G, Wang D A. Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant. Friction 11(5): 748–762 (2023)
Wang H, Liu Y. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 8(6): 1007–1024 (2020)
Birdi K S, Vu D T. Wettability and the evaporation rates of fluids from solid surfaces. J Adhes Sci Technol 7(6): 485–493 (1993)
Song A S, Gao L, Zhang J, Liu X, Hu Y Z, Ma T B, Zheng Q S, Luo J B. Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: A computational investigation. Nanoscale 12(14): 7857–7863 (2020)
386
Views
48
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).