Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Contact electrification (CE) is one of the most important physical phenomena within the realm of surface science, with a history spanning over 2,600 years. Although numerous experiments have been conducted to detect CE and theories regarding electron, ion, and material transfer have been proposed, the mechanism of CE remains a subject of ongoing debate and continues to intrigue scientists. A key issue in CE studies is accurately measuring the charge transfer in various situations. The development of charge transfer measurements has consistently led to a deeper understanding of CE. In this review, we explore the field of CEs, focusing on methods for measuring charge transfer. The introduction of six experimental methods from macroscopic to microscopic and first-principles calculations for CE studies aims to promote their proper use and inspire the design of new methods. Moreover, we highlight the shortcomings of the present research approach and provide a perspective on future methodological developments.
Pan S H, Zhang Z N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1): 2–17 (2019
Elsdon R, Mitchell F G. Contact electrification of polymers. J Phys D Appl Phys 9(10): 1445–1460 (1976
Lowell J. Contact electrification of metals. J Phys D Appl Phys 8(1): 53–63 (1975
Sow M, Widenor R, Kumar A, Lee S W, Lacks D J, Sankaran R M. Strain-induced reversal of charge transfer in contact electrification. Angew Chem Int Edit 124(11): 2749–2751 (2012
Harper W R. Contact electrification of semiconductors. Brit J Appl Phys 11(8): 324–331 (1960
Hays D A. Contact electrification between mercury and polyethylene: Effect of surface oxidation. J Chem Phys 61(4): 1455–1462 (1974
Sosa M D, Ricci M L M, Missoni L L, Murgida D H, Cánneva A, D’Accorso N B, Negri R M. Liquid–polymer triboelectricity: Chemical mechanisms in the contact electrification process. Soft Matter 16(30): 7040–7051 (2020
Burgo T A L, Galembeck F, Pollack G H. Where is water in the triboelectric series. J Electrostat 80: 30–33 (2016
Chen Y, Li X J, Xu C G, Wang D A, Huang J X, Guo Z G, Liu W M. Electron transfer dominated triboelectrification at the hydrophobic/slippery substrate—Water interfaces. Friction 11(6): 1040–1056 (2023
Nie J H, Wang Z M, Ren Z W, Li S Y, Chen X Y, Wang Z L. Power generation from the interaction of a liquid droplet and a liquid membrane. Nat Commun 10: 2264 (2019
Lin S Q, Cao L N Y, Tang Z, Wang Z L. Size-dependent charge transfer between water microdroplets. Proc Natl Acad Sci USA 120(31): e2307977120 (2023
Gibson H W. Linear free energy relations. V. Triboelectric charging of organic solids. J Am Chem Soc 97(13): 3832–3833 (1975
Sakaguchi M, Makino M, Ohura T, Iwata T. Contact electrification of polymers due to electron transfer among mechano anions, mechano cations and mechano radicals. J Electrostat 72(5): 412–416 (2014
Liu C Y, Bard A J. Chemical redox reactions induced by cryptoelectrons on a PMMA surface. J Am Chem Soc 131(18): 6397–6401 (2009
Liu C Y, Bard A J. Electrostatic electrochemistry at insulators. Nat Mater 7(6): 505–509 (2008
McCarty L, Whitesides G. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew Chem Int Edit 47(12): 2188–2207 (2008
Thomas S W, Vella S J, Dickey M D, Kaufman G K, Whitesides G M. Controlling the kinetics of contact electrification with patterned surfaces. J Am Chem Soc 131(25): 8746–8747 (2009
Baytekin H T, Patashinski A Z, Branicki M, Baytekin B, Soh S, Grzybowski B A. The mosaic of surface charge in contact electrification. Science 333(6040): 308–312 (2011
Baytekin H T, Baytekin B, Incorvati J T, Grzybowski B A. Material transfer and polarity reversal in contact charging. Angew Chem Int Ed 51(20): 4843–4847 (2012
Żenkiewicz M, Żuk T, Markiewicz E. Triboelectric series and electrostatic separation of some biopolymers. Polym Test 42: 192–198 (2015
Younes A, Younes M, Sayah H, Samuila A, Dascalescu L. Experimental and numerical modeling of a new tribo-electrostatic separation process for granular plastics mixtures. Particul Sci Technol 33(2): 189–196 (2015
Szafran R G, Ludwig W, Kmiec A. New spout-fluid bed apparatus for electrostatic coating of fine particles and encapsulation. Powder Technol 225: 52–57 (2012
Fraas F, Ralston O C. Distribution of charge in electrostatic mineral separation. Trans Am Inst Electr Eng 70(1): 1028–1030 (1951
McCarty L, Winkleman A, Whitesides G. Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew Chem Int Edit 46(1–2): 206–209 (2007
Grzybowski B A, Winkleman A, Wiles J A, Brumer Y, Whitesides G M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat Mater 2(4): 241–245 (2003
Zhou L L, Liu D, Wang J, Wang Z L. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 8(3): 481–506 (2020
Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S, Kim S W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365(6452): 491–494 (2019
Kim J, Kang D, Lee H K, Hwang J H, Lee H Y, Jeon S, Kim D, Kim S, Kim S W. Design principles to maximize non-bonding states for highly tribopositive behavior. Adv Funct Mater 33(1): 2209648 (2023
Borkat F, Wiener S N. An electrostatic printer display for computerized scintiscans. Am J Roentgenol 117(1): 146–152 (1973
Song Y, Wang Z Y, Li Y, Dai Z D. Electrostatic attraction caused by triboelectrification in climbing geckos. Friction 10(1): 44–53 (2022
Song Y, Wang Z Y, Zhou J, Li Y, Dai Z D. Synchronous measurement of tribocharge and force at the footpads of freely moving animals. Friction 6(1): 75–83 (2018
Chen X K, Xia Y, Zhang Z Y, Hua L, Jia X Q, Wang F, Zare R N. Hydrocarbon degradation by contact with anoxic water microdroplets. J Am Chem Soc 145(39): 21538–21545 (2023
Vannoy K J, Dick J E. The pluses and minuses of microdroplet separation. Proc Natl Acad Sci USA 120(37): e2311576120 (2023
Chen B L, Xia Y, He R X, Sang H Q, Zhang W C, Li J, Chen L F, Wang P, Guo S S, Yin Y G, et al. Water–solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. Proc Natl Acad Sci USA 119(32): e2209056119 (2022
Xia Y, Li J, Zhang Y Z, Yin Y G, Chen B L, Liang Y, Jiang G B, Zare R N. Contact between water vapor and silicate surface causes abiotic formation of reactive oxygen species in an anoxic atmosphere. Proc Natl Acad Sci USA 120(30): e2302014120 (2023
Yi Z R, Wang X, Li W B, Qin X Z, Li Y, Wang K Q, Guo Y T, Li X, Zhang W M, Wang Z K. Interfacial friction at action: Interactions, regulation, and applications. Friction 11(12): 2153–2180 (2023
He F, Xie G X, Luo J B. Electrical bearing failures in electric vehicles. Friction 8(1): 4–28 (2020
Myshkin N, Kovalev A. Adhesion and surface forces in polymer tribology—A review. Friction 6(2): 143–155 (2018
Xue P D, Chen C, Fan X, Diao D F. Current-carrying friction in carbon coated ball bearing. Friction 11(11): 2008–2020 (2023
Zhang Z N, Yin N, Wu Z S, Pan S H, Wang D A. Research methods of contact electrification: Theoretical simulation and experiment. Nano Energy 79: 105501 (2021
Henry P S H. The role of asymmetric rubbing in the generation of static electricity. Brit J Appl Phys 4(S2): S31–S36 (1953
Debeau D E. The effect of adsorbed gases on contact electrification. Phys Rev 66(1–2): 9–16 (1944
Wagner P E. Electrostatic charge separation at metal–insulator contacts. J Appl Phys 27(11): 1300–1310 (1956
Harper W R. Surfaces showing no electrification after light contact with metals. P Roy Soc Lond A Mat 218(1132): 111–121 (1953
Wang L F, Li J, Tao J, Hu M H, Dai Z D. Sensitive self-powered particles detection based on cumulative triboelectric charging. Nano Energy 89: 106393 (2021
Soh S, Kwok S W, Liu H, Whitesides G M. Contact de-electrification of electrostatically charged polymers. J Am Chem Soc 134(49): 20151–20159 (2012
Kwetkus B A, Sattler K, Siegmann H C. Gas breakdown in contact electrification. J Phys D Appl Phys 25(2): 139–146 (1992
Hu W, Xie L, Zheng X. Contact charging of silica glass particles in a single collision. Appl Phys Lett 101(11): 114107 (2012
Davies D K. The examination of the electrical properties of insulators by surface charge measurement. J Sci Instrum 44(7): 521–524 (1967
Davies D K. Charge generation on dielectric surfaces. J Phys D Appl Phys 2(11): 1533–1537 (1969
Elsdon R, Mitchell F G. Contact electrification of polymers. J Phys D Appl Phys 9(10): 1445–1460 (1976
Lowell J, Rose-Innes A C. Contact electrification. Adv Phys 29(6): 947–1023 (1980
Rugar D, Mamin H J, Erlandsson R, Stern J E, Terris B D. Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59(11): 2337–2340 (1988
Stern J E, Terris B D, Mamin H J, Rugar D. Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl Phys Lett 53(26): 2717–2719 (1988
Terris B D, Stern J E, Rugar D, Mamin H J. Contact electrification using force microscopy. Phys Rev Lett 63(24): 2669–2672 (1989
Schönenberger C, Alvarado S F. Observation of single charge carriers by force microscopy. Phys Rev Lett 65(25): 3162–3164 (1990
Knorr N, Rosselli S, Nelles G. Surface-potential decay of biased-probe contact-charged amorphous polymer films. J Appl Phys 107(5): 054106 (2010
Sun H, Chu H B, Wang J Y, Ding L, Li Y. Kelvin probe force microscopy study on nanotriboelectrification. Appl Phys Lett 96(8): 083112 (2010
Vinay S J, Jhon M S. Particle “swarm” dynamics in triboelectric systems. J Appl Phys 89(2): 1436–1440 (2001
Zhang Y Z, Pähtz T, Liu Y H, Wang X L, Zhang R, Shen Y, Ji R J, Cai B P. Electric field and humidity trigger contact electrification. Phys Rev X 5: 011002 (2015
Xie L, Bao N, Jiang Y, Han K, Zhou J. An instrument for charge measurement due to a single collision between two spherical particles. Rev Sci Instrum 87(1): 014705 (2016
Lee V, James N M, Waitukaitis S R, Jaeger H M. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer. Phys Rev Materials 2(3): 035602 (2018
Kline A G, Lim M X, Jaeger H M. Precision measurement of tribocharging in acoustically levitated sub-millimeter grains. Rev Sci Instrum 91(2): 023908 (2020
Vick F A. Theory of contact electrification. Brit J Appl Phys 4(S2): S1–S5 (1953
Yoshida M, li N, Shimosaka A, Shirakawa Y, Hidaka J. Experimental and theoretical approaches to charging behavior of polymer particles. Chem Eng Sci 61(7): 2239–2248 (2006
Ireland P M. Contact charge accumulation and separation discharge. J Electrostat 67(2–3): 462–467 (2009
Zhang Y Y, Shao T M. A method of charge measurement for contact electrification. J Electrostat 71(4): 712–716 (2013
Zhang Y Y, Shao T M. Contact electrification between polymers and steel. J Electrostat 71(5): 862–866 (2013
Schella A, Herminghaus S, Schröter M. Influence of humidity on tribo-electric charging and segregation in Shaken granular media. Soft Matter 13(2): 394–401 (2017
Tang Z, Lin S Q, Wang Z L. Effect of surface pre-charging and electric field on the contact electrification between liquid and solid. J Phys Chem C 126(20): 8897–8905 (2022
Harris I A, Lim M X, Jaeger H M. Temperature dependence of nylon and PTFE triboelectrification. Phys Rev Mater 3(8): 085603 (2019
Jiang Y, Zhang S, Lu W H, Ao C K, Lim K W, Zeng K Y, Soh S. Nanocavities stabilize charge: Surface topology is a general strategy for controlling charge dissipation. Mater Today Phys 35: 101105 (2023
Cezan S D, Nalbant A A, Buyuktemiz M, Dede Y, Baytekin H T, Baytekin B. Control of triboelectric charges on common polymers by photoexcitation of organic dyes. Nat Commun 10: 276 (2019
Matsusaka S, Ghadiri M, Masuda H. Electrification of an elastic sphere by repeated impacts on a metal plate. J Phys D Appl Phys 33(18): 2311–2319 (2000
Chen Q, Cheng B X, Wang T C, Shang H F, Shao T M. Method for the measurement of triboelectric charge transfer at solid–liquid interface. Friction 11(8): 1544–1556 (2023
Millikan R A. The isolation of an ion, a precision measurement of its charge, and the correction of Stokes’s law. Science 32(822): 436–448 (1910
Jones R C. The Millikan oil-drop experiment: Making it worthwhile. Am J Phys 63(11): 970–977 (1995
Tang Z, Lin S Q, Wang Z L. Quantifying contact-electrification induced charge transfer on a liquid droplet after contacting with a liquid or solid. Adv Mater 33(42): 2102886 (2021
Lacks D J, Sankaran R M. Contact electrification of insulating materials. J Phys D Appl Phys 44(45): 453001 (2011
Kok J F, Lacks D J. Electrification of granular systems of identical insulators. Phys Rev E 79(5): 051304 (2009
Waitukaitis S R, Lee V, Pierson J M, Forman S L, Jaeger H M. Size-dependent same-material tribocharging in insulating grains. Phys Rev Lett 112(21): 218001 (2014
Lee V, Waitukaitis S R, Miskin M Z, Jaeger H M. Direct observation of particle interactions and clustering in charged granular streams. Nat Phys 11: 733–737 (2015
Sun Y J, Huang X, Soh S. Solid-to-liquid charge transfer for generating droplets with tunable charge. Angew Chem Int Edit 55(34): 9956–9960 (2016
Miljkovic N, Preston D J, Enright R, Wang E N. Electrostatic charging of jumping droplets. Nat Commun 4: 2517 (2013
Nauruzbayeva J, Sun Z H, Gallo Junior A, Ibrahim M, Santamarina J C, Mishra H. Electrification at water–hydrophobe interfaces. Nat Commun 11: 5285 (2020
Vella S J, Chen X, Thomas S W, Zhao X H, Suo Z G, Whitesides G M. The determination of the location of contact electrification-induced discharge events. J Phys Chem C 114(48): 20885–20895 (2010
Soh S, Chen X, Vella S J, Choi W, Gong J L, Whitesides G M. Layer-by-layer films for tunable and rewritable control of contact electrification. Soft Matter 9(43): 10233 (2013
Wiles J A, Grzybowski B A, Winkleman A, Whitesides G M. A tool for studying contact electrification in systems comprising metals and insulating polymers. Anal Chem 75(18): 4859–4867 (2003
Wiles J A, Fialkowski M, Radowski M R, Whitesides G M, Grzybowski B A. Effects of surface modification and moisture on the rates of charge transfer between metals and organic materials. J Phys Chem B 108(52): 20296–20302 (2004
Singh S V, Kusano Y, Morgen P, Michelsen P K. Surface charging, discharging and chemical modification at a sliding contact. J Appl Phys 111(8): 083501 (2012
Elsdon R, Mitchell F G. Contact electrification of polymers. J Phys D Appl Phys 9(10): 1445–1460 (1976
El-Kazzaz A M, Rose-Innes A C. The use of liquid metals for contact-charging experiments. J Phys D Appl Phys 20(12): 1616–1622 (1987
Yu Z Z, Watson P K, Facci J S. The contact charging of PTFE by mercury: The effect of a thiophene monolayer on charge exchange. J Phys D Appl Phys 23(9): 1207–1211 (1990
Nakayama K. Tribocharging and friction in insulators in ambient air. Wear 194(1-2): 185–189 (1996
Nevshupa R A. Effect of gas pressure on the triboluminescence and contact electrification under mutual sliding of insulating materials. J Phys D Appl Phys 46(18): 185501 (2013
Francisco K R, Burgo T A L, Galembeck F. Tribocharged polymer surfaces: Solvent effect on pattern formation and modification. Chem Lett 41(10): 1256–1258 (2012
Burgo T A L, Silva C A, Balestrin L B S, Galembeck F. Friction coefficient dependence on electrostatic tribocharging. Sci Rep 3: 2384 (2013
Burgo T A L, Ducati T R D, Francisco K R, Clinckspoor K J, Galembeck F, Galembeck S E. Triboelectricity: Macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28(19): 7407–7416 (2012
Lin S Q, Shao T M. Bipolar charge transfer induced by water: Experimental and first-principles studies. Phys Chem Chem Phys 19(43): 29418–29423 (2017
Lin S Q, Xu L, Xu C, Chen X Y, Wang A C, Zhang B B, Lin P, Yang Y, Zhao H B, Wang Z L. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal–dielectric case. Adv Mater 31(17): 1808197 (2019
Lin S Q, Xu L, Zhu L P, Chen X Y, Wang Z L. Electron transfer in nanoscale contact electrification: Photon excitation effect. Adv Mater 31(27): 1901418 (2019
Zheng M L, Lin S Q, Xu L, Zhu L P, Wang Z L. Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors. Adv Mater 32(21): 2000928 (2020
Chien F S S, Lin C Y, Hsu C C. Local photo-assisted poling of azo copolymer films by scanning probe microscopy. J Phys D Appl Phys 41(23): 235502 (2008
Sanikop R, Arya N, Balakrishnan V, Sudakar C. Charge pumping by contact electrification using electrostatic force microscopy in Bi- and trilayered MoS2 nanosheets. J Phys Chem C 125(22): 12155–12165 (2021
Li Q, Cho I H, Biswas R, Kim J. Nanoscale modulation of friction and triboelectrification via surface nanotexturing. Nano Lett 19(2): 850–856 (2019
Rugar D, Mamin H J, Guethner P, Lambert S E, Stern J E, McFadyen I, Yogi T. Magnetic force microscopy: General principles and application to longitudinal recording media. J Appl Phys 68(3): 1169–1183 (1990
Melitz W, Shen J, Kummel A C, Lee S. Kelvin probe force microscopy and its application. Surf Sci Rep 66(1): 1–27 (2011
Lin S Q, Xu L, Chi Wang A, Wang Z L. Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer. Nat Commun 11: 399 (2020
Lin S Q, Wang Z L. Scanning triboelectric nanogenerator as a nanoscale probe for measuring local surface charge density on a dielectric film. Appl Phys Lett 118(19): 193901 (2021
Rotsch C, Radmacher M. Mapping local electrostatic forces with the atomic force microscope. Langmuir 13(10): 2825–2832 (1997
Wang Z L, Wang A C. On the origin of contact-electrification. Mater Today 30: 34–51 (2019
Liu J, Goswami A, Jiang K R, Khan F, Kim S, McGee R, Li Z, Hu Z Y, Lee J, Thundat T. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat Nanotechnol 13: 112–116 (2018
Lowell J. The electrification of polymers by metals. J Phys D Appl Phys 9(11): 1571–1585 (1976
Shearer C J, Slattery A D, Stapleton A J, Shapter J G, Gibson C T. Accurate thickness measurement of graphene. Nanotechnology 27(12): 125704 (2016
Young T J, Monclus M A, Burnett T L, Broughton W R, Ogin S L, Smith P A. The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas Sci Technol 22(12): 125703 (2011
Pong W, Brandt D, He Z X, Imaino W. Contact charging of insulating polymers. J Appl Phys 58(2): 896–901 (1985
Duke C B, Fabish T J. Contact electrification of polymers: A quantitative model. J Appl Phys 49(1): 315–321 (1978
Harper W R. Contact electrification of semiconductors. Brit J Appl Phys 11(8): 324–331 (1960
Willatzen M, Lew Yan Voon L C, Wang Z L. Quantum theory of contact electrification for fluids and solids. Adv Funct Mater 30(17): 1910461 (2020
Pan S H, Zhang Z N. Triboelectric effect: A new perspective on electron transfer process. J Appl Phys 122(14): 144302 (2017
Alicki R, Jenkins A. Quantum theory of triboelectricity. Phys Rev Lett 125(18): 186101 (2020
Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater 108: 1–5 (2015
Giustino F. Electron–phonon interactions from first principles. Rev Mod Phys 89: 015003 (2017
Meng R S, Cai M, Jiang J K, Liang Q H, Sun X, Yang Q, Tan C J, Chen X P. First principles investigation of small molecules adsorption on antimonene. IEEE Electron Device L 38(1): 134–137 (2017
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A): A1133–A1138 (1965
Kim J, Kang D, Lee H K, Hwang J H, Lee H Y, Jeon S, Kim D, Kim S, Kim S W. Design principles to maximize non-bonding states for highly tribopositive behavior. Adv Funct Mater 33(1): 2209648 (2023
Kang D, Lee H Y, Hwang J H, Jeon S, Kim D, Kim S, Kim S W. Deformation-contributed negative triboelectric property of polytetrafluoroethylene: A density functional theory calculation. Nano Energy 100: 107531 (2022
Li L Z, Wang X L, Hu Y Q, Li Z H, Wang C F, Zhao Z R. Understanding the ferroelectric polymer–metal contact electrification for triboelectric nanogenerator from molecular and electronic structure. Adv Funct Mater 32(10): 2109949 (2022
Li L Z, Wang X L, Zhu P Z, Li H Q, Wang F, Wu J. (2020) The electron transfer mechanism between metal and amorphous polymers in humidity environment for triboelectric nanogenerator. Nano Energy 70: 104476 (2020
Wu J, Wang X L, Li H Q, Wang F, Hu Y Q. First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators. Nano Energy 63: 103864 (2019
Zhang Y Y, Shao T M, Su K. First-principles study of electronic properties of interfacial atoms in metal–metal contact electrification. Chin Phys B 22(5): 053403 (2013
Zhang Y Y, Shao T M. Effect of contact deformation on contact electrification: A first-principles calculation. J Phys D Appl Phys 46(23): 235304 (2013
Shirakawa Y, Naoto, Yoshida M, Takashima R, Shimosaka A, Hidaka J. Quantum chemical calculation of electron transfer at metal/polymer interfaces. Adv Powder Technol 21(4): 500–505 (2010
Kaponig M, Mölleken A, Nienhaus H, Möller R. Dynamics of contact electrification. Sci Adv 7(22): eabg7595 (2021
Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324(5933): 1428–1431 (2009
393
Views
59
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).