AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (5.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Silicon-based tribovoltaic nanogenerators: Surface chemistry isotope effect on device performance and durability

Xin Lyu1Melanie Macgregor2Nadim Darwish1Simone Ciampi1( )
School of Molecular and Life Sciences, Curtin University, Bentley 6102, Australia
Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park 5042, Australia.
Show Author Information

Graphical Abstract

Abstract

Triboelectric nanogenerators (TENGs) are advanced devices designed to harness mechanical energy from various sources such as vibrations, friction, or shear and convert it into electrical energy. Schottky-based tribovoltaic nanogenerators (TVNGs) are a type of TENG that incorporates a semiconductor–metal barrier, known as a Schottky barrier, into their design. This barrier aids in rectifying the generated electrical output, eliminating the need for external current rectification circuits. Further, silicon-based Schottky TVNGs can leverage existing surface functionalization procedures to improve device output and durability. Almost without exception, these procedures commence with an oxide-free and hydrogen-terminated silicon surface (Si–H). Replacing hydrogen with its heavier isotope deuterium (Si–D) does not hinder access to established surface chemistry procedures, and based on previous reports the isotope exchange is likely to improve resistance of the non-oxide semiconductor against its anodic decomposition. In this report we have developed the optimal surface chemistry procedures for preparing Si–D surfaces and explored to what extent this isotope effect translates into improved performances and durability of Schottky TVNGs. Our findings reveal that the maximum current output of TVNGs constructed on Si–D Si (111) crystals is comparable to that of mainstream Si–H devices. Additionally, we highlight a generally higher density of surface electrical defects in Si–D compared to Si–H, and verify the contribution of a flexoelectric term to the mechanic-to-electrical energy conversion mechanism. Ultimately, our experiments demonstrate that the primary advantage of replacing hydrogen with deuterium lies in enhancing device longevity.

Electronic Supplementary Material

Download File(s)
F0939-ESM.pdf (1.5 MB)

References

[1]

Zhang J Y, Coote M L, Ciampi S. Electrostatics and electrochemistry: Mechanism and scope of charge-transfer reactions on the surface of tribocharged insulators. J Am Chem Soc 143(8): 3019–3032 (2021)

[2]

Jamieson W. The electrification of insulating materials. Nature 83(2111): 189 (1910)

[3]

Lyu X, MacGregor M, Liu J, Darwish N, Ciampi S. Direct-current output of silicon–organic monolayer–platinum Schottky TENGs: Elusive friction-output relationship. Nano Energy 114: 108627 (2023)

[4]

Lyu X, Ciampi S. Improving the performances of direct-current triboelectric nanogenerators with surface chemistry. Curr Opin Colloid Interface Sci 61: 101627 (2022)

[5]

Lin S Q, Chen X Y, Wang Z L. The tribovoltaic effect and electron transfer at a liquid−semiconductor interface. Nano Energy 76: 105070 (2020)

[6]

Zhang Z, Jiang D D, Zhao J Q, Liu G X, Bu T Z, Zhang C, Wang Z L. Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv Energy Mater 10(9): 1903713 (2020)

[7]

Wang S H, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12(12): 6339–6346 (2012)

[8]
Huang W, Yuan F G, Jiang X. (2016) Flexoelectric effect, materials, and structures. In: Structural Health Monitoring (SHM) in Aerospace Structures. Amsterdam: Elsevier: 119–148
[9]

Deng Q, Kammoun M, Erturk A, Sharma P. Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51(18): 3218–3225 (2014)

[10]

Zubko P, Catalan G, Tagantsev A K. Flexoelectric effect in solids. Annu Rev Mater Res 43: 387–421 (2013)

[11]

Kim W G, Kim D, Lee H M, Choi Y K. Wearable fabric-based hybrid energy harvester from body motion and body heat. Nano Energy 100: 107485 (2022)

[12]

Seung W, Gupta M K, Lee K Y, Shin K S, Lee J H, Kim T Y, Kim S, Lin J J, Kim J H, Kim S W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4): 3501–3509 (2015)

[13]

Zeng Y M, Xiang H J, Zheng N, Cao X, Wang N, Wang Z L. Flexible triboelectric nanogenerator for human motion tracking and gesture recognition. Nano Energy 91: 106601 (2022)

[14]

Xi Y, Guo H Y, Zi Y L, Li X G, Wang J, Deng J N, Li S M, Hu C G, Cao X, Wang Z L. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv Energy Mater 7(12): 1602397 (2017)

[15]

Chen P F, An J, Shu S, Cheng R W, Nie J H, Jiang T, Wang Z L. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv Energy Mater 11(9): 2003066 (2021)

[16]

Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7(10): 9461–9468 (2013)

[17]

Seol M L, Woo J H, Jeon S B, Kim D, Park S J, Hur J, Choi Y K. Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy 14: 201–208 (2015)

[18]

Xia K Q, Fu J M, Xu Z W. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv Energy Mater 10(28): 2000426 (2020)

[19]

Rui P S, Zhang W, Zhong Y M, Wei X X, Guo Y C, Shi S W, Liao Y L, Cheng J, Wang P H. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 74: 104937 (2020)

[20]

Xu Y H, Yang W X, Lu X H, Yang Y F, Li J P, Wen J M, Cheng T H, Wang Z L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 15(10): 16368–16375 (2021)

[21]

Lu Y H, Yan Y F, Yu X T, Zhou X, Feng S R, Xu C, Zheng H N, Yang Z S, Li L J, Liu K H, et al. Polarized water driven dynamic PN junction-based direct-current generator. Research 2021: 7505638 (2021)

[22]

Lee J H, Kim S, Kim T Y, Khan U, Kim S W. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy 58: 579–584 (2019)

[23]

Xu C Q, Fu X P, Li C Y, Liu G X, Gao Y Y, Qi Y C, Bu T Z, Chen Y F, Wang Z L, Zhang C. Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification. Microsyst Nanoeng 8: 30 (2022)

[24]

Chen J, Wang Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3): 480–521 (2017)

[25]

Yang W Q, Chen J, Zhu G, Wen X N, Bai P, Su Y J, Lin Y, Wang Z L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res 6(12): 880–886 (2013)

[26]

Li S X, Liu D, Zhao Z H, Zhou L L, Yin X, Li X Y, Gao Y K, Zhang C G, Zhang Q, Wang J, et al. A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano 14(2): 2475–2482 (2020)

[27]

Khandelwal G, Maria Joseph Raj N P, Kim S J. Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 33: 100882 (2020)

[28]

Wang H, Cheng J, Wang Z Z, Ji L H, Wang Z L. Triboelectric nanogenerators for human-health care. Sci Bull 66(5): 490–511 (2021)

[29]

Lu Y H, Hao Z Z, Feng S R, Shen R J, Yan Y F, Lin S S. Direct-current generator based on dynamic PN junctions with the designed voltage output. iScience 22: 58–69 (2019)

[30]

Wang X D, Song J H, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821): 102–105 (2007)

[31]

Liu J, Goswami A, Jiang K R, Khan F, Kim S, McGee R, Li Z, Hu Z Y, Lee J, Thundat T. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nature Nanotech 13(2): 112–116 (2018)

[32]

Shan C C, Li K X, Cheng Y T, Hu C G. Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano Micro Lett 15(1): 127 (2023)

[33]

Wei K Q, Sun D J, Liu M N, Song W Z, Zhu K R, Wu L X, Zhang J, Ramakrishna S, Long Y Z. Direct current nanogenerator based on tribovoltaic effect at WS2 semiconductor interface. ACS Appl Nano Mater 7(2): 1748–1756 (2024)

[34]

Lv T M, Cheng R W, Wei C H, Su E M, Jiang T, Sheng F F, Peng X, Dong K, Wang Z L. All-fabric direct-current triboelectric nanogenerators based on the tribovoltaic effect as power textiles. Adv Energy Mater 13(29): 2301178 (2023)

[35]

Lin S S, Lu Y H, Feng S R, Hao Z Z, Yan Y F. A high current density direct-current generator based on a moving van der waals Schottky diode. Adv Mater 31(7): 1804398 (2019)

[36]

You Z Y, Wang S T, Li Z Z, Zou Y X, Lu T Y, Wang F, Hu B X, Wang X, Li L, Fang W H, et al. High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction. Nano Energy 91: 106667 (2022)

[37]

Chen S Y, Liu D, Zhou L L, Li S X, Zhao Z H, Cui S N, Gao Y K, Li Y H, Wang Z L, Wang J. Improved output performance of direct-current triboelectric nanogenerator through field enhancing breakdown effect. Adv Mater Technol 6(9): 2100195 (2021)

[38]

Huang X, Xiang X, Nie J, Peng D, Yang F, Wu Z, Jiang H, Xu Z, Zheng Q. Microscale schottky superlubric generator with high direct-current density and ultralong life. Nat Commun 12(1): 2268 (2021)

[39]

Liu D, Yin X, Guo H Y, Zhou L L, Li X Y, Zhang C L, Wang J, Wang Z L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci Adv 5(4): eaav6437 (2019)

[40]

Luo J J, Xu L, Tang W, Jiang T, Fan F R, Pang Y K, Chen L B, Zhang Y, Wang Z L. Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel. Adv Energy Mater 8(27): 1800889 (2018)

[41]

Yang R Z, Xu R, Dou W J, Benner M, Zhang Q, Liu J. Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting. Nano Energy 83: 105849 (2021)

[42]

Ren L L, Yu A F, Wang W, Guo D, Jia M M, Guo P W, Zhang Y F, Wang Z L, Zhai J Y. p-n junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect. Nano Lett 21(23): 10099–10106 (2021)

[43]

You Z Y, Wang X, Lu F Q, Wang S T, Hu B X, Li L, Fang W H, Liu Y. An organic semiconductor/metal Schottky heterojunction based direct current triboelectric nanogenerator windmill for wind energy harvesting. Nano Energy 109: 108302 (2023)

[44]

Lee Y S, Jeon S, Kim D, Lee D M, Kim D, Kim S W. High performance direct current-generating triboelectric nanogenerators based on tribovoltaic p-n junction with ChCl-passivated CsFAMA perovskite. Nano Energy 106: 108066 (2023)

[45]

Zhang Z, Wang Z Z, Chen Y K, Feng Y, Dong S C, Zhou H, Wang Z L, Zhang C. Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv Mater 34(20): 2200146 (2022)

[46]

Zhang Z, He T, Zhao J, Liu G, Wang Z L, Zhang C. Tribo-thermoelectric and tribovoltaic coupling effect at metal-semiconductor interface. Mater Today Phys 16: 100295 (2021)

[47]

Luo Q Q, Xiao K, Li M, Yan X J, Yang J, Deng J Y, Sun W H. Metal-semiconductor direct-current triboelectric nanogenerator based on depletion mode u-GaN/AlGaN/AlN/GaN HEMT. Appl Phys Lett 123(6): 063902 (2023)

[48]

Zheng M L, Lin S Q, Tang Z, Feng Y W, Wang Z L. Photovoltaic effect and tribovoltaic effect at liquid−semiconductor interface. Nano Energy 83: 105810 (2021)

[49]

Xu C, Yu J R, Huo Z W, Wang Y F, Sun Q J, Wang Z L. Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators. Energy Environ Sci 16(3): 983–1006 (2023)

[50]

Xu J, Zou Y J, Nashalian A, Chen J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front Chem 8: 577327 (2020)

[51]

Zhao X F, Scott S A, Huang M H, Peng W N, Kiefer A M, Flack F S, Savage D E, Lagally M G. Influence of surface properties on the electrical conductivity of silicon nanomembranes. Nanoscale Res Lett 6(1): 402 (2011)

[52]

Linford M R, Chidsey C E D. Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc 115(26): 12631–12632 (1993)

[53]

Linford M R, Fenter P, Eisenberger P M, Chidsey C E D. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J Am Chem Soc 117(11): 3145–3155 (1995)

[54]

Fabre B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc Chem Res 43(12): 1509–1518 (2010)

[55]

Fabre B, Hauquier F. Single-component and mixed ferrocene-terminated alkyl monolayers covalently bound to Si (111) surfaces. J Phys Chem B 110(13): 6848–6855 (2006)

[56]

Allongue P, Kieling V, Gerischer H. Etching mechanism and atomic structure of H-Si (111) surfaces prepared in NH4F. Electrochim Acta 40(10): 1353–1360 (1995)

[57]

Allongue P, Henry de Villeneuve C, Morin S, Boukherroub R, Wayner D D M. The preparation of flat H–Si (111) surfaces in 40% NH4F revisited. Electrochim Acta 45(28): 4591–4598 (2000)

[58]

Ouyang J H, Zhao X S, Li T, Zhang D C. Direct measurement of the etching rates on Si (111) and silicon dioxide surfaces in 40% ammonium fluoride aqueous solution via atomic force microscopy. J Appl Phys 93(7): 4315–4320 (2003)

[59]

Hurtado C, Lyu X, Ferrie S, Le Brun A P, MacGregor M, Ciampi S. Organic monolayers on Si (211) for triboelectricity generation: Etching optimization and relationship between the electrochemistry and current output. ACS Appl Nano Mater 5(10): 14263–14274 (2022)

[60]

Tian F Y, Taber D F, Teplyakov A V. –NH–termination of the Si (111) surface by wet chemistry. J Am Chem Soc 133(51): 20769–20777 (2011)

[61]

Silva-Quinones D, He C, Butera R E, Wang G T, Teplyakov A V. Reaction of BCl3 with H- and Cl-terminated Si (1 0 0) as a pathway for selective, monolayer doping through wet chemistry. Appl Surf Sci 533: 146907 (2020)

[62]

Xu F J, Cai Q J, Kang E T, Neoh K G. Surface-initiated atom transfer radical polymerization from halogen-terminated Si (111) (Si– X, X = Cl, Br) surfaces for the preparation of well-defined polymer–Si hybrids. Langmuir 21(8): 3221–3225 (2005)

[63]

Liu Y, Yamazaki S, Yamabe S, Nakato Y. A mild and efficient Si (111) surface modification via hydrosilylation of activated alkynes. J Mater Chem 15(46): 4906 (2005)

[64]

Sieval A B, van den Hout B, Zuilhof H, Sudhölter E J R. Molecular modeling of covalently attached alkyl monolayers on the hydrogen-terminated Si (111) surface. Langmuir 17(7): 2172–2181 (2001)

[65]

Solares S D, Yu H B, Webb L J, Lewis N S, Heath J R, Goddard W A. Chlorination–methylation of the hydrogen-terminated silicon (111) surface can induce a stacking fault in the presence of etch pits. J Am Chem Soc 128(12): 3850–3851 (2006)

[66]

Nemanick E J, Hurley P T, Webb L J, Knapp D W, Michalak D J, Brunschwig B S, Lewis N S. Chemical and electrical passivation of single-crystal silicon (100) surfaces through a two-step chlorination/alkylation process. J Phys Chem B 110(30): 14770–14778 (2006)

[67]

Mizsei J, Pap A E, Gillemot K, Battistig G. Effect of deuterium on passivation of Si surfaces. Appl Surf Sci 256(19): 5765–5770 (2010)

[68]

Koehler B G, Mak C H, Arthur D A, Coon P A, George S M. Desorption kinetics of hydrogen and deuterium from Si (111) 7 × 7 studied using laser-induced thermal desorption. J Chem Phys 89(3): 1709–1718 (1988)

[69]

Wampler W R, Myers S M, Follstaedt D M. Surface silicon-deuterium bond energy from gas-phase equilibration. Phys Rev B 48(7): 4492–4497 (1993)

[70]

Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W. Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318(5851): 780–783 (2007)

[71]

Ganguly G, Yamasaki S, Matsuda A. Control of photodegradation in amorphous silicon: The effect of deuterium. Philos Mag B 63(1): 281–292 (1991)

[72]

Li T X, Peiris C R, Aragonès A C, Hurtado C, Kicic A, Ciampi S, MacGregor M, Darwish T, Darwish N. Terminal deuterium atoms protect silicon from oxidation. ACS Appl Mater Interfaces 15(40): 47833–47844 (2023)

[73]

Lyu X, Ferrie S, Pivrikas A, MacGregor M, Ciampi S. Sliding Schottky diode triboelectric nanogenerators with current output of 109 A/m2 by molecular engineering of Si (211) surfaces. Nano Energy 102: 107658 (2022)

[74]

Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction. Chem Rev 114(1): 677–711 (2014)

[75]

O’Leary L E, Rose M J, Ding T X, Johansson E, Brunschwig B S, Lewis N S. Heck coupling of olefins to mixed methyl/thienyl monolayers on Si (111) surfaces. J Am Chem Soc 135(27): 10081–10090 (2013)

[76]

Webb L J, Michalak D J, Biteen J S, Brunschwig B S, Chan A S Y, Knapp D W, Meyer H M, Nemanick E J, Traub M C, Lewis N S. High-resolution soft X-ray photoelectron spectroscopic studies and scanning auger microscopy studies of the air oxidation of alkylated silicon (111) surfaces. J Phys Chem B 110(46): 23450–23459 (2006)

[77]

Ciampi S, Böcking T, Kilian K A, James M, Harper J B, Gooding J J. Functionalization of acetylene-terminated monolayers on Si (100) surfaces: A click chemistry approach. Langmuir 23(18): 9320–9329 (2007)

[78]

Zhang J Y, Ciampi S. Shape and charge: Faraday’s ice pail experiment revisited. ACS Cent Sci 6(5): 611–612 (2020)

[79]

Deng S, Xu R, Seh W, Sun J Y, Cai W F, Zou J P, Zhang Q. Current degradation mechanism of tip contact metal-silicon Schottky nanogenerator. Nano Energy 94: 106888 (2022)

[80]

Ferrie S, Darwish N, Gooding J J, Ciampi S. Harnessing silicon facet-dependent conductivity to enhance the direct-current produced by a sliding Schottky diode triboelectric nanogenerator. Nano Energy 78: 105210 (2020)

[81]
Nagpal R, Gusain M. In Graphene, Nanotubes and Quantum Dots-Based Nanotechnology. Al-Douri Y, Ed. Woodhead Publishing, 2022: 599–630.
[82]

Park J Y, Ogletree D F, Thiel P A, Salmeron M. Electronic control of friction in silicon pn junctions. Science 313(5784): 186 (2006)

[83]

Qi Y B, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M. Electronic contribution to friction on GaAs: An atomic force microscope study. Phys Rev B 77(18): 184105 (2008)

[84]

Budakian R, Putterman S J. Correlation between charge transfer and stick−slip friction at a metal-insulator interface. Phys Rev Lett 85(5): 1000–1003 (2000)

[85]

Zhang S, Ferrie S, Lyu X, Xia Y F, Darwish N, Wang Z B, Ciampi S. Absence of a relationship between surface conductivity and electrochemical rates: Redox-active monolayers on Si (211), Si (111), and Si (110). J Phys Chem C 125(33): 18197–18203 (2021)

[86]

Hurtado C, Ciampi S. Oxidative damage during the operation of Si (211)-based triboelectric nanogenerators. Surfaces 6(3): 281–290 (2023)

[87]

Tan C S, Hsieh P L, Chen L J, Huang M H. Silicon wafers with facet-dependent electrical conductivity properties. Angew Chem Int Ed 56(48): 15339–15343 (2017)

[88]

Wei Z Y, Kan Y J, Zhang Y, Chen Y F. The frictional energy dissipation and interfacial heat conduction in the sliding interface. AIP Adv 8(11): 115321–115321 (2018)

[89]

Wang L F, Liu S H, Feng X L, Zhang C L, Zhu L P, Zhai J Y, Qin Y, Wang Z L. Flexoelectronics of centrosymmetric semiconductors. Nat Nanotechnol 15(8): 661–667 (2020)

[90]

Ma W H, Cross L E. Flexoelectric effect in ceramic lead zirconate titanate. Appl Phys Lett 86(7): 072905 (2005)

[91]

Zhou Y, Liu J, Hu X P, Chu B J, Chen S T, Salem D. Flexoelectric effect in PVDF-based polymers. IEEE Trans Dielectr Electr Insul 24(2): 727–731 (2017)

[92]

Hou Y, Tian D X, Chu B J. Flexoelectric response of (1- x)BaTiO3- x SrTiO3 ceramics. Ceram Int 46(9): 12928–12932 (2020)

[93]
Wang Y X, Li J G, Seifert G, Chang K, Zhang D B. Giant flexoelectricity in bent semiconductor thinfilm. Nano Lett 24 (1): 411–416 (2024)
[94]

Sun L, Zhu L F, Zhang C L, Chen W Q, Wang Z L. Mechanical manipulation of silicon-based Schottky diodes via flexoelectricity. Nano Energy 83: 105855 (2021)

[95]

Jung J. High-pressure induced plastic deformation in silicon single crystals. Acta Cryst Sect A 40(a1): C334 (1984)

[96]

Tripathy A, Saravanakumar B, Mohanty S, Nayak S K, Ramadoss A. Comprehensive review on flexoelectric energy harvesting technology: Mechanisms, device configurations, and potential applications. ACS Appl Electron Mater 3(7): 2898–2924 (2021)

[97]
Laughton M A, Warne D F. (2003) Preface. In: Electrical Engineer’s Reference Book. Amsterdam: Elsevier: ix
[98]
Han T. Photoelectric Materials and Devices. Hackensack (USA): World Scientific Publishing, 2021.
[99]
Barnes J R. In Robust Electronic Design Reference Book. Barnes J R, Ed. New York: Springer, 2004: 321–350.
[100]

Kolasinski K W. The mechanism of galvanic/metal-assisted etching of silicon. Nanoscale Res Lett 9(1): 432 (2014)

[101]

Zheng M L, Lin S Q, Xu L, Zhu L P, Wang Z L. Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors. Adv Mater 32(21): 2000928 (2020)

[102]

Lin S S, Shen R J, Yao T Y, Lu Y H, Feng S R, Hao Z Z, Zheng H N, Yan Y F, Li E P. Surface states enhanced dynamic Schottky diode generator with extremely high power density over 1,000 W·m–2. Adv Sci 6(24): 1901925 (2019)

[103]

Peter L M, Walker A B, Bein T, Hufnagel A G, Kondofersky I. Interpretation of photocurrent transients at semiconductor electrodes: Effects of band-edge unpinning. J Electroanal Chem 872: 114234 (2020)

[104]

Jiang R, Boschloo G. The impact of non-uniform photogeneration on mass transport in dye-sensitised solar cells. J Mater Chem A 6(22): 10264–10276 (2018)

Friction
Article number: 9440939
Cite this article:
Lyu X, Macgregor M, Darwish N, et al. Silicon-based tribovoltaic nanogenerators: Surface chemistry isotope effect on device performance and durability. Friction, 2025, 13(2): 9440939. https://doi.org/10.26599/FRICT.2025.9440939

663

Views

82

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 March 2024
Revised: 12 May 2024
Accepted: 26 May 2024
Published: 12 December 2024
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return