Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Triboelectricity, when rubbing or contacting materials causes electric charge transfer, is ubiquitous across many fields, and has been studied in detail for centuries. Despite this, a complete description of triboelectricity remains elusive. Here, we analyze the contact between a metal asperity and a semiconductor, including contributions from the depletion zone of the semiconductor and from flexoelectric polarization that arises due to the strain gradients at asperity contacts. The free charges involved in charge transfer are then discussed and calculated. As a result, we develop a quantitative model for triboelectric charge transfer that details how charge transfer scales with contact parameters, the relative influence of depletion and flexoelectricity, and which agrees with various trends in multiple classes of triboelectric experiments.
Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy 1(2): 328–334 (2012)
Watanabe H, Ghadiri M, Matsuyama T, Ding Y L, Pitt K G, Maruyama H, Matsusaka S, Masuda H. Triboelectrification of pharmaceutical powders by particle impact. Int J Pharm 334(1−2): 149–155 (2007)
Wong J, Kwok P C L, Chan H K. Electrostatics in pharmaceutical solids. Chem Eng Sci 125: 225–237 (2015)
Naik S, Hancock B, Abramov Y, Yu W, Rowland M, Huang Z, Chaudhuri B. Quantification of tribocharging of pharmaceutical powders in V-blenders: Experiments, multiscale modeling, and simulations. J Pharm Sci 105(4): 1467–1477 (2016)
Steinpilz T, Joeris K, Jungmann F, Wolf D, Brendel L, Teiser J, Shinbrot T, Wurm G. Electrical charging overcomes the bouncing barrier in planet formation. Nat Phys 16(2): 225–229 (2020)
Tkachenko E Y, Kozachkov S G. Possible contribution of triboelectricity to snow−air interactions. Environ Chem 9(2): 109–115 (2012)
Chen Z W, Xia Q, Zha B P, Sun J, Xu B, Chen Z X. Triboelectric separation of wheat bran tissues: Influence of tribo-material, water content, and particle size. J Food Process Eng 43(1): e13346 (2020)
Corbet S A, Huang S Q. Buzz pollination in eight bumblebee-pollinated Pedicularis species: Does it involve vibration-induced triboelectric charging of pollen grains? Ann Bot 114(8): 1665–1674 (2014)
Stadler T, Lopez García G, Gitto J, Buteler M. Nanostructured alumina: Biocidal properties and mechanism of action of a novel insecticide powder. Bulletin of Insectology 70: 17–26 (2017)
Méndez Harper J, McDonald C S, Rheingold E J, Wehn L C, Bumbaugh R E, Cope E J, Lindberg L E, Pham J, Kim Y H, Dufek J, et al. Moisture-controlled triboelectrification during coffee grinding. Matter 7(1): 266–283 (2024)
Jamieson, W. The electrification of insulating materials. Nature 83(2111): 189–189 (1910)
Shaw P E. Experiments on tribo-electricity. I.—The tribo-electric series. Proc R Soc Lond A 94(656): 16–33 (1917)
Pan S H, Zhang Z N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1): 2–17 (2019)
Shaw P E. Electrical separation between identical solid surfaces. Proc Phys Soc 39(1): 449–452 (1926)
Shaw P E, Jex C S. Tribo-electricity and friction. III.—Solid elements and textiles. Proc R Soc Lond A 118: 108–113 (1928)
Shaw P E, Hanstock R F. Triboelectricity and friction. V—On surface strain and relaxation of like solids. Proc R Soc Lond A 128(808): 474–480 (1930)
Shaw P E, Hanstock R F. Triboelectricity and friction. VI—On surface strain and relaxation for unlike solids. Proc R Soc Lond A 128(808): 480–487 (1930)
Zou H Y, Zhang Y, Guo L T, Wang P H, He X, Dai G Z, Zhang H W, Chen C Y, Wang A C, Xu C, Wang Z L. Quantifying the triboelectric series. Nat Commun 10(1): 1427 (2019)
Matsusaka S, Maruyama H, Matsuyama T, Ghadiri M. Triboelectric charging of powders: A review. Chem Eng Sci 65(22): 5781–5807 (2010)
Xie L, Li J, Liu Y. Review on charging model of sand particles due to collisions. Theor Appl Mech Lett 10(4): 276–285 (2020)
Chowdhury F, Ray M, Sowinski A, Mehrani P, Passalacqua A. A review on modeling approaches for the electrostatic charging of particles. Powder Technol 389: 104–118 (2021)
Mizzi C A, Lin A Y W, Marks L D. Does flexoelectricity drive triboelectricity? Phys Rev Lett 123(11): 116103 (2019)
Mizzi C A, Marks L D. When flexoelectricity drives triboelectricity. Nano Lett 22(10): 3939–3945 (2022)
Olson K P, Mizzi C A, Marks L D. Band bending and ratcheting explain triboelectricity in a flexoelectric contact diode. Nano Lett 22(10): 3914–3921 (2022)
Kumar M, Lim J, Park J Y, Seo H. Flexoelectric effect driven colossal triboelectricity with multilayer graphene. Curr Appl Phys 32: 59–65 (2021)
Qiao H M, Zhao P, Kwon O, Sohn A, Zhuo F P, Lee D M, Sun C, Seol D, Lee D, Kim S W, et al. Mixed triboelectric and flexoelectric charge transfer at the nanoscale. Adv Sci 8(20): 2101793 (2021)
Zubko P, Catalán G, Tagantsev A. Flexoelectric effect in solids. Annu Rev Mater Res 43: 387–421 (2013)
Lu H, Bark C W, Esque De Los Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A. Mechanical writing of ferroelectric polarization. Science 335(6077): 59–61 (2012)
Zhu W Y, Fu J Y, Li N, Cross L. Piezoelectric composite based on the enhanced flexoelectric effects. Appl Phys Lett 89(19): 192904 (2006)
Yang M M, Kim D J, Alexe M. Flexo-photovoltaic effect. Science 360(6391): 904–907 (2018)
Ma W H, Cross L E. Flexoelectricity of Barium titanate. Appl Phys Lett 88(23): 232902 (2006)
Zubko P, Catalan G, Buckley A, Welche P R L, Scott J F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys Rev Lett 99(16): 167601 (2007)
Cross L E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci 41(1): 53–63 (2006)
Coy E. Method for probing flexoelectric response of free-standing cantilever beams by nanometric oscillations with nanoindentation technique. Measurement 163: 107986 (2020)
Yang M M, Luo Z D, Mi Z, Zhao J J, Sharel Pei E, Alexe M. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature 584(7821): 377–381 (2020)
M’Ewen E. XLI. Stresses in elastic cylinders in contact along a generatrix (including the effect of tangential friction). Philos Mag Ser 1 40: 454–459 (1949)
Cole B N, Baum M R, Mobbs F R. An investigation of electrostatic charging effects in high-speed gas-solids pipe flows. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 184(3): 77–83 (1969)
Yamamoto T, Suzuki S, Kawaguchi K, Takahashi K. Temperature dependence of the ideality factor of Ba1– x K x BiO3/Nb-doped SrTiO3 all-oxide-type Schottky junctions. Jpn J Appl Phys 37: 4737–4746 (1998).
Arthur J R, Hansen R S. Study of the adsorption of hydrogen, ethane, ethylene, and acetylene on iridium by field emission microscopy. J Chem Phys 36: 2062–2071 (1962)
Ishii R, Matsumura K, Sakai A, Sakata T. Work function of binary alloys. Appl Surf Sci 169–170: 658–661 (2001)
Chien T, Liu J, Yost A J, Chakhalian J, Freeland J W, Guisinger N P. Built-in electric field induced mechanical property change at the lanthanum nickelate/Nb-doped strontium titanate interfaces. Sci Rep 6: 19017 (2016)
Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G, Marks L. WIEN2k: An APW+lo program for calculating the properties of solids. J Chem Phys 152: 074101 (2020).
Thielen A, Niezette J, Feyder G, Vanderschueren J. Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene Terephthalate film–metal systems. I. Generalities and theoretical model. J Phys Chem Solids 57(11): 1567–1580 (1996)
Torres I, Taylor D M. Interface states in polymer metal–insulator–semiconductor devices. J Appl Phys 98(7): 073710 (2005)
Liu J, Miao M, Jiang K, Khan F, Goswami A, McGee R, Li Z, Nguyen L, Hu Z, Lee J. Sustained electron tunneling at unbiased metal-insulator-semiconductor triboelectric contacts. Nano Energy 48: 320–326 (2018)
Ferrie S, Darwish N, Gooding J, Ciampi S. Harnessing silicon facet-dependent conductivity to enhance the direct-current produced by a sliding Schottky diode triboelectric nanogenerator. Nano Energy 78: 105210 (2020)
Manouchehri H R, Rao K H, Forssberg K. Triboelectric charge characteristics and donor-acceptor, acid-base properties of minerals—Are they related? Particulate Science and Technology 19(1): 23–43 (2001)
Bell R O, Rupprecht G. Elastic constants of strontium titanate. Phys Rev 129(1): 90–94 (1963)
Bertelsen B I. The U. S. motor vehicle emission control programme. Platinum Metals Rev 45(2): 50–59 (2001)
Mizzi C A, Marks L D. The role of surfaces in flexoelectricity. J Appl Phys 129: 224102 (2021)
Olson K P, Marks L D. Asperity shape in flexoelectric/triboelectric contacts. Nano Energy 119: 109036 (2024)
Mizzi C A, Guo B, Marks L D. Experimental determination of flexoelectric coefficients in SrTiO3, KTaO3, TiO2, and YAlO3 single crystals. Physical Review Materials 6(5): 055005 (2022)
Lanier C H, Rondinelli J M, Deng B, Kilaas R, Poeppelmeier K R, Marks L D. Surface reconstruction with a fractional hole: (
Gao P, Liu H J, Huang Y L, Chu Y H, Ishikawa R, Feng B, Jiang Y, Shibata, N, Wang E G, Ikuhara Y. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat Commun 7(1): 11318 (2016)
Rideout V L, Crowell C R. Effects of image force and tunneling on current transport in metal-semiconductor (Schottky barrier) contacts. Solid State Electron 13(7): 993–1009 (1970)
Gao X L, Zhou S S. Strain gradient solutions of half-space and half-plane contact problems. Z Angew Math Phys 64(4): 1363–1386 (2013)
Stengel M. Unified ab initio formulation of flexoelectricity and strain-gradient elasticity. Phys Rev B 93(24): 245107 (2016)
Pellegrin D V D, Stachowiak G W. Evaluating the role of particle distribution and shape in two-body abrasion by statistical simulation. Tribol Int 37(3): 255–270 (2004)
Zou Y, Xu J, Chen K, Chen J. Advances in nanostructures for high-performance triboelectric nanogenerators. Adv Mater Technol 6(3): 2000916 (2021)
Matsuyama T, Yamamoto H. Charge transfer between a polymer particle and a metal plate due to impact. IEEE Trans Ind Applicat 30(3): 602–607 (1994)
Watanabe H, Samimi A, Ding Y L, Ghadiri M, Matsuyama T, Pitt K G. Measurement of charge transfer due to single particle impact. Particle & Particle Systems Characterization 23(2): 133–137 (2006)
Jungmann F, Onyeagusi F C, Teiser J, Wurm G. Charge transfer of pre-charged dielectric grains impacting electrodes in strong electric fields. J Electrostat 117: 103705 (2022).
Matsuyama T, Yamamoto H. Electrification of single polymer particles by successive impacts with metal targets. IEEE Trans Ind Applicat 31(6): 1441–1445 (1995)
Ireland P M. Impact tribocharging of soft elastic spheres. Powder Technology 348: 70–79 (2019)
Chowdhury F, Ray M, Passalacqua A, Mehrani P, Sowinski A. Electrostatic charging due to individual particle−particle collisions. Powder Technol 381: 352–365 (2021)
Gady B, Reifenberger R, Rimai D S. Contact electrification studies using atomic force microscope techniques. J Appl Phys 84(1): 319–322 (1998)
Rennecke S, Weber A P. Charge transfer to metal nanoparticles bouncing from conductive surfaces. Aerosol Sci Technol 48(10): 1059–1069 (2014)
Bierwirth M, Gensch M, Weber A P. Influence of the impaction angle on the triboelectric charging of aerosol nanoparticles. Chemie Ingenieur Technik 93(8): 1316–1322 (2021)
Sow M, Lacks D J, Mohan Sankaran R. Dependence of contact electrification on the magnitude of strain in polymeric materials. J Appl Phys 112(8): 084909 (2012)
Sow M, Lacks D J, Sankaran R M. Effects of material strain on triboelectric charging: Influence of material properties. J Electrostat 71(3): 396–399 (2013)
Matsusaka S, Ghadiri M, Masuda H. Electrification of an elastic sphere by repeated impacts on a metal plate. J Phys D 33: 2311–2319 (2000)
Cruise R D, Starr S O, Hadler K, Cilliers J J. Triboelectric charge saturation on single and multiple insulating particles in air and vacuum. Sci Rep 13(1): 15178 (2023)
Kleyman G, Kang T, Twiefel J, Voit W. Characterization of triboelectric charge generation between PTFE and nylon after repeated contacts. Energy Harvesting and Systems 4(4): 165–176 (2017)
Hinchet R, Ghaffarinejad A, Lu Y, Hasani J Y, Kim S W, Basset P. Understanding and modeling of triboelectric-electret nanogenerator. Nano Energy 47: 401–409 (2018)
Park H, LeBrun T W. Contact electrification of individual dielectric microparticles measured by optical tweezers in air. ACS Appl Mater Interfaces 8(50): 34904–34913 (2016)
Johnson K L, Kendall K, Roberts A D, Tabor D. Surface energy and the contact of elastic solids. Proc R Soc Lond A 324(1558): 301–313 (1997)
Gao X, Hao F, Huang ZP, Fang D N. Mechanics of adhesive contact at the nanoscale: The effect of surface stress. International Journal of Solids and Structures 51(3−4): 566–574 (2014)
Deng F, Deng Q, Yu W S, Shen S P. Mixed finite elements for flexoelectric solids. J Appl Mech 84(8): 081004 (2017)
Hadjesfandiari A R, Hajesfandiari A, Liu J, Dargush G. Couple stress-based flexoelectricity of frictionless contact in dielectrics. European Journal of Mechanics-A/Solids 100: 104972 (2023)
Abdollahi A, Domingo N, Arias I, Catalan G. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials. Nat Commun 10: 1266 (2019)
Afsar M N, Button K J. Precise millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of GaAs, Si, SiO/sub 2/, A1/sub 2/O/sub 3/, BeO, Macor, and Glass. IEEE Transactions on Microwave Theory and Techniques 31(2): 217–223 (1983)
Zheng M L, Lin S Q, Xu L, Zhu L P, Wang Z L. Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors. Advanced Materials 32(21): 2000928 (2020)
Xiao K, Feng Y, Wei W W, Peng Y, Chen Z Q, Deng S D, Wang Y K, Yao H L, Deng J Y, Sun W H. A Cu/P-type GaN triboelectric nanogenerator with power density over 100 W/m2. Appl Phys Lett 120(9): 093901 (2022)
Lee P C, Ou Y C, Wang R C, Liu C P. Enhanced output performance of ZnO thin film triboelectric nanogenerators by leveraging surface limited ga doping and insulting bulk. Nano Energy 89: 106394 (2021)
Lin S Q, Chen X Y, Wang Z L. The tribovoltaic effect and electron transfer at a liquid−semiconductor interface. Nano Energy 76: 105070 (2020)
Narváez J, Vásquez-Sancho F, Catalán G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 538: 219–221 (2016)
Ma Q Q, Wen X, Lv L T, Deng Q, Shen S P. On the flexoelectric-like effect of Nb-doped SrTiO3 single crystals. Appl Phys Lett 123(8): 082902 (2023)
Li H, Wu H, Wang Z G, Xie Z Q, Shu S W, Liu Z Y, Ke S M, Shu L L. Space-charge-induced colossal dielectric constant and large flexoelectricity in Nb-doped BaTiO3 ceramics. Appl Phys Lett 124(6): 062904 (2024)
Powell R A, Spicer W E. Photoemission investigation of surface states on strontium titanate. Phys Rev B 13(6): 2601–2604 (1976)
Henrich V E, Dresselhaus G, Zeiger H J. Surface defects and the electronic structure of SrTiO3 surfaces. Physical Review B 17(12): 4908–4921 (1978)
Beyreuther E, Becherer J, Thiessen A, Grafström S, Eng L M. Electronic surface properties of SrTiO3 derived from a surface photovoltage study. Surf Sci 612: 1–9 (2013)
Catrou P, Tricot S, Delhaye G, Breton J L, Turban P, Lépine B, Schieffer P. Effect of oxygen vacancies at the Fe/SrTiO3(001) interface: Schottky barrier and surface electron accumulation layer. Physical Review B 98(11): 115402 (2018)
Schella A, Herminghaus S, Schröter M. Influence of humidity on tribo-electric charging and segregation in Shaken granular media. Soft Matter 13(2): 394–401 (2017)
Jantač S, Konopka L, Kosek J. Experimental study of triboelectric charging of polyethylene powders: Effect of humidity, impact velocity and temperature. Adv Powder Technol 30(1): 148–155 (2019)
Rahaman A, Grassian V H, Margulis C J. Dynamics of water adsorption onto a calcite surface as a function of relative humidity. J Phys Chem C 112(6): 2109–2115 (2008)
Tilmatine O, Zeghloul T, Medles K, Dascalescu L, Fatu A. Effect of ambient air relative humidity on the triboelectric properties of polypropylene and polyvinyl chloride slabs. J Electrostat 115: 103651 (2022)
Xu W C, Grosshans H. Experimental study of humidity influence on triboelectric charging of particle-laden duct flows. J Loss Prevent Proc 81: 104970 (2023)
Cruise R D, Hadler K, Starr S O, Cilliers J J. The effect of particle size and relative humidity on triboelectric charge saturation. J Phys D Appl Phys 55(18): 185306 (2022)
Hong J W, Vanderbilt D. First-principles theory and calculation of flexoelectricity. Phys Rev B 88: 174107 (2013)
Ibers J. Atomic scattering amplitudes for electrons. Acta Crystallogr 11: 178–183 (1958)
Duffy T S. Single-crystal elastic properties of minerals and related materials with cubic symmetry. Am Mineral 103(6): 977–988 (2018)
Ji S C, Li L, Motra H B, Wuttke F, Sun S S, Michibayashi K, Salisbury M. Poisson's ratio and auxetic properties of natural rocks. J Geophys Res-Sol Ea 123(2): 1161–1185 (2018)
Fujimura T, Hakozaki Y, Sakuragi S, Nakajima Y, Murakami K, Suzuki K, Maruyama I, Ohkubo T. Study of mechanical properties of silicate minerals by molecular dynamics simulation. J Adv Concr Technol 21(11): 920–933 (2023)
Poddar S, Foreman K, Adenwalla S, Ducharme S. Finite-size scaling of flexoelectricity in Langmuir-Blodgett polymer thin films. Appl Phys Lett 108(1): 012908 (2016)
Kamutzki F, Schneider S, Barowski J, Gurlo A, Hanaor D. Silicate dielectric ceramics for millimetre wave applications. J Eur Ceram Soc 41(7): 3879–3894 (2021)
Jones R H, Grossman J N, Rubin A E. Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. ASP Conference Series 341: 251–285 (2005)
Enterkin J A, Poeppelmeier K R, Marks L D. Oriented catalytic platinum nanoparticles on high surface area strontium titanate nanocuboids. Nano Letters 11(3): 993–997 (2011)
572
Views
134
Downloads
0
Crossref
1
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).