AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

DNA-based recyclable moist-electric generator

Tianlei Guang1,2Yaxing Huang1,2Haiyan Wang1Tiancheng He1,2Kaixuan Zhu1Yujuan Zhang1,3Hongfei Shang2Jian Li4Huhu Cheng1,2( )Liangti Qu1,2( )
Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection, Wuhan 430000, China
Show Author Information

Graphical Abstract

Abstract

Recently developed moist-electric generator (MEG) can spontaneously produce electricity after absorbing water from the air, delivering an interesting and novel power harvesting process. The employment of environment-friendly biological substrates in MEGs has demonstrated the favorable electricity generation capacity, however, which always requires a careful cultivation process or gentle storage environment. In this regard, the extremely abundant DNA formed porous membrance is fabricated to construct a novel recyclable DNA based MEG (DNA-MEG) which produces a stable voltage of ca. 0.3 V with a current density of ca. 1.2 μA·cm−2, as well as a maximum power density of 0.36 μW·cm−2 at ~90 % relative humidity air. Interestingly, benefited from excellent water-solubility, this freeze-drying DNA membrance can be easily recycled after DNA-MEG damaged and the reborned device still shows favorable electricity generation performance. In addition, several DNA-MEGs in parallel or series can power up light-emitting diodes and so on for applications. This stable and recyclable DNA-MEG will provide new insights for moisture power generation device design and enlarge the practical regions greatly.

Electronic Supplementary Material

Download File(s)
F0927-ESM.pdf (653.3 KB)

References

[1]

Zhao F, Cheng H, Zhang Z, Jiang L, Qu L. Direct power generation from a graphene oxide film under moisture. Adv Mater 27(29): 4351–4357 (2015)

[2]

Bai J, Huang Y, Cheng H, Qu L. Moist-electric generation. Nanoscale 11(48): 23083–23091 (2019)

[3]
Xu T, Ding X, Cheng H, Han G, Qu L. Moisture‐enabled electricity from hygroscopic materials: A new type of clean energy. Adv Mater 2209661 (2023)
[4]

Guan P, Zhu R, Hu G, Patterson R, Chen F, Liu C, Zhang S, Feng Z, Jiang Y, Wan T, et al. Recent development of moisture‐enabled‐electric nanogenerators. Small 18(46): 2204603 (2022)

[5]

Shao B, Song Y, Song Z, Wang Y, Wang Y, Liu R, Sun B. Electricity generation from phase transitions between liquid and gaseous water. Adv Energy Mater 13(16): 2204091 (2023)

[6]

Wang P, Xu J, Wang R, Li T. Pathways for continuous electricity generation from ambient moisture. Matter 6(1): 19–22 (2023)

[7]
Cao Y, Xu B, Li Z, Fu H. Advanced design of high‐performance moist‐electric generators. Adv Funct Mater 2301420 (2023)
[8]
Yan H, Liu Z, Qi R. A review of humidity gradient-based power generator: Devices, materials and mechanisms. Nano Energy 107591 (2022)
[9]

Sun Z, Wen X, Wang L, Ji D, Qin X, Yu J, Ramakrishna S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2(1): 32–46 (2022)

[10]

Li P, Hu Y, He W, Lu B, Wang H, Cheng H, Qu L. Multistage coupling water-enabled electric generator with customizable energy output. Nat Commun 14(1): 5702 (2023)

[11]

Wang H, He T, Hao X, Huang Y, Yao H, Liu F, Cheng H, Qu L. Moisture adsorption-desorption full cycle power generation. Nat Commun 13(1): 2524 (2022)

[12]

Wang K, Xu W, Zhang W, Wang X, Yang X, Li J, Zhang H, Li J, Wang Z. Bio-inspired water-driven electricity generators: from fundamental mechanisms to practical applications. Nano Res Energy 2(1): e9120042 (2023)

[13]

Wang H, Sun Y, He T, Huang Y, Cheng H, Li C, Xie D, Yang P, Zhang Y, Qu L. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1, 000 V output. Nat Nanotechnol 16: 811–819 (2021)

[14]

He T, Wang H, Lu B, Guang T, Yang C, Huang Y, Cheng H, Qu L. Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 7(5): 935–951 (2023)

[15]
Xu J, Wang P, Bai Z, Chen H, Wang R, Qu L, Li T. Sustainable moisture energy. Nat Rev Mater 1–16 (2024)
[16]

Chen L, Qian L M. Role of interfacial water in adhesion, friction, and wear—A critical review. Friction 9(1): 1–28 (2021)

[17]

Chen Q, Cheng B X, Wang T C, Shang H F, Shao T M. Method for the measurement of triboelectric charge transfer at solid–liquid interface. Friction 11(8): 1544–1556 (2023)

[18]

Yin J, Zhou J, Fang S, Guo W. Hydrovoltaic energy on the way. Joule 4(9): 1852–1855 (2020)

[19]

Shen D, Duley W W, Peng P, Xiao M, Feng J Y, Liu L, Zou G S, Zhou Y N. Moisture-enabled electricity generation: from physics and materials to self‐powered applications. Adv Mater 32(52): 2003722 (2020)

[20]

Liu J, Huang L, He W, Cai X, Wang Y, Zhou L, Yuan Y. Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils. Nano Energy 102: 107709 (2022)

[21]

Yang W, Lv L, Li X, Han X, Li M, Li C. Quaternized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano 14(8): 10600–10607 (2020)

[22]

Mandal S, Roy S, Mandal A, Ghoshal T, Das G, Singh A, Goswami D. Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors. ACS Appl Electron Mater 2(3): 780–789 (2020)

[23]

Zhang Y, Nandakumar D K, Tan S C. Digestion of ambient humidity for energy generation. Joule 4(12): 2532–2536 (2020)

[24]

Liu X, Gao H, Ward J E, Liu X R, Yin B, Fu T D, Chen J H, Lovley D R, Yao J. Power generation from ambient humidity using protein nanowires. Nature 578(7796): 550–554 (2020)

[25]

Ren G, Wang Z, Zhang B, Liu X, Ye J, Hu Q, Zhou S. A facile and sustainable hygroelectric generator using whole-cell geobacter sulfurreducens. Nano Energy 89: 106361 (2021)

[26]

Kwon Y W, Lee C H, Choi D H, Jin J I. Materials science of DNA. J Mater Chem 19(10): 1353–1380 (2009)

[27]

Shinwari W, Deen J, Starikov E, Cuniberti G. Electrical conductance in biological molecules. Adv Funct Mater 20(12): 1865–1883 (2010)

[28]

Zhuravel R, Huang H, Polycarpou G, Polydorides S, Motamarri P, Katrivas L, Rotem D, Sperling J, Zotti L A, Kotlyar A B, et al. Backbone charge transport in double-stranded DNA. Nat Nanotech 15(10): 836–840 (2020)

[29]

Genereux J C, Barton J K. Mechanisms for DNA charge transport. Chem Rev 110(3): 1642–1662 (2010)

[30]

Fink H W, Schönenberger C. Electrical conduction through DNA molecules. Nature 398(6726): 407–410 (1999)

[31]
Hagen J A, Li W, Steckl A J, Grote J G . Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 88 (17) (2006)
[32]

Steckl A J. DNA—A new material for photonics. Nat Photonics 1(1): 3–5 (2007)

[33]
Ihmels H, Otto D. Intercalation of organic dye molecules into double-stranded DNA—General principles and recent developments. Top Curr Chem 258 : 161–204 (2005)
[34]

Liu H, Moynihan K D, Zheng Y, Szeto G L, Li A V, Huang B, Van Egeren D S, Park C, Irvine D J. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507(7493): 519–522 (2014)

[35]

Xiao F, Chen Z, Wei Z, Tian L. Hydrophobic interaction: A promising driving force for the biomedical applications of nucleic acids. Adv Sci 7(16): 2001048 (2020)

[36]

Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science 287(5454): 820–825 (2020)

[37]

Liu X D, Diao H Y, Nishi N. Applied chemistry of natural DNA. Chem Soc Rev 37(12): 2745–2757 (2008)

[38]

Santos S, Stefancich M, Hernandez H, Chiesa M, Thomson N. Hydrophilicity of a single DNA molecule. J Phys Chem C 116(4): 2807–2818 (2012).

[39]

Vilar M R, Botelho do Rego A M, Ferraria A M, Jugnet Y, Noguès C, Peled D, Naaman R. Interaction of self-assembled monolayers of DNA with electrons: HREELS and XPS studies. J Phys Chem B 112(23): 6957–6964 (2008)

[40]

Wang W, Xie G X, Luo J B. Black phosphorus as a new lubricant. Friction 6(1): 116–142 (2018)

[41]

Pan X, Jin Y, Zhou Y, Wang X, Lu W, He J, Ho G. Differentiated ionic electroresponse of asymmetric bio‐hydrogels with unremitting power output. Adv Energy Mater 13(12): 2204095 (2023)

[42]

Lu W, Ding T, Wang X, Zhang C, Li T, Zeng K, Ho G. Anion-cation heterostructured hydrogels for all-weather responsive electricity and water harvesting from atmospheric air. Nano Energy 104: 107892 (2022)

[43]

Liu Q, Wang Y, Guo W, Ji H, Xue J, Ouyang Q. Asymmetric properties of ion transport in a charged conical nanopore. Phys Rev E 75(5): 051201 (2007)

[44]

He W Y, Lin T Y, Cheng H H. Carbon-based functional materials for atmospheric water utilization. Nano Research 16: 12491–12505 (2023)

Friction
Article number: 9440927
Cite this article:
Guang T, Huang Y, Wang H, et al. DNA-based recyclable moist-electric generator. Friction, 2025, 13(2): 9440927. https://doi.org/10.26599/FRICT.2025.9440927

470

Views

62

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 February 2024
Revised: 24 April 2024
Accepted: 27 April 2024
Published: 30 December 2024
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return