Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This study investigated the effect of surface electronegativity and calcium release from human enamel on the adsorption and lubrication of salivary proteins from the perspective of interfacial water using three model substrates: calcium-releasing electronegative hydroxyapatite (which represents enamel), calcium-free electronegative silica, and calcium-free electropositive zirconia. The interfacial water layer was probed using attenuated total reflection-infrared (ATR-IR) spectroscopy, and the adsorption and lubrication of salivary proteins were examined using atomic force microscopy (AFM), quartz crystal microbalance with dissipation (QCM-D), and nanoindentation/scratch techniques. The strong affinity of electropositive substrates for water contributed to a thick interfacial water layer, which served as a physical barrier to weaken electrostatic attraction to salivary proteins. Thus, the proteins randomly adsorbed, forming a pellicle without a multilayered structure and good lubricity. The interfacial water layer on electronegative substrates tends to be thin. Driven by strong electrostatic interactions, salivary proteins are adsorbed through self-assembly to form a pellicle with a two-layered structure. While the hydrated calcium ions caused by substrate calcium release thickened the interfacial water layer, they served as a bridge to connect proteins. Consequently, a two-layered pellicle, both stiff and viscoelastic, formed to provide excellent lubricating action. In summary, the surface electronegativity and calcium release of enamel benefit the adsorption and lubrication of salivary proteins by regulating interfacial water.
Hahn Berg I C, Rutland M W, Arnebrant T. Lubricating properties of the initial salivary pellicle—An AFM study. Biofouling 19(6): 365–369 (2003)
Sarkar A, Xu F, Lee S. Human saliva and model saliva at bulk to adsorbed phases—Similarites and differences. Adv Colloid Interface Sci 273: 102034 (2019)
Heller D, Helmerhorst E J, Oppenheim F G. Saliva and serum protein exchange at the tooth enamel surface. J Dent Res 96(4): 437–443 (2017)
Schipper R G, Silletti E, Vingerhoeds M H. Saliva as research material: Biochemical, physicochemical and practical aspects. Arch Oral Biol 52(12): 1114–1135 (2007)
Carpenter G H. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4: 267–276 (2013)
Lendenmann U, Grogan J, Oppenheim F G. Saliva and dental pellicle—A review. Adv Dent Res 14(1): 22–28 (2000)
Chawhuaveang D D, Yu O Y, Yin I X, Lam W Y H, Mei M L, Chu C H. Acquired salivary pellicle and oral diseases: A literature review. J Dent Sci 16(1): 523–529 (2021)
Ash A, Burnett G R, Parker R, Ridout M J, Rigby N M, Wilde P J. Structural characterisation of parotid and whole mouth salivary pellicles adsorbed onto DPI and QCMD hydroxyapatite sensors. Colloids Surf B Biointerfaces 116: 603–611 (2014)
Yakubov G E, Macakova L, Wilson S, Windust J H C, Stokes J R. Aqueous lubrication by fractionated salivary proteins: Synergistic interaction of mucin polymer brush with low molecular weight macromolecules. Tribol Int 89: 34–45 (2015)
Fischer N G, Aparicio C. The salivary pellicle on dental biomaterials. Colloids Surf B Biointerfaces 200: 111570 (2021)
Pepla E, Besharat L K, Palaia G, Tenore G, Migliau G. Nanohydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann Stomatol (Roma) 5(3): 108–114 (2014)
Dorozhkin S V. Calcium orthophosphates (CaPO4): Occurrence and properties. Prog Biomater 5(1): 9–70 (2016)
Hannig M, Hannig C. The pellicle and erosion. Monogr Oral Sci 25: 206–214 (2014)
Vukosavljevic D, Custodio W, Buzalaf M A R, Hara A T, Siqueira W L. Acquired pellicle as a modulator for dental erosion. Arch Oral Biol 59(6): 631–638 (2014)
Araújo T T, Carvalho T S, Dionizio A, Debortolli A L B, Ventura T M O, Souza B M, Feitosa C M V B, Barbosa H A P, da Silva Ribeiro C F, Martini T, et al. Protein-based engineering of the initial acquired enamel pellicle in vivo: Proteomic evaluation. J Dent 116: 103874 (2022)
Young A, Smistad G, Karlsen J, Rölla G, Rykke M. Zeta potentials of human enamel and hydroxyapatite as measured by the Coulter DELSA 440. Adv Dent Res 11(4): 560–565 (1997)
Cárdenas M, Elofsson U, Lindh L. Salivary mucin MUC5B could be an important component of in vitro pellicles of human saliva: An in situ ellipsometry and atomic force microscopy study. Biomacromolecules 8(4): 1149–1156 (2007)
Tanaka M, Morita S, Hayashi T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials. Colloids Surf B Biointerfaces 198: 111449 (2021)
Nihonyanagi S, Yamaguchi S, Tahara T. Counterion effect on interfacial water at charged interfaces and its relevance to the Hofmeister series. J Am Chem Soc 136(17): 6155–6158 (2014)
Dewan S, Carnevale V, Bankura A, Eftekhari-Bafrooei A, Fiorin G, Klein M L, Borguet E. Structure of water at charged interfaces: A molecular dynamics study. Langmuir 30(27): 8056–8065 (2014)
Li C Y, Le J B, Wang Y H, Chen S, Yang Z L, Li J F, Cheng J, Tian Z Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat Mater 18(7): 697–701 (2019)
Gonella G, Backus E H G, Nagata Y, Bonthuis D J, Loche P, Schlaich A, Netz R R, Kühnle A, McCrum I T, Koper M T M, et al. Water at charged interfaces. Nat Rev Chem 5(7): 466–485 (2021)
Tian Y, Song Y Z, Xia Y J, Hong J N, Huang Y P, Ma R Z, You S F, Guan D, Cao D Y, Zhao M Z, et al. Nanoscale one-dimensional close packing of interfacial alkali ions driven by water-mediated attraction. Nat Nanotechnol 19(4): 479–484 (2024)
Nihonyanagi S, Yamaguchi S, Tahara T. Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study. J Chem Phys 130(20): 2047074 (2009)
Montenegro A, Dutta C, Mammetkuliev M, Shi H T, Hou B Y, Bhattacharyya D, Zhao B F, Cronin S B, Benderskii A V. Asymmetric response of interfacial water to applied electric fields. Nature 594: 62–65 (2021)
Cheng T, Wang L, Merinov B V, Goddard W A III. Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH. J Am Chem Soc 140(25): 7787–7790 (2018)
Zhu J X, Le J B, Koper M T M, Doblhoff-Dier K, Cheng J. Effects of adsorbed OH on Pt(100)/water interfacial structures and potential. J Phys Chem C 125(39): 21571–21579 (2021)
Munro C L, Grap M J, Jablonski R, Boyle A. Oral health measurement in nursing research: State of the science. Biol Res Nurs 8(1): 35–42 (2006)
Sipahi C, Anil N, Bayramli E. The effect of acquired salivary pellicle on the surface free energy and wettability of different denture base materials. J Dent 29(3): 197–204 (2001)
Chiappin S, Antonelli G, Gatti R, De Palo E F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1–2): 30–40 (2007)
Baek J H, Krasieva T B, Tang S, Ahn Y C, Kim C S, Vu D, Chen Z P, Wilder-Smith P. Optical approach to the salivary pellicle. J Biomed Opt 14(4): 044001 (2009)
Zhang Y F, Zheng J, Zheng L, Zhou Z R. Effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel. J Mech Behav Biomed Mater 42: 257–266 (2015)
Neupane S, De Smet Y, Renner F U, Losada-Pérez P. Quartz crystal microbalance with dissipation monitoring: A versatile tool to monitor phase transitions in biomimetic membranes. Front Mater 5: 46 (2018)
Barrantes A, Arnebrant T, Lindh L. Characteristics of saliva films adsorbed onto different dental materials studied by QCM-D. Colloids Surf A Physicochem Eng Aspects 442: 56–62 (2014)
Santos O, Lindh L, Halthur T, Arnebrant T. Adsorption from saliva to silica and hydroxyapatite surfaces and elution of salivary films by SDS and delmopinol. Biofouling 26(6): 697–710 (2010)
Anand G, Sharma S, Dutta A K, Kumar S K, Belfort G. Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 26(13): 10803–10811 (2010)
Ma P S, Liu Y, Han K, Tian Y, Ma L R. Hydration lubrication modulated by water structure at TiO2–aqueous interfaces. Friction 12(4): 591–605 (2024)
Gao J, Xiao C, Feng C Q, Wu L, Yu B J, Qian L M, Kim S H. Oxidation-induced changes of mechanochemical reactions at GaAs–SiO2 interface: The competitive roles of water adsorption, mechanical property, and oxidized structure. Appl Surf Sci 548: 149205 (2021)
Chen L, He X, Liu H S, Qian L M, Kim S H. Water adsorption on hydrophilic and hydrophobic surfaces of silicon. J Phys Chem C 122(21): 11385–11391 (2018)
Bampoulis P, Sotthewes K, Dollekamp E, Poelsema B. Water confined in two-dimensions: Fundamentals and applications. Surf Sci Rep 73(6): 233–264 (2018)
Odelius M, Bernasconi M, Parrinello M. Two dimensional ice adsorbed on mica surface. Phys Rev Lett 78(14): 2855–2858 (1997)
Miranda P B, Xu L, Shen Y R, Salmeron M. Icelike water monolayer adsorbed on mica at room temperature. Phys Rev Lett 81(26): 5876–5879 (1998)
Li J B, Sun C Q. Unique water H-bonding types on metal surfaces: From the bonding nature to cooperativity rules. Mater Today Adv 12: 100172 (2021)
Lai T M, Zhu T, Chen Y, Guo M L. Different evolution behaviors of adhesion force with relative humidity at Silica/Silica and Silica/Graphene interfaces studied using atomic force microscopy. Langmuir 37(44): 13075–13084 (2021)
Aray Y, Marquez M, Rodríguez J, Coll S, Simón-Manso Y, Gonzalez C, Weitz D A. Electrostatics for exploring the nature of water adsorption on the laponite sheets' surface. J Phys Chem B 107(34): 8946–8952 (2003)
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 186: 114310 (2022)
Kouva S, Honkala K, Lefferts L, Kanervo J. Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal Sci Technol 5(7): 3473–3490 (2015)
Lackner P, Hulva J, Köck E M, Mayr-Schmölzer W, Choi J I J, Penner S, Diebold U, Mittendorfer F, Redinger J, Klötzer B, et al. Water adsorption at zirconia: From the ZrO2(111)/Pt3Zr(0001) model system to powder samples. J Mater Chem A 6(36): 17587–17601 (2018)
Sato R, Ohkuma S, Shibuta Y, Shimojo F, Yamaguchi S. Proton migration on hydrated surface of cubic ZrO2: Ab initio molecular dynamics simulation. J Phys Chem C 119(52): 28925–28933 (2015)
Bertinetti L, Tampieri A, Landi E, Ducati C, Midgley P A, Coluccia S, Martra G. Surface structure, hydration, and cationic sites of nanohydroxyapatite: UHR-TEM, IR, and microgravimetric studies. J Phys Chem C 111(10): 4027–4035 (2007)
Sakhno Y, Bertinetti L, Iafisco M, Tampieri A, Roveri N, Martra G. Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: A comparative study. J Phys Chem C 114(39): 16640–16648 (2010)
Vassilakos N, Arnebrant T, Rundegren J, Glantz P O. In vitro interactions of anionic and cationic surfactants with salivary fractions on well-defined solid surfaces. Acta Odontol Scand 50(3): 179–188 (1992)
Vassilakos N, Arnebrant T, Glantz P O. An in vitro study of salivary film formation at solid/liquid interfaces. Eur J Oral Sci 101(3): 133–137 (1993)
Zhang Y F, Zheng J, Zheng L, Shi X Y, Qian L M, Zhou Z R. Effect of adsorption time on the lubricating properties of the salivary pellicle on human tooth enamel. Wear 301(1–2): 300–307 (2013)
Huang C M. Comparative proteomic analysis of human whole saliva. Arch Oral Biol 49(12): 951–962 (2004)
Jasim H, Olausson P, Hedenberg-Magnusson B, Ernberg M, Ghafouri B. The proteomic profile of whole and glandular saliva in healthy pain-free subjects. Sci Rep 6: 39073 (2016)
Siqueira W L, Zhang W M, Helmerhorst E J, Gygi S P, Oppenheim F G. Identification of protein components in in vivo human acquired enamel pellicle using LC–ESI–MS/MS. J Proteome Res 6(6): 2152–2160 (2007)
Siqueira W L, Canales M P, Crosara K T B, Marin L M, Xiao Y Z. Proteome difference among the salivary proteins adsorbed onto metallic orthodontic brackets and hydroxyapatite discs. PLoS One 16(7): e0254909 (2021)
Gloag E S, Fabbri S, Wozniak D J, Stoodley P. Biofilm mechanics: Implications in infection and survival. Biofilm 2: 100017 (2020)
Huang Y W, King D R, Sun T L, Nonoyama T, Kurokawa T, Nakajima T, Gong J P. Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv Funct Mater 27(9): 1605350 (2017)
Latour R A. Fundamental principles of the thermodynamics and kinetics of protein adsorption to material surfaces. Colloids Surf B Biointerfaces 191: 110992 (2020)
Hirsh S L, McKenzie D R, Nosworthy N J, Denman J A, Sezerman O U, Bilek M M M. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B Biointerfaces 103: 395–404 (2013)
Young A, Rykke M, Rölla G. Quantitative and qualitative analyses of human salivary micelle-like globules. Acta Odontol Scand 57(2): 105–110 (1999)
Tang Y, Lei L, Yang D, Zheng J, Zeng Q H, Xiao H, Zhou Z R. Calcium release-mediated adsorption and lubrication of salivary proteins on resin-based dental composites. J Mech Behav Biomed Mater 135: 105437 (2022)
Gibbins H L, Yakubov G E, Proctor G B, Wilson S, Carpenter G H. What interactions drive the salivary mucosal pellicle formation. Colloids Surf B Biointerfaces 120: 184–192 (2014)
Tanizawa Y, Johna N, Yamamoto Y, Nishikawa N. Salivary films on hydroxyapatite studied by an in vitro system for investigating the effect of metal ions and by a quartz-crystal microbalance system for monitoring layer-by-layer film formation. J Cosmet Sci 55(2): 163–176 (2004)
Zeng Q H, Zheng J, Yang D, Tang Y, Zhou Z R. Effect of calcium ions on the adsorption and lubrication behavior of salivary proteins on human tooth enamel surface. J Mech Behav Biomed Mater 98: 172–178 (2019)
Uwitonze A M, Ojeh N, Murererehe J, Atfi A, Razzaque M S. Zinc adequacy is essential for the maintenance of optimal oral health. Nutrients 12(4): 949 (2020)
Biegler M, Delius J, Käsdorf B T, Hofmann T, Lieleg O. Cationic astringents alter the tribological and rheological properties of human saliva and salivary mucin solutions. Biotribology 6: 12–20 (2016)
Zimmermann R, Delius J, Friedrichs J, Stehl S, Hofmann T, Hannig C, Rehage M, Werner C, Hannig M. Impact of oral astringent stimuli on surface charge and morphology of the protein-rich pellicle at the tooth–saliva interphase. Colloids Surf B Biointerfaces 174: 451–458 (2019)
Dionysopoulos D, Gerasimidou O. Wear of contemporary dental composite resin restorations: A literature review. Restor Dent Endod 46(2): e18 (2021)
297
Views
27
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).