AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (8.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Diversified applications of triboelectric and electrostatic effect

Lin Huang1,3,Guangzhao Huang2,3,Dandan Zhang1( )Xiangyu Chen3,4( )
School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
College of Mathematics and Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, China Academy of Sciences, Beijing 100083, China
School of Nanoscience and Technology, University of China Academy of Sciences, Beijing 100049, China

† Lin Huang and Guangzhao Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The application study of triboelectric and electrostatic effects, with roots tracing back hundreds of years, has continued to evolve and develop in industrial production, science, technology, and other fields. Numerous methods have been proposed for the preparation and processing of triboelectric materials, resulting in significant advancements in their charge density and application range. This paper aims to provide a comprehensive understanding of the application progress of the triboelectric effect. It begins by summarizing the fundamental theoretical mechanism of triboelectrification. Subsequently, a detailed review of various applications related to triboelectric effect and electrostatic induction is conducted, encompassing electrostatic adsorption, electret formation, electrostatic self-assembly, triboelectric generator, self-powered sensor, and mechanical force catalysis. Furthermore, different triboelectric materials and their preparation and modification methods are also explored in accordance with different application scenarios. Finally, this paper discusses the future development prospects and challenges associated with the triboelectric effect. It also emphasizes the necessity for further research and development in specific fields, offering valuable insights for future scientific research and practical implementation.

References

[1]

Pan S H, Zhang Z N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1): 2–17 (2019)

[2]

Lacks D J, Shinbrot T. Long-standing and unresolved issues in triboelectric charging. Nature Reviews Chemistry 3(8): 465–476 (2019)

[3]

Verners O, Lapčinskis L, Sherrell P C, Šutka A. Contact electrification at dielectric polymer interfaces: On bond scission, material transfer, and electron transfer. Adv Mater Interfaces 10(36): 2300562 (2023)

[4]

Kaponig M, Mölleken A, Nienhaus H, Möller R. Dynamics of contact electrification. Sci Adv 7(22): eabg7595 (2021)

[5]

Mizzi C, Lin A, Marks L. Does flexoelectricity drive triboelectricity? Phys Rev Lett 123(11): 116103 (2019)

[6]

Lin S Q, Xu L, Zhu L P, Chen X Y, Wang Z L. Electron transfer in nanoscale contact electrification: Photon excitation effect. Adv Mater 31(27): 1901418 (2019)

[7]

Li W, Ma L R, Xu X F, Luo J B. Bidirectional electron transfer in triboelectrification caused by friction-induced change in surface electronic structure. Nano Energy 114: 108667 (2023)

[8]

Ba Y Y, Bao J F, Liu X T, Li X W, Deng H T, Wen D L, Zhang X S. Electron–ion coupling mechanism to construct stable output performance nanogenerator. Research 2021: 9817062 (2021)

[9]

Lacks D J, Mohan Sankaran R. Contact electrification of insulating materials. J Phys D Appl Phys 44(45): 453001 (2011)

[10]

Šutka A, Lapčinskis L, He D L, Kim H, Berry J D, Bai J B, Knite M, Ellis A V, Jeong C K, Sherrell P C. Engineering polymer interfaces: A review toward controlling triboelectric surface charge. Adv Mater Interfaces 10(26): 2300323 (2023)

[11]
Li J Y, Shepelin N A, Sherrell P C, Ellis A V. Poly(dimethylsiloxane) for triboelectricity: From mechanisms to practical strategies. Chem Mater 33 (12): 4304–4327 (2021)
[12]

Adebisi A O, Kaialy W, Hussain T, Al-Hamidi H, Nokhodchi A, Conway B R, Asare-Addo K. An assessment of triboelectrification effects on co-ground solid dispersions of carbamazepine. Powder Technol 292: 342–350 (2016)

[13]

Jeong D G, Ko Y J, Lee D W, Kwak Y M, Kim H, Lee K T, Lee M, Jung J H. Intriguing triboelectrification behavior of identical P(VDF-TrFE) polymers. Curr Appl Phys 29: 122–127 (2021)

[14]

Harris I A, Lim M X, Jaeger H M. Temperature dependence of nylon and PTFE triboelectrification. Phys Rev Materials 3(8): 085603 (2019)

[15]

Hiratsuka K, Hosotani K. Effects of friction type and humidity on triboelectrification and triboluminescence among eight kinds of polymers. Tribol Int 55: 87–99 (2012)

[16]

Ahmed A, Hassan I, Zu J. Design guidelines of stretchable pressure sensors-based triboelectrification. Adv Eng Mater 20(8): 1700997 (2018)

[17]

Sherrell P C, Sutka A, Shepelin N A, Lapcinskis L, Verners O, Germane L, Timusk M, Fenati R A, Malnieks K, Ellis A V. Probing contact electrification: A cohesively sticky problem. ACS Appl Mater Inter 13(37): 44935–44947 (2021)

[18]

Zhang Q, Xin C F, Shen F, Gong Y, Zi Y L, Guo H Y, Li Z J, Peng Y, Zhang Q, Wang Z L. Human body IoT systems based on the triboelectrification effect: Energy harvesting, sensing, interfacing and communication. Energ Environ Sci 15(9): 3688–3721 (2022)

[19]

Yoo D, Jang S, Cho S, Choi D, Kim D S. A liquid triboelectric series. Adv Mater 35(26): 2300699 (2023)

[20]

Ahmadi R, Abnavi A, Hasani A, Ghanbari H, Mohammadzadeh M R, Fawzy M, Kabir F, Adachi M M. Pseudocapacitance-induced synaptic plasticity of tribo-phototronic effect between ionic liquid and 2D MoS2. Small 20(11): 2304988 (2023)

[21]

Wolff M F. Van de Graaff’s generator. IEEE Spectrum 27(7): 46 (1990)

[22]

Zhang G W, He Y Q, Wang H F, Zhang T, Yang X, Wang S, Chen W. Application of triboelectric separation to improve the usability of nonmetallic fractions of waste printed circuit boards: Removing inorganics. J Clean Prod 142: 1911–1917 (2017)

[23]

Takagishi K, Suzuki Y, Umezu S. The high precision drawing method of chocolate utilizing electrostatic ink-jet printer. J Food Eng 216: 138–143 (2018)

[24]

Xu J J, Chen P J, Gu Z Z, Xi J F, Cai J. Performances of a new type high-temperature tubular electrostatic precipitator with rare-earth tungsten cathode. Sep Purif Technol 280: 119820 (2022)

[25]

Kang D, Kim J, Kim I, Choi K H, Lee T M. Experimental qualification of the process of electrostatic spray deposition. Coatings 9(5): 294 (2019)

[26]

Rong X, Zhao J Q, Guo H, Zhen G W, Yu J H, Zhang C, Dong G F. Material recognition sensor array by electrostatic induction and triboelectric effects. Advanced Materials Technologies 5(9): 2000641 (2020)

[27]

Wei X Y, Wang X, Kuang S Y, Su L, Li H Y, Wang Y, Pan C, Wang Z L, Zhu G. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing. Adv Mater 28(31): 6656–6664 (2016)

[28]

Zhou T, Zhang C, Han C B, Fan F R, Tang W, Wang Z L. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl Mater Inter 6(16): 14695–14701 (2014)

[29]

Tsvetkova E A. Investigation of friction in a natural cartilage-microporous ultrahigh-molecular-weight polyethylene pair. Mech Compos Mater 39(4): 359–364 (2003)

[30]

Kajdas C, Kulczycki A, Ozimina D. A new concept of the mechanism of tribocatalytic reactions induced by mechanical forces. Tribol Int 107: 144–151 (2017)

[31]

Ma J, Chen K Z. Fabricating mono-dispersed Fe3O4–SiO2 core–shell particles with help of triboelectrification. Adv Powder Technol 31(1): 332–338 (2020)

[32]

Yu A F, Zhu Y X, Wang W, Zhai J Y. Progress in triboelectric materials: Toward high performance and widespread applications. Adv Funct Mater 29(41): 1900098 (2019)

[33]

Fan Y, Li S Y, Tao X L, Wang Y F, Liu Z Q, Chen H Q, Wu Z F, Zhang J, Ren F, Chen X Y, et al. Negative triboelectric polymers with ultrahigh charge density induced by ion implantation. Nano Energy 90: 106574 (2021)

[34]

Dong C Q, Leber A, Yan D, Banerjee H, Laperrousaz S, Das Gupta T, Shadman S, Reis P M, Sorin F. 3D stretchable and self-encapsulated multimaterial triboelectric fibers. Sci Adv 8(45): eabo0869 (2022)

[35]

Cao R, Pu X J, Du X Y, Yang W, Wang J N, Guo H Y, Zhao S Y, Yuan Z Q, Zhang C, Li C J, et al. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12(6): 5190–5196 (2018)

[36]

Gao C, Liu T, Luo B, Cai C C, Zhang W L, Zhao J M, Yuan J X, Fatehi P, Qin C R, Nie S X. Cellulosic triboelectric materials for stable energy harvesting from hot and humid conditions. Nano Energy 111: 108426 (2023)

[37]

He J F, Huang S B, Chen H, Zhu L T, Guo C J, He X, Yang B. Recent advances in the intensification of triboelectric separation and its application in resource recovery: A review. Chem Eng Process-Process Intensif 185: 109308 (2023)

[38]

Kleber W, Makin B. Triboelectric powder coating: A practical approach for industrial use. Particul Sci Technol 16(1): 43–53 (1998)

[39]

Heinert C, Sankaran R M, Lacks D J. Decay of electrostatic charge on surfaces due solely to gas phase interactions. J Electrostat 115: 103663 (2022)

[40]

Lindgren E B, Stamm B, Maday Y, Besley E, Stace A J. Dynamic simulations of many-body electrostatic self-assembly. Philos T Roy Soc A 376: 20170143 (2018)

[41]

Zhang S, Chi M C, Mo J L, Liu T, Liu Y H, Fu Q, Wang J L, Luo B, Qin Y, Wang S F, et al. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat Commun 13: 4168 (2022)

[42]

Dizdar T O, Kocausta G, Gülcan E, Gülsoy Ö Y. A new method to produce high voltage static electric load for electrostatic separation–triboelectric charging. Powder Technol 327: 89–95 (2018)

[43]

Zhang W L, Zhao J M, Cai C C, Qin Y, Meng X J, Liu Y H, Nie S X. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv Sci 9(30): 2203428 (2022)

[44]

Lindgren E B, Stamm B, Maday Y, Besley E, Stace A J. Dynamic simulations of many-body electrostatic self-assembly. Philos T Roy Soc A 376(1): 20170143 (2018)

[45]

Zhu P H, Kuang Y D, Wei Y, Li F, Ou H J, Jiang F, Chen G. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem Eng J 404: 127105 (2021)

[46]

Grzybowski B A, Wiles J A, Whitesides G M. Dynamic self-assembly of rings of charged metallic spheres. Phys Rev Lett 90(8): 083903 (2003)

[47]

McCarty L, Winkleman A, Whitesides G. Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew Chem Int Edit 46(1-2): 206–209 (2007)

[48]

Wang Y, Wei X Y, Kuang S Y, Li H Y, Chen Y H, Liang F, Su L, Wang Z L, Zhu G. Triboelectrification-induced self-assembly of macro-sized polymer beads on a nanostructured surface for self-powered patterning. ACS Nano 12(1): 441–447 (2018)

[49]

Chang C Y, Yang J R, Liu Y S, Panda A. Facile surface functionalization of triboelectric layers via electrostatically self-assembled zwitterionic molecules for achieving efficient and stable antibacterial flexible triboelectric nanogenerators. Mater Horiz 11(3): 646–660 (2024)

[50]

So M Y, Xu B G, Li Z H, Lai C L, Jiang C. Flexible corrugated triboelectric nanogenerators for efficient biomechanical energy harvesting and human motion monitoring. Nano Energy 106: 108033 (2023)

[51]

Chen J, Guo H Y, Wu Z Y, Xu G Q, Zi Y L, Hu C G, Wang Z L. Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy 64: 103920 (2019)

[52]

Li J, Long Y, Yang F, Wang X D. Respiration-driven triboelectric nanogenerators for biomedical applications. EcoMat 2(3): e12045 (2020)

[53]

Jia C Y, Xia Y F, Zhu Y, Wu M, Zhu S L, Wang X. High-brightness, high-resolution, and flexible triboelectrification-induced electroluminescence skin for real-time imaging and human–machine information interaction. Adv Funct Mater 32(26): 2201292 (2022)

[54]

Munirathinam P, Chandrasekhar A. Wearable triboelectric nanogenerator for real-time IoT-supported security applications. Sustainable Materials and Technologies 37: e00700 (2023)

[55]

Liu L, Shi Q F, Ho J S, Lee C K. Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy 66: 104167 (2019)

[56]

Jeong S H, Lee Y, Lee M G, Song W J, Park J U, Sun J U. Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79: 105463 (2021)

[57]

Du S, Zhou N Y, Xie G, Chen Y, Suo H N, Xu J P, Tao J, Zhang L B, Zhu J T. Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing. Nano Energy 85: 106004 (2021)

[58]

Suzuki Y, Miki D, Edamoto M, Honzumi M. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20(10): 104002 (2010)

[59]

Chiu Y C, Liu C L, Lee W Y, Chen Y G, Kakuchi T, Chen W C. Multilevel nonvolatile transistor memories using a star-shaped poly ((4-diphenylamino) benzyl methacrylate) gate electret. NPG Asia Mater 5(2): e35 (2013)

[60]

Li W B, Zhao S, Wu N, Zhong J W, Wang B, Lin S Z, Chen S W, Yuan F, Jiang H L, Xiao Y J, et al. Sensitivity-enhanced wearable active voiceprint sensor based on cellular polypropylene piezoelectret. ACS Appl Mater Inter 9(28): 23716–23722 (2017)

[61]

Wang J S, Cai R R, Wu S J, Zhang L Z. A reusable electret filter media based on water droplet charging/cleaning. Chem Eng Sci 265: 118237 (2023)

[62]

Perez M, Boisseau S, Geisler M, Despesse G, Reboud J L. Triboelectret-based aeroelastic flutter energy harvesters. J Phys Conf Ser 773: 012021 (2016)

[63]

Chen Z S, Yu J H, Zeng H Z, Chen Z, Tao K, Wu J, Li Y J. An electret/hydrogel-based tactile sensor boosted by micro-patterned and electrostatic promoting methods with flexibility and wide-temperature tolerance. Micromachines-basel 12(12): 1462 (2021)

[64]

Li C H, Qiao L, Zhu Y X, Yu F, Peng B L, Wang Z L, Ren K L. A wrinkle-enhanced porous poly (lactic acid) electret-based nanogenerator for self-powered wireless temperature measurement systems. Advanced Sustainable Systems 8(4): 2300452 (2024)

[65]

Versaw B A, Zeng T, Hu X R, Robb M J. Harnessing the power of force: Development of mechanophores for molecular release. J Am Chem Soc 143(51): 21461–21473 (2021)

[66]

Geng L X, Qian Y Y, Song W J, Bao L J. Enhanced tribocatalytic pollutant degradation through tuning oxygen vacancy in BaTiO3 nanoparticles. Appl Surf Sci 637: 157960 (2023)

[67]

Qin C C, Wang D, Liu Y M, Yang P K, Xie T, Huang L, Zou H Y, Li G W, Wu Y P. Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis. Nat Commun 12: 7184 (2021)

[68]

Hiratsuka K, Abe T, Kajdas C. Tribocatalytic oxidation of ethylene in the rubbing of palladium against aluminum oxide. Tribol Int 43(9): 1659–1664 (2010)

[69]

Verners O, Lapčinskis L, Ģermane L, Kasikov A, Timusk M, Pudzs K, Ellis A V, Sherrell P C, Šutka A. Smooth polymers charge negatively: Controlling contact electrification polarity in polymers. Nano Energy 104: 107914 (2022)

[70]

Tan N Y, Lim E T S, Ao C K, Jiang Y, Wong S, Soh S. Customizable non-charging material for eliminating electrostatic charge of particles at source. Chem Eng J 468: 143496 (2023)

[71]

Jin Y K, Xu W H, Zhang H H, Zheng H X, Cheng Y Q, Yan X T, Gao S W, Wang D A, Zi Y L, Zhou F, et al. Complete prevention of contact electrification by molecular engineering. Matter 4(1): 290–301 (2021)

[72]

Byun K E, Cho Y, Seol M, Kim S, Kim S W, Shin H J, Park S, Hwang S. Control of triboelectrification by engineering surface dipole and surface electronic state. ACS Appl Mater Inter 8(28): 18519–18525 (2016)

[73]

Sun Y J, Huang X, Soh S. Solid-to-liquid charge transfer for generating droplets with tunable charge. Angew Chem Int Edit 55(34): 9956–9960 (2016)

[74]

Zhang X, Ao C K, Soh S. Nonconductive noncharging composites: Tunable and stretchable materials for adaptive prevention of charging by contact electrification. ACS Appl Mater Inter 12(5): 5274–5285 (2020)

[75]

Mukherjee A, Dianatdar A, Gładysz M Z, Hemmatpour H, Hendriksen M, Rudolf P, Włodarczyk-Biegun M K, Kamperman M, Prakash Kottapalli A G, Bose R K. Electrically conductive and highly stretchable piezoresistive polymer nanocomposites via oxidative chemical vapor deposition. ACS Appl Mater Inter 15(26): 31899–31916 (2023)

[76]

Sahu M, Hajra S, Bijelic J, Oh D, Djerdj I, Kim H J. Triple perovskite-based triboelectric nanogenerator: A facile method of energy harvesting and self-powered information generator. Materials Today Energy 20: 100639 (2021)

[77]

Du J, Yang X Y, Duan J L, Wang Y D, Tang Q W. Tailoring all-inorganic cesium lead halide perovskites for robust triboelectric nanogenerators. Nano Energy 70: 104514 (2020)

[78]

Feng Y G, Zheng Y B, Ma S H, Wang D A, Zhou F, Liu W M. High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification. Nano Energy 19: 48–57 (2016)

[79]

Liu S R, Zheng W, Yang B, Tao X M. Triboelectric charge density of porous and deformable fabrics made from polymer fibers. Nano Energy 53: 383–390 (2018)

[80]

Shin S H, Bae Y E, Moon H K, Kim J, Choi S H, Kim Y, Yoon H J, Lee M H, Nah J. Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano 11(6): 6131–6138 (2017)

[81]

Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G, Wang Z L. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energ Environ Sci 13(3): 896–907 (2020)

[82]

Mu J L, Han X T, Yu J B, Song J S, He J, Geng W P, Zou J, Xian S, Chou X J. Magnetic levitation type double helix self-powered acceleration sensor based on ZnO-RTV film. Advanced Materials Technologies 7(1): 2100802 (2022)

[83]

Gao X B, Xing F J, Guo F, Wen J, Li H, Yang Y H, Chen B D, Wang Z L. Strongly enhanced charge density via gradient nano-doping for high performance elastic-material-based triboelectric nanogenerators. Mater Today 65: 26–36 (2023)

[84]

Tao X L, Li S Y, Shi Y X, Wang X L, Tian J W, Liu Z Q, Yang P, Chen X Y, Wang Z L. Triboelectric polymer with high thermal charge stability for harvesting energy from 200 °C flowing air. Adv Funct Mater 31(49): 2106082 (2021)

[85]

Huang J, Fu X P, Liu G X, Xu S H, Li X W, Zhang C, Jiang L. Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 62: 638–644 (2019)

[86]

Cheng X L, Meng B, Chen X X, Han M D, Chen H T, Su Z M, Shi M Y, Zhang H X. Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 12(2): 229–236 (2016)

[87]

Linarts A, Sherrell P C, Mālnieks K, Ellis A V, Šutka A. Electrospinning triboelectric laminates: A pathway for scaling energy harvesters. Small 19(14): 2370086 (2023)

[88]

Rabiee S, Sohrabi M, Afarideh H. Enhancing electrostatic charge stability of corona charged teflon electret films for radiation dosimetry by optimizing metal electrode backing material. Appl Radiat Isotopes 205: 111187 (2024)

[89]

Zhang H, Wan T, Cheng B W, Li W, Wang S Y, Li X J. Polyvinylidene fluoride injection electrets: Preparation, characterization, and application in triboelectric nanogenerators. Journal of Materials Research and Technology 9(6): 12643–12653 (2020)

[90]

Zhu J X, Yang Y X, Zhang H, Zhao Z J, Hu T, Liu L. More than energy harvesting in electret electronics-moving toward next-generation functional system. Adv Funct Mater 33(17): 2214859 (2023)

[91]

Zhang H L, Feng S, He D L, Xu Y G, Yang M H, Bai J B. An electret film-based triboelectric nanogenerator with largely improved performance via a tape-peeling charging method. Nano Energy 48: 256–265 (2018)

[92]

Wu Z B, Bi M Z, Cao Z Y, Wang S W, Ye X Y. Largely enhanced electrostatic generator based on a bipolar electret charged by patterned contact micro-discharge and optimized substrates. Nano Energy 71: 104602 (2020)

[93]

Kerner M, Schmidt K, Schumacher S, Puderbach V, Asbach C, Antonyuk S. Evaluation of electrostatic properties of electret filters for aerosol deposition. Sep Purif Technol 239: 116548 (2020)

[94]

Ko H, Lim Y W, Han S, Jeong C K, Cho S B. Triboelectrification: Backflow and stuck charges are key. ACS Energy Letters 6(8): 2792–2799 (2021)

[95]

Galikhanov M. Corona electrets based on filler-loaded polymers: structure, properties, and applications. IEEE T Dielect El In 29(3): 788–793 (2022)

[96]

Ogino M, Naemura K, Sasaki S, Minami J, Kano T, Ito N, Kasai R, Kamijyo F, Kusumoto N, Akimoto K, et al. Triboelectric charging of polytetrafluoroethylene antithrombotic catheters. J Artif Organs 22(4): 300–306 (2019)

[97]

Lv S X, Zhang X K, Li Y, Hu X, Huang Y M. The synthesis of highly active Cu and N co-doped electrocatalysts via strong electrostatic adsorption method for oxygen reduction reaction. Int J Hydrogen Energ 46(46): 23694–23701 (2021)

[98]

Hou X W, Wen J Y, Wang W J, Ye W P, Zhang Y, Wang S, Cao K Y, Zhao R, Xue W D. Electrostatic self-assembly hollow-VOOH/MXene composite for microwave absorption. Composites Communications 41: 101635 (2023)

[99]

Zhao J H, Chen L, Luo W S, Li H M, Wu Z, Xu Z Y, Zhang Y M, Zhang H F, Yuan G L, Gao J, et al. Strong tribo-catalysis of zinc oxide nanorods via triboelectrically-harvesting friction energy. Ceram Int 46(16): 25293–25298 (2020)

[100]

Tang J M, Kumar P V, Scott J A, Tang J B, Ghasemian M B, Mousavi M, Han J L, Esrafilzadeh D, Khoshmanesh K, Daeneke T, et al. Low temperature nano mechano-electrocatalytic CH4 conversion. ACS Nano 16(6): 8684–8693 (2022)

[101]

Bhatta T, Sharma S, Shrestha K, Shin Y, Seonu S, Lee S, Kim D, Sharifuzzaman M, Rana S S, Park J Y. Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications. Adv Funct Mater 32(25): 2202145 (2022)

[102]

Tang Y J, Zhou H, Sun X P, Diao N H, Wang J B, Zhang B S, Qin C, Liang E J, Mao Y C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv Funct Mater 30(5): 1907893 (2020)

[103]

Li Q, Cho I H, Biswas R, Kim J. Nanoscale modulation of friction and triboelectrification via surface nanotexturing. Nano Lett 19(2): 850–856 (2019)

[104]

Hirschberg R E, Scharnberg M, Schröder S, Rehders S, Strunskus T, Faupel F. Electret films with extremely high charge stability prepared by thermal evaporation of teflon AF. Org Electron 57: 146–150 (2018)

[105]

Jiang Q, Chen B, Yang Y. Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. Appl Energy Mater 1(8): 4269–4276 (2018)

[106]

Qu Z Q, Cao J, Shan C, Zhang Z Q, Cheng G G, Ding J N. Triboelectric based high-efficiency filter device for engineering polluted hydraulic oil. Nano Energy 100: 107497 (2022)

[107]

Kim M P. Multilayered functional triboelectric polymers for self-powered wearable applications: A review. Micromachines-basel 14(8): 1640 (2023)

[108]

Chu B B, Qin X, Zhu Q Q, Wang H Y, Wen Z, Sun X H, He Y, Lee S T. Triboelectric current stimulation alleviates in vitro cell migration and in vivo tumor metastasis. Nano Energy 100: 107471 (2022)

Friction
Article number: 9440893
Cite this article:
Huang L, Huang G, Zhang D, et al. Diversified applications of triboelectric and electrostatic effect. Friction, 2025, 13(2): 9440893. https://doi.org/10.26599/FRICT.2025.9440893

531

Views

86

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 December 2023
Revised: 01 February 2024
Accepted: 26 March 2024
Published: 18 December 2024
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return