Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A particular kind of triboelectrification occurs during the flow of liquids through tubes. Here, we used Faraday cups and Kelvin probes to investigate the charge of aqueous solutions and alcohols flowing through a polytetrafluorethylene tube. An excess of positive charges was observed in all liquids collected by the Faraday cup after the flow. While the tube displays a small potential during the flow, likely due to electrokinetic effects, a very high negative potential was observed after the completion of the flow. Aqueous solutions with varying pH showed significant differences in charge accumulation only at pH 2.93 and 4.99, while most of the charge accumulation can be suppressed using common surfactants. Alcohols displayed an inverse relationship between charge accumulation and carbon chain length, except for methanol. Thus, we used graphite-based nanocomposites as noncontact induction electrodes near the tube for flow sensing. A proof of concept was conducted using these induction electrodes to differentiate between water and ethanol flowing inside the tube, which was repeated thousands of times. Finally, the output voltage signal from the induction electrode was processed through an input signal filter and a microcontroller, where four light-emitting diodes (LEDs) were incorporated to indicate the flow and type of liquid.
Bouvier L, Fargnier I, Lalot S, Delaplace G. Effect of swirl flow on whey protein fouling and cleaning in a straight duct. J Food Eng 242: 115–123 (2019)
Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, Roberts M. Surfactant effects on lipid-based vesicles properties. J Pharm Sci 107(5): 1237–1246 (2018)
Galembeck F, Santos L P, Burgo T A L, Galembeck A. The emerging chemistry of self-electrified water interfaces. Chem Soc Rev 53(5): 2578–2602 (2024)
Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy 1(2): 328–334 (2012)
Šutka A, Lapčinskis L, He D L, Kim H, Berry J D, Bai J B, Knite M, Ellis A V, Jeong C K, Sherrell P C. Engineering polymer interfaces: A review toward controlling triboelectric surface charge. Adv Mater Interfaces 10(26): 2300323 (2023)
Ģērmane L, Lapčinskis L, Iesalnieks M, Šutka A. Surface engineering of PDMS for improved triboelectrification. Mater Adv 4(3): 875–880 (2023)
Cui X J, Yu C, Wang Z S, Wan D, Zhang H L. Triboelectric nanogenerators for harvesting diverse water kinetic energy. Micromachines 13(8): 1219 (2022)
Zhang Q X, He M, Pan X X, Huang D D, Long H H, Jia M S, Zhao Z Q, Zhang C, Xu M Y, Li S S. High performance liquid–solid tubular triboelectric nanogenerator for scavenging water wave energy. Nano Energy 103: 107810 (2022)
Munirathinam K, Kim D S, Shanmugasundaram A, Park J, Jeong Y J, Lee D W. Flowing water-based tubular triboelectric nanogenerators for sustainable green energy harvesting. Nano Energy 102: 107675 (2022)
Liang Q J, Yan X Q, Gu Y S, Zhang K, Liang M Y, Lu S N, Zheng X, Zhang Y. Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci Rep 5: 9080 (2015)
Cheedarala R K, Song J I. Harvesting of flow current through implanted hydrophobic PTFE surface within silicone-pipe as liquid nanogenerator. Sci Rep 12: 3700 (2022)
Cabaleiro J M, Paillat T, Moreau O, Touchard G. Flow electrification of dielectric liquids in insulating channels: Limits to the application of the classical wall current expression. J Electrostat 66(1-2): 79–83 (2008)
Cooper W F. The electrification of fluids in motion. Brit J Appl Phys 4(S2): S11–S15 (1953)
Cabaleiro J M, Paillat T, Moreau O, Touchard G. Electrical double layer’s development analysis: Application to flow electrification in power transformers. IEEE T Ind Appl 45(2): 597–605 (2009)
Wang N N, Liu Y P, Ye E Y, Li Z B, Wang D A. Contact electrification behaviors of solid–liquid interface: Regulation, mechanisms, and applications. Adv Energy Sustain Res 4(4): 2200186 (2023)
Washabaugh A P, Zahn M. A chemical reaction-based boundary condition for flow electrification. IEEE T Dielect El In 4(6): 688–709 (1997)
El-Adawy M, Paillat T, Bertrand Y, Moreau O, Touchard G. Physicochemical analysis at the interface between conductive solid and dielectric liquid for flow electrification phenomenon. IEEE T Ind Appl 46(4): 1593–1600 (2010)
Leblanc P, Paillat T, Cabaleiro J M, Touchard G. Flow electrification investigation under the effect of the flow parameters. Int J Plasma Environ Sci Technol 11: 156–160 (2018).
Vihacencu M S, Notingher P V, Paillat T, Jarny S. Flow electrification phenomenon for Newtonian and non-newtonian liquids: Influence of liquid conductivity, viscosity and shear stress. IEEE T Dielect El In 21(2): 693–703 (2014)
Burgo T A L, Galembeck F, Pollack G H. Where is water in the triboelectric series? J Electrostat 80: 30–33 (2016)
Lin S Q, Chen X Y, Wang Z L. Contact electrification at the liquid–solid interface. Chem Rev 122(5): 5209–5232 (2022)
Kudin K N, Car R. Why are water–hydrophobic interfaces charged? J Am Chem Soc 130(12): 3915–3919 (2008)
Beattie J K, Djerdjev A M, Warr G G. The surface of neat water is basic. Faraday Discuss 141: 31–39 (2009)
Creux P, Lachaise J, Graciaa A, Beattie J K, Djerdjev A M. Strong specific hydroxide ion binding at the pristine oil/water and air/water interfaces. J Phys Chem B 113(43): 14146–14150 (2009)
Kallay N, Preočanin T, Selmani A, Kovačević D, Lützenkirchen J, Nakahara H, Shibata O. Thermodynamic model of charging the gas/water interface. J Phys Chem C 119(2): 997–1007 (2015)
Zangi R, Engberts J B F N. Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J Am Chem Soc 127(7): 2272–2276 (2005)
McCarty L S, Whitesides G M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew Chem Int Edit 47(12): 2188–2207 (2008)
Burgo T A L, Galembeck F. On the spontaneous electric-bipolar nature of aerosols formed by mechanical disruption of liquids. Colloids Interface Sci Commun 7: 7–11 (2015)
Uematsu Y. Electrification of water interface. J Phys Condens Matter 33(42): 423001 (2021)
Agmon N, Bakker H J, Campen R K, Henchman R H, Pohl P, Roke S, Thämer M, Hassanali A. Protons and hydroxide ions in aqueous systems. Chem Rev 116(13): 7642–7672 (2016)
Chen B L, Xia Y, He R X, Sang H Q, Zhang W C, Li J, Chen L F, Wang P, Guo S S, Yin Y G, et al. Water–solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. P Natl A Sci India A 119(32): e2209056119 (2022)
Santos L P, Lermen D, Yoshimura R G, da Silva B L, Galembeck A, Burgo T A L, Galembeck F. Water reactivity in electrified interfaces: The simultaneous production of electricity, hydrogen, and hydrogen peroxide at room temperature. Langmuir 39(16): 5840–5850 (2023)
Lin S Q, Zhu L P, Tang Z, Wang Z L. Spin-selected electron transfer in liquid–solid contact electrification. Nat Commun 13: 5230 (2022)
Wang Z L, Wang A C. On the origin of contact-electrification. Mater Today 30: 34–51 (2019)
Lin S Q, Zhu L P, Tang Z, Wang ZL. Spin-selected electron transfer in liquid–solid contact electrification. Nat Commu 13: 5230 (2022)
Lin S Q, Zheng M L, Wang Z L. Detecting the liquid–solid contact electrification charges in a liquid environment. J Phys Chem C 125(25): 14098–14104 (2021)
Santos L P, Campo Y A S, da Silva D S, Burgo T A L, Galembeck F. Rubber surface change and static charging under periodic stress. Colloids Interfaces 2(4): 55 (2018)
Santos da Campo Y A, Mehler D, Lorenzett E, Moreira K S, Devens A L, dos Santos L P, Galembeck F, Burgo T A L. Electromechanical coupling in elastomers: A correlation between electrostatic potential and fatigue failure. Phys Chem Chem Phys 23(47): 26653–26660 (2021)
Chen Q, Cheng B X, Wang T C, Shang H F, Shao T M. Method for the measurement of triboelectric charge transfer at solid–liquid interface. Friction 11(8): 1544–1556 (2023)
Moreira K S, Lermen D, Santos da Campo Y A, Ferreira L O, Burgo T A L. Spontaneous mosaics of charge formed by liquid evaporation. Adv Mater Interfaces 7(18): 2000884 (2020)
Lorenzett E, Moreira K S, Santos da Campo Y A, Mehler D, Devens A L, Noras M A, Burgo T A L. Flexoelectric characterization of dielectrics under tensile, compressive, and flexural loads by non-contact Kelvin probe measurements. J Appl Phys 129(20): 204502 (2021)
Johnston R, Bernauer J, Cooke C M, Corliss R, Epstein C S, Fisher P, Friščić I, Hasell D, Ihloff E, Kelsey J, et al. Realization of a large-acceptance Faraday cup for 3 MeV electrons. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip 922: 157–160 (2019)
Brown K L, Tautfest G W. Faraday-cup monitors for high-energy electron beams. Rev Sci Instrum 27(9): 696–702 (1956)
Hossain E, Bhadra S, Jain H, Das S, Bhattacharya A, Ghosh S, Levine D. Recharging and rejuvenation of decontaminated N95 masks. Phys Fluids 32(9): 93304 (2020)
Ferreira E S, da Silva D S, Burgo T A L, Batista B C, Galembeck F. Graphite exfoliation in cellulose solutions. Nanoscale 9(29): 10219–10226 (2017)
Yatsuzuka K, Mizuno Y, Asano K. Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J Electrostat 32(2): 157–171 (1994)
Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L. Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface. Adv Mater 32(2): 1905696 (2020)
Flores F, Graebling D, Allal A, Guerret-Piécourt C. Modelization of flow electrification in a polymer melt. J Phys D: Appl Phys 40(9): 2911–2919 (2007)
Taylor D M, Lewis T J, Williams T T. The electrokinetic charging of polymers during capillary extrusion. J Phys D Appl Phys 7(12): 1756–1772 (1974)
Taylor D M. Outlet effects in the measurement of streaming currents. J Phys D: Appl Phys 7(2): 394–402 (1974)
Liu B, Wang D G, Guo Y B. Influence of water conductivity on shock waves generated by underwater electrical wire explosion. Phys Lett A 382(1): 49–54 (2018)
Jiang C D, Tang B, Xu B J, Groenewold J, Zhou G F. Oil conductivity, electric-field-induced interfacial charge effects, and their influence on the electro-optical response of electrowetting display devices. Micromachines 11(7): 702 (2020)
Havran P, Cimbala R, Kurimský J, Dolník B, Kolcunová I, Medveď D, Király J, Kohan V, Šárpataky Ľ. Dielectric properties of electrical insulating liquids for high voltage electric devices in a time-varying electric field. Energies 15(1): 391 (2022)
Sosa M D, Martínez Ricci M L, Missoni L L, Murgida D H, Cánneva A, D’Accorso N B, Negri R M. Liquid–polymer triboelectricity: Chemical mechanisms in the contact electrification process. Soft Matter 16(30): 7040–7051 (2020)
Park H Y, Kim H K, Hwang Y H, Shin D M. Water-through triboelectric nanogenerator based on Ti-mesh for harvesting liquid flow. J Korean Phys Soc 72(4): 499–503 (2018)
Lin S Z, Xu Z S, Wang S T, Cao J L, Zhong J W, Li G L, Fang P. Multiplying the stable electrostatic field of electret based on the heterocharge-synergy and superposition effect. Adv Sci 9(32): 2203150 (2022)
Xiao H M, Chen G J, Chen X M, Chen Z. A flexible electret membrane with persistent electrostatic effect and resistance to harsh environment for energy harvesting. Sci Rep 7: 8443 (2017)
Burkett S L, Charlson E M, Charlson E J, Yasuda H K, Yang D J. The effect of cleaning procedures on surface charging of various substrates. IEEE T Semiconduct M 8(1): 10–16 (1995)
Park J G, Lee S H, Ryu J S, Hong Y K, Kim T G, Busnaina A A. Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning. J Electrochem Soc 153(9): G811 (2006)
Iannarelli A, Niasar M G, Ross R. Electrode interface polarization formation in dielectric elastomer actuators. Sensor Actuat A Phys 312: 111992 (2020)
Ding S Q, Wang Y W, Ni Y Q, Han B G. Structural modal identification and health monitoring of building structures using self-sensing cementitious composites. Smart Mater Struct 29(5): 055013 (2020)
Lei W, Si W M, Xu Y J, Gu Z Y, Hao Q L. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181(7-8): 707–722 (2014)
Chung J, Yong H, Moon H, Choi S T, Bhatia D, Choi D, Kim D, Lee S. Capacitor-integrated triboelectric nanogenerator based on metal–metal contact for current amplification. Adv Energy Mater 8: 1703024 (2018).
Li Z L, Zhu M M, Qiu Q, Yu J Y, Ding B. Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy 53: 726–733 (2018)
Mi H Y, Jing X, Cai Z Y, Liu Y J, Turng L S, Gong S Q. Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 10(48): 23131–23140 (2018)
Wen R M, Guo J M, Yu A F, Zhai J Y, Wang Z L. Humidity-resistive triboelectric nanogenerator fabricated using metal organic framework composite. Adv Funct Mater 29(20): 1807655 (2019)
Bunriw W, Harnchana V, Chanthad C, Huynh V N. Natural rubber-TiO2 nanocomposite film for triboelectric nanogenerator application. Polymers 13(13): 2213 (2021)
Stanford M G, Li J T, Chyan Y, Wang Z, Wang W, Tour J M. Laser-induced graphene triboelectric nanogenerators. ACS Nano 13(6): 7166–7174 (2019)
Gurunathan T, Rao C R K, Narayan R, Raju K V S N. Polyurethane conductive blends and composites: Synthesis and applications perspective. J Mater Sci 48(1): 67–80 (2013)
Santos L P, da Silva D S, Bertacchi J P F, Moreira K S, Burgo T A L, Batista B C, dos Santos J, de Paula P A, Galembeck F. Multifunctional coatings of exfoliated and reassembled graphite on cellulosic substrates. Faraday Discuss 227: 105–124 (2021)
Santos L P, da Silva D S, Morari T H, Galembeck F. Environmentally friendly, high-performance fire retardant made from cellulose and graphite. Polymers 13(15): 2400 (2021)
Moreira K S, Lermen D, dos Santos L P, Galembeck F, Burgo T A L. Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator. Energy Environ Sci 14(1): 353–358 (2021)
Soares L C, Bertazzo S, Burgo T A L, Baldim V, Galembeck F. A new mechanism for the electrostatic charge build-up and dissipation in dielectrics. J Braz Chem Soc 19(2): 277–286 (2008)
477
Views
96
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).