AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effect of vinylene carbonate additive in polyacrylate-based polymer electrolytes for high-voltage lithium-metal batteries

Lulu RenPeichao Zou( )Lei WangYaqi JingHuolin L. Xin( )
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
Show Author Information

Graphical Abstract

Abstract

Solid polymer electrolytes (SPEs) have attracted considerable attention for solid-state lithium-metal batteries (LMBs) with high energy density and enhanced safety for future applications. In this study, an SPE was developed based on a poly(ethyl acrylate) (PEA) polymer matrix with the vinylene carbonate (VC) additive (defined as PEA-VC) for high-voltage solid-state LMBs. Results show that introducing the VC additive into the PEA-based SPE leads to high lithium-ion conductivity (1.57 mS/cm at 22°C), a high lithium-ion transference number (0.73), and a wide electrochemical stability window (up to 4.9 V vs. Li/Li+). The remarkable compatibility of the PEA-VC SPE with lithium metal anodes and high-voltage cathodes was demonstrated in Li//Li symmetric cells (800 h lifetime at a current density of 0.1 mA/cm2 at 22°C) and Li//LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells (with a capacity retention of 77.8% after 100 cycles at 0.2C). The improved stability is attributed to the introduction of the VC additive, which helps form a robust cathode–electrolyte interphase, effectively suppressing parasitic interface side reactions. Overall, this study highlights the role of VC additives in high-voltage and solid-state LMBs, offering a general yet effective approach for addressing the interfacial instability issue through an additive-engineering strategy.

Electronic Supplementary Material

Download File(s)
EMD20240049_ESM.pdf (445 KB)

References

[1]

Xu, B. Q., Zhai, H. W., Liao, X. B., Qie, B. Y., Mandal, J., Gong, T. Y., Tan, L. Y., Yang, X. J., Sun, K. R., Cheng, Q., et al. (2019). Porous insulating matrix for lithium metal anode with long cycling stability and high power. Energy Storage Mater. 17, 31–37.

[2]

Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302.

[3]

Bachman, J. C., Muy, S., Grimaud, A., Chang, H. H., Pour, N., Lux, S. F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., et al. (2016). Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162.

[4]

Kang, K., Meng, Y. S., Breger, J., Grey, C. P., Ceder, G. (2006). Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980.

[5]

Albertus, P., Babinec, S., Litzelman, S., Newman, A. (2018). Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21.

[6]

Zou, P. C., Sui, Y. M., Zhan, H. C., Wang, C. Y., Xin, H. L., Cheng, H. M., Kang, F. Y., Yang, C. (2021). Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121, 5986–6056.

[7]

Li, Q. J., Wu, W. Y., Li, Y., Ren, H. X., Wu, C., Bai, Y. (2023). Enhanced safety of sulfone-based electrolytes for lithium-ion batteries: broadening electrochemical window and enhancing thermal stability. Energy Mater. Devices 1, 9370022.

[8]

Zeng, Z. Q., Chen, X., Sun, M. J., Jiang, Z. P., Hu, W., Yu, C., Cheng, S. J., Xie, J. (2021). Nanophase-separated, elastic epoxy composite thin film as an electrolyte for stable lithium metal batteries. Nano Lett. 21, 3611–3618.

[9]

Xue, C. J., Guan, S. D., Hu, B. K., Wang, X. Z., Xin, C. Z., Liu, S. J., Yu, J. Y., Wen, K. H., Li, L. L., Nan, C. W. (2022). Significantly improved interface between PVDF-based polymer electrolyte and lithium metal via thermal-electrochemical treatment. Energy Storage Mater. 46, 452–460.

[10]

Wang, Q. S., Ping, P., Zhao, X. J., Chu, G. Q., Sun, J. H., Chen, C. H. (2012). Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224.

[11]

Henriksen, M., Vaagsaether, K., Lundberg, J., Forseth, S., Bjerketvedt, D. (2019). Explosion characteristics for Li-ion battery electrolytes at elevated temperatures. J. Hazard. Mater. 371, 1–7.

[12]

Kong, L. X., Li, C., Jiang, J. C., Pecht, M. G. (2018). Li-ion battery fire hazards and safety strategies. Energies 11, 2191.

[13]

Sun, M. J., Zeng, Z. Q., Zhong, W., Han, Z. L., Peng, L. F., Yu, C., Cheng, S. J., Xie, J. (2022). In situ prepared “polymer-in-salt” electrolytes enabling high-voltage lithium metal batteries. J. Mater. Chem. A 10, 11732–11741.

[14]

Li, Z. C., Liu, Q., Deng, Y. R., Zhou, M. M., Tang, W. H., Dong, H. Y., Zhao, W. H., Liu, R. P. (2023). In situ cross-linked plastic crystal electrolytes toward superior lithium metal batteries. Mater. Today Energy 31, 101198.

[15]

Li, Z. C., Li, T. Y., Deng, Y. R., Tang, W. H., Wang, X. D., Yang, J. L., Liu, Q., Zhang, L., Wang, Q., Liu, R. P. (2022). 3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries. Rare Met. 41, 2834–2843.

[16]

Sun, M. J., Zeng, Z. Q., Hu, W., Sheng, K. Y., Wang, Z. Y., Han, Z. L., Peng, L. F., Yu, C., Cheng, S. J., Fan, M. W., et al. (2022). Scalable fabrication of solid-state batteries through high-energy electronic beam. Chem. Eng. J. 431, 134323.

[17]

Wu, X., Liang, X. H., Zhang, X. F., Lan, L. X., Li, S., Gai, Q. X. (2021). Structural evolution of plasma sprayed amorphous Li4Ti5O12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery. J. Adv. Ceram. 10, 347–354.

[18]

Gao, L., Wu, N., Deng, N. P., Li, Z. C., Li, J. X., Che, Y., Cheng, B. W., Kang, W. M., Liu, R. P., Li, Y. T. (2023). Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li‐ion conduction in composite polymer electrolytes. Energy Environ. Mater. 6, e12272.

[19]

Xie, Z. H., Zhou, Y., Ling, C. H., Zhu, X. L., Fang, Z., Fu, X. L., Yan, W. W., Yang, Y. (2022). “Series and parallel” design of ether linkage and imidazolium cation synergistically regulated four-armed polymerized ionic liquid for all-solid-state polymer electrolyte. Chin. Chem. Lett. 33, 1407–1411.

[20]

Tong, R. A., Luo, H. L., Chen, L. H., Zhang, J. X., Shao, G., Wang, H. L., Wang, C. A. (2022). Constructing the lithium polymeric salt interfacial phase in composite solid-state electrolytes for enhancing cycle performance of lithium metal batteries. Chem. Eng. J. 442, 136154.

[21]

Chen, L. H., Zhang, J., Tong, R. A., Zhang, J. X., Wang, H. L., Shao, G., Wang, C. A. (2022). Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, 2106142.

[22]

Lin, R. Q., He, Y. B., Wang, C. Y., Zou, P. C., Hu, E. Y., Yang, X. Q., Xu, K., Xin, H. L. (2022). Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Nat. Nanotechnol. 17, 768–776.

[23]

Feng, J. N., Wang, L., Chen, Y. J., Wang, P. Y., Zhang, H. R., He, X. M. (2021). PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8, 2.

[24]

Bandyopadhyay, S., Gupta, A., Srivastava, R., Nandan, B. (2022). Bio-inspired design of electrospun poly (acrylonitrile) and novel ionene based nanofibrous mats as highly flexible solid state polymer electrolyte for lithium batteries. Chem. Eng. J. 440, 135926.

[25]

Jia, M. Y., Bi, Z. J., Guo, X. X. (2022). Ionic–electronic dual-conductive polymer modified LiCoO2 cathodes for solid lithium batteries. Chem. Commun. 58, 8638–8641.

[26]

Aidoud, D., Etiemble, A., Guy-Bouyssou, D., Maire, E., Le Bideau, J., Guyomard, D., Lestriez, B. (2016). Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes. J. Power Sources 330, 92–103.

[27]

Dai, C., Stadler, F. J., Li, Z. M., Huang, Y. F. (2023). E-beam irradiation of poly (vinylidene fluoride-trifluoroethylene) induces high dielectric constant and all- trans conformation for highly ionic conductive solid-state electrolytes. Energy Mater. Devices 1, 9370016.

[28]

Boaretto, N., Meabe, L., Martinez-Ibañez, M., Armand, M., Zhang, H. (2020). Review-polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid. J. Electrochem. Soc. 167, 070524.

[29]

Gunathilaka, A. M. I. E., Bandara, L. R. A. K., Arof, A. K., Careem, M. A., Seneviratne, V. A. (2017). Electrical and structural studies of a LiBOB-based gel polymer electrolyte. Ionics 23, 2669–2675.

[30]

Stephan, A. M. (2006). Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42.

[31]

Xue, Z. G., He, D., Xie, X. L. (2015). Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253.

[32]

Liao, C., Sun, X. G., Dai, S. (2013). Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications. Electrochim. Acta 87, 889–894.

[33]

Gao, J., Shao, Q. J., Chen, J. (2020). Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery. J. Energy Chem. 46, 237–247.

[34]

Li, C. C., Qin, B. S., Zhang, Y. F., Varzi, A., Passerini, S., Wang, J. Y., Dong, J. M., Zeng, D. L., Liu, Z. H., Cheng, H. S. (2019). Single‐ion conducting electrolyte based on electrospun nanofibers for high‐performance lithium batteries. Adv. Energy Mater. 9, 1803422.

[35]

Deng, K. R., Qin, J. X., Wang, S. J., Ren, S., Han, D. M., Xiao, M., Meng, Y. Z. (2018). Effective suppression of lithium dendrite growth using a flexible single‐ion conducting polymer electrolyte. Small 14, 1801420.

[36]

Yuan, B. H., Zhao, B., Wang, Q., Bai, Y. G., Cheng, Z. W., Cong, Z., Lu, Y. F., Ji, F. D., Shen, F., Wang, P. F., et al. (2022). A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries. Energy Storage Mater. 47, 288–296.

[37]

Hu, P., Chai, J. C., Duan, Y. L., Liu, Z. H., Cui, G. L., Chen, L. Q. (2016). Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 4, 10070–10083.

[38]

Wang, C., Zhang, H. R., Dong, S. M., Hu, Z. L., Hu, R. X., Guo, Z. Y., Wang, T., Cui, G. L., Chen, L. Q. (2020). High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte. Chem. Mater. 32, 9167–9175.

[39]

Xiong, D. J., Burns, J. C., Smith, A. J., Sinha, N., Dahn, J. R. (2011). A high precision study of the effect of vinylene carbonate (VC) additive in Li/graphite cells. J. Electrochem. Soc. 158, A1431.

[40]

Ota, H., Shima, K., Ue, M., Yamaki, J. I. (2004). Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565–572.

[41]

Wang, Z. Y., Wang, Y. M., Zhai, P., Poldorn, P., Jungsuttiwong, S., Yuan, S. (2022). A cation-dipole-reinforced elastic polymer electrolyte enabling long-cycling quasi-solid-state lithium metal batteries. J. Energy Chem. 75, 340–348.

[42]

Zhang, S. J., Lu, Y., He, K. W., Meng, X. H., Que, L. F., Wang, Z. B. (2022). Effect of UV light polymerization time on the properties of plastic crystal composite polyacrylate polymer electrolyte for all solid‐state lithium‐ion batteries. J. Appl. Polym. Sci. 139, 52001.

[43]

Dong, T. T., Zhang, J. J., Xu, G. J., Chai, J. C., Du, H. P., Wang, L. L., Wen, H. J., Zang, X., Du, A. B., Jia, Q. M., et al. (2018). A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203.

[44]

Ma, J., Liu, Z. L., Chen, B. B., Wang, L. L., Yue, L. P., Liu, H. S., Zhang, J. J., Liu, Z. H., Cui, G. L. (2017). A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J. Electrochem. Soc. 164, A3454–A3461.

[45]

Chen, R. J., Liu, F., Chen, Y., Ye, Y. S., Huang, Y. X., Wu, F., Li, L. (2016). An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 306, 70–77.

[46]

Haregewoin, A. M., Wotango, A. S., Hwang, B. J. (2016). Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci. 9, 1955–1988.

[47]

Cha, J., Han, J. G., Hwang, J., Cho, J., Choi, N. S. (2017). Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro (oxalato) borate, in high-voltage lithium-ion batteries. J. Power Sources 357, 97–106.

[48]

Semushkina, G. I., Fedoseeva, Y. V., Makarova, A. A., Smirnov, D. A., Asanov, I. P., Pinakov, D. V., Chekhova, G. N., Okotrub, A. V., Bulusheva, L. G. (2022). Photolysis of fluorinated graphites with embedded acetonitrile using a white-beam synchrotron radiation. Nanomaterials 12, 231.

Energy Materials and Devices
Article number: 9370049
Cite this article:
Ren L, Zou P, Wang L, et al. Effect of vinylene carbonate additive in polyacrylate-based polymer electrolytes for high-voltage lithium-metal batteries. Energy Materials and Devices, 2024, 2(4): 9370049. https://doi.org/10.26599/EMD.2024.9370049

1046

Views

285

Downloads

2

Crossref

2

Scopus

Altmetrics

Received: 05 October 2024
Revised: 27 November 2024
Accepted: 04 December 2024
Published: 31 December 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return