Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As lithium-ion batteries (LIBs) become increasingly widespread, ensuring their safety has become a primary concern. Particularly, battery aging has been reported to significantly impact major battery safety behaviors, including the internal short circuit (ISC) and thermal runaway (TR). Over the past decade, despite considerable research into the thermal hazards of aged batteries, the complexity of battery aging and TR mechanisms, along with the challenges posed by extreme experimental conditions, necessitates a systematic understanding. Aiming to provide a comprehensive review of safety issues related to aged batteries, this paper begins by exploring the fundamental aging mechanisms and factors that accelerate aging. It then investigates how aging affects battery safety issues, including swelling and off-gassing behaviors. Furthermore, we discuss the impact of aging on TR problems induced by abusive conditions, covering safety issues from internal sources to external abusive scenarios. This review offers valuable insights into understanding and predicting the thermal hazards of aged LIBs, which provides guidelines for designing and manufacturing safer LIBs and accurate and rapid battery safety prognostics in the future.
Degen, F., Winter, M., Bendig, D., Tübke, J. (2023). Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 8, 1284–1295.
Sharmili, N., Nagi, R., Wang, P. F. (2023). A review of research in the Li-ion battery production and reverse supply chains. J. Energy Storage 68, 107622.
Thompson, D. L., Hartley, J. M., Lambert, S. M., Shiref, M., Harper, G. D. J., Kendrick, E., Anderson, P., Ryder, K. S., Gaines, L., Abbott, A. P. (2020). The importance of design in lithium ion battery recycling – a critical review. Green Chem. 22, 7585–7603.
Lin, C., Tang, A. H., Wang, W. W. (2015). A review of SOH estimation methods in lithium-ion batteries for electric vehicle applications. Energy Procedia 75, 1920–1925.
Ramoni, M. O., Zhang, H. C. (2013). End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technol. Environ. Policy 15, 881–891.
Pop, V., Bergveld, H. J., Regtien, P. P. L., Op Het Veld, J. H. G., Danilov, D., Notten, P. H. L. (2007). Battery aging and its influence on the electromotive force. J. Electrochem. Soc. 154, A744.
Xiong, R., Pan, Y., Shen, W. X., Li, H. L., Sun, F. C. (2020). Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives. Renew. Sustain. Energy Rev. 131, 110048.
Jindal, P., Bhattacharya, J. (2019). Review—understanding the thermal runaway behavior of Li-Ion batteries through experimental techniques. J. Electrochem. Soc. 166, A2165–A2193.
Wei, D., Zhang, M. Q., Zhu, L. P., Chen, H., Huang, W. S., Yao, J., Yuan, Z. C., Xu, C. S., Feng, X. N. (2022). Study on thermal runaway behavior of Li-Ion batteries using different abuse methods. Batteries 8, 201.
Zhou, G., Liu, Y., Li, Y. Y., Yang, S. Q., Zhang, Q., Wang, J. L., Kong, Y., Niklas, K., Yu, W. (2024). Experimental study on the thermal runaway acceleration mechanism and characteristics of NCM811 lithium-ion battery with critical thermal load induced by nail penetration. J. Cleaner Prod. 434, 140121.
Schmitt, J., Maheshwari, A., Heck, M., Lux, S., Vetter, M. (2017). Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging. J. Power Sources 353, 183–194.
Han, X. B., Ouyang, M. G., Lu, L. G., Li, J. Q., Zheng, Y. J., Li, Z. (2014). A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J. Power Sources 251, 38–54.
Geisbauer, C., Wöhrl, K., Mittmann, C., Schweiger, H. G. (2020). Review—review of safety aspects of calendar aged lithium ion batteries. J. Electrochem. Soc. 167, 090523.
Liao, Y. Q., Zhang, H. Y., Peng, Y. F., Hu, Y. G., Liang, J. D., Gong, Z. L., Wei, Y. M., Yang, Y. (2024). Electrolyte degradation during aging process of lithium-ion batteries: mechanisms, characterization, and quantitative analysis. Adv. Energy Mater. 14, 2304295.
Shen, W., Wang, N., Zhang, J., Wang, F., Zhang, G. X. (2022). Heat generation and degradation mechanism of lithium-ion batteries during high-temperature aging. ACS Omega 7, 44733–44742.
Kabir, M. M., Demirocak, D. E. (2017). Degradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res. 41, 1963–1986.
Lee, S., Su, L. S., Mesnier, A., Cui, Z. H., Manthiram, A. (2023). Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444.
Dubarry, M., Qin, N., Brooker, P. (2018). Calendar aging of commercial Li-ion cells of different chemistries – A review. Curr. Opin. Electrochem. 9, 106–113.
Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G., Howey, D. A. (2017). Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386.
Wang, Y. Y., Zhang, X. Q., Zhou, M. Y., Huang, J. Q. (2023). Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046.
Cao, Y. Y., He, Y. J., Gang, H., Wu, B. C., Yan, L., Wei, D., Wang, H. Y. (2023). Stability study of transition metal oxide electrode materials. J. Power Sources 560, 232710.
Lu, B., Ning, C. Q., Shi, D. X., Zhao, Y. F., Zhang, J. Q. (2020). Review on electrode-level fracture in lithium-ion batteries. Chin. Phys. B 29, 026201.
Zhao, X. C., Yin, Y. L., Hu, Y., Choe, S. Y. (2019). Electrochemical-thermal modeling of lithium plating/stripping of Li(Ni0.6Mn0.2Co0.2)O2/Carbon lithium-ion batteries at subzero ambient temperatures. J. Power Sources 418, 61–73.
Wang, Y. F., Guo, X. D., Greenbaum, S., Liu, J., Amine, K. (2001). Solid electrolyte interphase formation on lithium-ion electrodes: a 7Li nuclear magnetic resonance study. Electrochem. Solid-State Lett. 4, A68.
Keil, P., Schuster, S. F., Wilhelm, J., Travi, J., Hauser, A., Karl, R. C., Jossen, A. (2016). Calendar aging of lithium-ion batteries. J. Electrochem. Soc. 163, A1872–A1880.
Agubra, V., Fergus, J. (2013). Lithium ion battery anode aging mechanisms. Materials 6, 1310–1325.
Li, J. N., Wang, L. B., Xu, J. (2024). Investigation of the lithium plating triggering criterion in graphite electrodes. J. Mater. Chem. A 12, 12581–12591.
Peled, E. (1979). The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051.
Verma, P., Maire, P., Novák, P. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341.
Li, B. R., Chao, Y., Li, M. C., Xiao, Y. B., Li, R., Yang, K., Cui, X. C., Xu, G., Li, L. Y., Yang, C. K., et al. (2023). A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy Rev. 6, 7.
Medina-Santos, J. I., Palma, J., Ventosa, E., Garcia-Quismondo, E. (2023). Insulating characteristics and ionic conductivity properties of the solid electrolyte interface in lithium-ion batteries to improve a redox-mediated enhanced coulometry method. J. Electrochem. Soc. 170, 090520.
Xiong, H., Dufek, E. J., Gering, K. L. (2018). 2.20 Batteries. Compr. Energy Syst. 2, 629–662.
Li, R. H., Li, W., Singh, A., Ren, D. S., Hou, Z. C., Ouyang, M. G. (2022). Effect of external pressure and internal stress on battery performance and lifespan. Energy Storage Mater. 52, 395–429.
Vissers, D. R., Chen, Z. H., Shao, Y. Y., Engelhard, M., Das, U., Redfern, P., Curtiss, L. A., Pan, B. F., Liu, J., Amine, K. (2016). Role of manganese deposition on graphite in the capacity fading of lithium ion batteries. ACS Appl. Mater. Interfaces 8, 14244–14251.
Yamaki, J. I., Tobishima, S. I., Hayashi, K., Saito, K., Nemoto, Y., Arakawa, M. (1998). A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219–227.
Smith, A. J., Fang, Y., Mikheenkova, A., Ekström, H., Svens, P., Ahmed, I., Lacey, M. J., Lindbergh, G., Furó, I., Lindström, R. W. (2023). Localized lithium plating under mild cycling conditions in high-energy lithium-ion batteries. J. Power Sources 573, 233118.
Tomaszewska, A., Chu, Z. Y., Feng, X. N., O'kane, S., Liu, X. H., Chen, J. Y., Ji, C. Z., Endler, E., Li, R. H., Liu, L. S., et al. (2019). Lithium-ion battery fast charging: a review. eTransportation 1, 100011.
Lee, H. G., Kim, S. Y., Lee, J. S. (2022). Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. npj Comput. Mater. 8, 103.
Ouyang, M. G., Chu, Z. Y., Lu, L. G., Li, J. Q., Han, X. B., Feng, X. N., Liu, G. M. (2015). Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. J. Power Sources 286, 309–320.
Lin, X. K., Khosravinia, K., Hu, X. S., Li, J., Lu, W. (2021). Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Prog. Energy Combust. Sci. 87, 100953.
Guo, L. Y., Thornton, D. B., Koronfel, M. A., Stephens, I. E. L., Ryan, M. P. (2021). Degradation in lithium ion battery current collectors. J. Phys. Energy 3, 032015.
Liu, Y. D., Liu, Q., Li, Z. F., Ren, Y., Xie, J., He, H., Xu, F. (2014). Failure study of commercial LiFePO4 cells in over-discharge conditions using electrochemical impedance spectroscopy. J. Electrochem. Soc. 161, A620–A632.
Liao, X. L., Huang, Q. M., Mai, S., Wang, X. S., Xu, M. Q., Xing, L. D., Liao, Y. H., Li, W. S. (2015). Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential. J. Power Sources 286, 551–556.
Ryu, H. H., Park, G. T., Yoon, C. S., Sun, Y. K. (2018). Microstructural degradation of Ni-rich Li[Ni x Co y Mn1 −x−y ]O2 cathodes during accelerated calendar aging. Small 14, 1803179.
Azzouz, I., Yahmadi, R., Brik, K., Ben Ammar, F. (2022). Analysis of the critical failure modes and developing an aging assessment methodology for lithium iron phosphate batteries. Electr. Eng. 104, 27–43.
Zhang, Z. Y., Wang, X. R., Bai, Y., Wu, C. (2022). Charactering and optimizing cathode electrolytes interface for advanced rechargeable batteries: promises and challenges. Green Energy Environ. 7, 606–635.
Ren, D. S., Hsu, H., Li, R. H., Feng, X. N., Guo, D. X., Han, X. B., Lu, L. G., He, X. M., Gao, S., Hou, J. X., et al. (2019). A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation 2, 100034.
Meunier, V., De Souza, M. L., Morcrette, M., Grimaud, A. (2022). Electrochemical protocols to assess the effects of dissolved transition metal in graphite/LiNiO2 cells performance. J. Electrochem. Soc. 169, 070506.
Hu, W. X., Peng, Y. F., Wei, Y. M., Yang, Y. (2023). Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries. J. Phys. Chem. C 127, 4465–4495.
Xu, X. D., Tang, S. J., Han, X. B., Wu, Y., Lu, L. G., Liu, X., Yu, C. Q., Sun, X. Y., Feng, X. N., Ouyang, M. G. (2024). Anomalous calendar aging of Ni-rich cathode batteries: Focusing on structural degradation. Energy Storage Mater. 66, 103198.
Wang, Z. J., Che, X. L., Wang, D. N., Wang, Y. Y., He, X. M., Zhu, Y., Zhang, B. (2024). Non-fluorinated ethers to mitigate electrode surface reactivity in high-voltage NCM811-Li batteries. Angew. Chem. 136, e202404109.
Utsunomiya, T., Hatozaki, O., Yoshimoto, N., Egashira, M., Morita, M. (2011). Self-discharge behavior and its temperature dependence of carbon electrodes in lithium-ion batteries. J. Power Sources 196, 8598–8603.
Yazami, R., Reynier, Y. (2002). Mechanism of self-discharge in graphite–lithium anode. Electrochim. Acta 47, 1217–1223.
Kassem, M., Bernard, J., Revel, R., Pélissier, S., Duclaud, F., Delacourt, C. (2012). Calendar aging of a graphite/LiFePO4 cell. J. Power Sources 208, 296–305.
Röder, P., Stiaszny, B., Ziegler, J. C., Baba, N., Lagaly, P., Wiemhöfer, H. D. (2014). The impact of calendar aging on the thermal stability of a LiMn2O4–Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell. J. Power Sources 268, 315–325.
Wan, G., Pollard, T. P., Ma, L., Schroeder, M. A., Chen, C. C., Zhu, Z. H., Zhang, Z., Sun, C. J., Cai, J. Y., Thaman, H. L., et al. (2024). Solvent-mediated oxide hydrogenation in layered cathodes. Science 385, 1230–1236.
Qi, Y., Guo, H. B., Hector, L. G., Timmons, A. (2010). Threefold increase in the young’s modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157, A558.
Edge, J. S., O’Kane, S., Prosser, R., Kirkaldy, N. D., Patel, A. N., Hales, A., Ghosh, A., Ai, W. L., Chen, J. Y., Yang, J., et al. (2021). Lithium ion battery degradation: what you need to know. Phys. Chem. Chem. Phys. 23, 8200–8221.
Lin, C., Tang, A. H., Mu, H., Wang, W. W., Wang, C. (2015). Aging mechanisms of electrode materials in lithium-ion batteries for electric vehicles. J. Chem. 2015, 104673.
Li, R., Bao, L. Y., Chen, L., Zha, C., Dong, J. Y., Qi, N., Tang, R., Lu, Y., Wang, M., Huang, R., et al. (2023). Accelerated aging of lithium-ion batteries: bridging battery aging analysis and operational lifetime prediction. Sci. Bull. 68, 3055–3079.
Guo, J., Jin, S. Y., Sui, X., Huang, X. R., Xu, Y. L., Li, Y. Q., Kristensen, P. K., Wang, D. Y., Pedersen, K., Gurevich, L., et al. (2023). Unravelling and quantifying the aging processes of commercial Li(Ni0.5Co0.2Mn0.3)O2/graphite lithium-ion batteries under constant current cycling. J. Mater. Chem. A 11, 41–52.
Kim, H., Oh, S. K., Lee, J., Doo, S. W., Kim, Y., Lee, K. T. (2021). Failure mode of thick cathodes for Li-ion batteries: Variation of state-of-charge along the electrode thickness direction. Electrochim. Acta 370, 137743.
Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. J. Power Sources 147, 269–281.
Hemmelmann, H., Dinter, J. K., Elm, M. T. (2021). Thin film NCM cathodes as model systems to assess the influence of coating layers on the electrochemical performance of lithium ion batteries. Adv Mater. Interfaces 8, 2002074.
Zhou, R., Huang, J. X., Lai, S. B., Li, J. Y., Wang, F., Chen, Z. Q., Lin, W. Q., Li, C, Wang, J., Zhao, J. B. (2018). A bifunctional electrolyte additive for H2O/HF scavenging and enhanced graphite/LiNi0.5Co0.2Mn0.3O2 cell performance at a high voltage. Sustain. Energy Fuels 2, 1481–1490.
Han, Y. K., Heng, S., Wang, Y., Qu, Q. T., Zheng, H. H. (2020). Anchoring interfacial nickel cations on single-crystal LiNi0.8Co0.1Mn0.1O2 cathode surface via controllable electron transfer. ACS Energy Lett. 5, 2421–2433.
Dong, G. Z., Wei, J. W. (2021). A physics-based aging model for lithium-ion battery with coupled chemical/mechanical degradation mechanisms. Electrochim. Acta 395, 139133.
Liu, S. Z., West, P. J., Zhong, H., Bai, J. M., Stavitski, E., Leshchev, D., Marschilok, A. C., Takeuchi, E. S., Bock, D. C., Takeuchi, K. J. (2023). Origin of phase separation in Ni-rich layered oxide cathode materials during electrochemical cycling. Chem. Mater. 35, 8857–8871.
Zhang, W. J. (2011). Structure and performance of LiFePO4 cathode materials: a review. J. Power Sources 196, 2962–2970.
Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689.
Ma, S., Jiang, M. D., Tao, P., Song, C. Y., Wu, J. B., Wang, J., Deng, T., Shang, W. (2018). Temperature effect and thermal impact in lithium-ion batteries: a review. Prog. Nat. Sci. Mater. Int. 28, 653–666.
Han, X. B., Lu, L. G., Zheng, Y. J., Feng, X. N., Li, Z., Li, J. Q., Ouyang, M. G. (2019). A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 1, 100005.
Peng, Y. F., Zhong, C., Ding, M. F., Zhang, H. Y., Jin, Y. T., Hu, Y. G., Liao, Y. Q., Yang, L. F., Wang, S. X., Yin, X. T., et al. (2024). Quantitative analysis of active lithium loss and degradation mechanism in temperature accelerated aging process of lithium-ion batteries. Adv. Funct. Mater. 34, 2404495.
Liu, W. G., Fan, X. M., Zheng, J. Q., Zhang, Z., Peng, E. K., Li, Z. Y., Chen, Z. Y., Jiang, H., Tong, Y., Hong, B., et al. (2024). A study of the capacity fade of a LiCoO2/graphite battery during the temperature storage process at 45°C under different SOCs. RSC Adv. 14, 4274–4284.
De Hoog, J., Timmermans, J. M., Ioan-Stroe, D., Swierczynski, M., Jaguemont, J., Goutam, S., Omar, N., Van Mierlo, J., Van Den bossche, P. (2017). Combined cycling and calendar capacity fade modeling of a nickel-manganese-cobalt oxide cell with real-life profile validation. Appl. Energy 200, 47–61.
Werner, D., Paarmann, S., Wetzel, T. (2021). Calendar aging of Li-Ion cells—experimental investigation and empirical correlation. Batteries 7, 28.
Wu, K., Wu, X., Lin, Z., Sun, H., Wang, M. X., Li, W. (2024). Identifying the calendar aging boundary and high temperature capacity fading mechanism of Li ion battery with Ni-rich cathode. J. Power Sources 589, 233736.
Wang, Z. J., Chen, C. S., Wang, D. N., Zhu, Y., Zhang, B. (2023). Stabilizing interfaces in high-temperature NCM811-Li batteries via tuning terminal alkyl chains of ether solvents. Angew. Chem. Int. Ed. 62, e202303950.
Yang, H., Zhuang, G. V., Ross, P. N. Jr. (2006). Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources 161, 573–579.
Kötz, R., Ruch, P. W., Cericola, D. (2010). Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J. Power Sources 195, 923–928.
Li, J. Z., Li, S. F., Zhang, Y. X., Yang, Y., Russi, S., Qian, G. N., Mu, L. Q., Lee, S. J., Yang, Z. J., Lee, J. S., et al. (2021). Multiphase, multiscale chemomechanics at extreme low temperatures: battery electrodes for operation in a wide temperature range. Adv. Energy Mater. 11, 2102122.
Guo, J., Li, Y. Q., Pedersen, K., Stroe, D. I. (2021). Lithium-ion battery operation, degradation, and aging mechanism in electric vehicles: an overview. Energies 14, 5220.
Bloom, I., Cole, B. W., Sohn, J. J., Jones, S. A., Polzin, E. G., Battaglia, V. S., Henriksen, G. L., Motloch, C., Richardson, R., Unkelhaeuser, T., et al. (2001). An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 101, 238–247.
Yang, M. J., Ye, Y. J., Yang, A. J., Jiang, Z. Y., Wang, X. H., Yuan, H., Rong, M. Z. (2022). Comparative study on aging and thermal runaway of commercial LiFePO4/graphite battery undergoing slight overcharge cycling. J. Energy Storage 50, 104691.
Liu, J. L., Huang, Z. H., Sun, J. H., Wang, Q. S. (2022). Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling. J. Power Sources 526, 231136.
Zhang, G. X., Wei, X. Z., Chen, S. Q., Zhu, J. G., Han, G. S., Tang, X., Hua, W. B., Dai, H. F., Ye, J. P. (2021). Comprehensive investigation of a slight overcharge on degradation and thermal runaway behavior of lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 35054–35068.
Wang, Z. P., Xu, S. Q., Zhu, X. Q., Wang, H., Huang, L., Yuan, J., Yang, W. Q. (2021). Effects of short-term over-discharge cycling on the performance of commercial 21,700 lithium-ion cells and the identification of degradation modes. J. Energy Storage 35, 102257.
Zhang, G. X., Wei, X. Z., Chen, S. Q., Zhu, J. G., Han, G. S., Dai, H. F. (2022). Unlocking the thermal safety evolution of lithium-ion batteries under shallow over-discharge. J. Power Sources 521, 230990.
Ouyang, D. X., Chen, M. Y., Liu, J. H., Wei, R. C., Weng, J. W., Wang, J. (2018). Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. RSC Adv. 8, 33414–33424.
Maleki, H., Howard, J. N. (2006). Effects of overdischarge on performance and thermal stability of a Li-ion cell. J. Power Sources 160, 1395–1402.
Zheng, Y., Qian, K., Luo, D., Li, Y. Y., Lu, Q. W., Li, B. H., He, Y. B., Wang, X. D., Li, J. L., Kang, F. Y. (2016). Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries. RSC Adv. 6, 30474–30483.
Vermeer, W., Mouli, G. R. C., Bauer, P. (2022). A comprehensive review on the characteristics and modeling of lithium-ion battery aging. IEEE Trans. Transp. Electrific. 8, 2205–2232.
Keil, P., Jossen, A. (2016). Charging protocols for lithium-ion batteries and their impact on cycle life—An experimental study with different 18650 high-power cells. J. Energy Storage 6, 125–141.
Duan, X. D., Hu, D. Y., Chen, W. H., Li, J. N., Wang, L. B., Sun, S. G., Xu, J. (2024). Electrochemical modeling of fast charging in batteries. Adv. Energy Mater. 14, 2400710.
Tanim, T. R., Yang, Z. Z., Finegan, D. P., Chinnam, P. R., Lin, Y. L., Weddle, P. J., Bloom, I., Colclasure, A. M., Dufek, E. J., Wen, J. G., et al. (2022). A comprehensive understanding of the aging effects of extreme fast charging on high Ni NMC cathode. Adv. Energy Mater. 12, 2103712.
Tanim, T. R., Dufek, E. J., Evans, M., Dickerson, C., Jansen, A. N., Polzin, B. J., Dunlop, A. R., Trask, S. E., Jackman, R., Bloom, I., et al. (2019). Extreme fast charge challenges for lithium-ion battery: variability and positive electrode issues. J. Electrochem. Soc. 166, A1926–A1938.
Sieg, J., Schmid, A. U., Rau, L., Gesterkamp, A., Storch, M., Spier, B., Birke, K. P., Sauer, D. U. (2022). Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption. Appl. Energy 305, 117747.
Raj, A., Rodrigues, M. T. F., Abraham, D. P. (2020). Rate-dependent aging resulting from fast charging of Li-Ion cells. J. Electrochem. Soc. 167, 120517.
Dai, N. C., Long, J. Q. (2023). Research on fast-charging battery thermal management system based on refrigerant direct cooling. Sci. Rep. 13, 11707.
Barcellona, S., Piegari, L. (2020). Effect of current on cycle aging of lithium ion batteries. J. Energy Storage 29, 101310.
Gao, X., Chak, C., Hao, Q., Zeng, D., Xu, J. (2023). Thermal safety of lithium-ion batteries: mechanism, modeling, and characterizations. Annu. Rev. Heat Transfer. 26, 69–129.
Santhanagopalan, S., Ramadass, P., Zhang, J. (2009). Analysis of internal short-circuit in a lithium ion cell. J. Power Sources 194, 550–557.
Xu, J., Wu, Y. J., Yin, S. (2017). Investigation of effects of design parameters on the internal short-circuit in cylindrical lithium-ion batteries. RSC Adv. 7, 14360–14371.
Fang, W. F., Ramadass, P., Zhang, Z. (2014). Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model. J. Power Sources 248, 1090–1098.
Li, J. N., Li, W., Song, J. Y., Chen, Y., Wang, L. B., Xu, J. (2022). Accurate measurement of the contact resistance during internal short circuit in lithium-ion batteries. J. Electrochem. Soc. 169, 020505.
Liu, B. H., Jia, Y. K., Li, J., Yin, S., Yuan, C. H., Hu, Z. H., Wang, L. B., Li, Y. X., Xu, J. (2018). Safety issues caused by internal short circuits in lithium-ion batteries. J. Mater. Chem. A 6, 21475–21484.
Makki, M., Ayoub, G., Lee, C. W., Bae, C., Colin, X. (2023). Effect of battery fast cyclic charging on the mechanical and fracture behavior of the lithium-ion battery separator. Polym. Degrad. Stab. 216, 110469.
Hogrefe, C., Waldmann, T., Hölzle, M., Wohlfahrt-Mehrens, M. (2023). Direct observation of internal short circuits by lithium dendrites in cross-sectional lithium-ion in situ full cells. J. Power Sources 556, 232391.
Lai, X., Jin, C. Y., Yi, W., Han, X. B., Feng, X. N., Zheng, Y. J., Ouyang, M. G. (2021). Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives. Energy Storage Mater. 35, 470–499.
Arora, P., Zhang, Z. (2004). Battery separators. Chem. Rev. 104, 4419–4462.
Yang, R. J., Yu, G. Q., Wu, Z. G., Lu, T. T., Hu, T., Liu, F. Q., Zhao, H. L. (2023). Aging of lithium-ion battery separators during battery cycling. J. Energy Storage 63, 107107.
Zhang, X., Zhu, J., Sahraei, E. (2017). Degradation of battery separators under charge–discharge cycles. RSC Adv. 7, 56099–56107.
Liu, P. J., Li, S., Jin, K. Q., Fu, W. D., Wang, C. D., Jia, Z. Z., Jiang, L. H., Wang, Q. S. (2023). Thermal runaway and fire behaviors of lithium iron phosphate battery induced by overheating and overcharging. Fire Technol. 59, 1051–1072.
Liu, Q. Q., Du, C. Y., Shen, B., Zuo, P. J., Cheng, X. Q., Ma, Y. L., Yin, G. P., Gao, Y. Z. (2016). Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6, 88683–88700.
Ren, D. S., Feng, X. N., Lu, L. G., He, X. M., Ouyang, M. G. (2019). Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl. Energy 250, 323–332.
Campbell, I. D., Marzook, M., Marinescu, M., Offer, G. J. (2019). How observable is lithium plating? Differential voltage analysis to identify and quantify lithium plating following fast charging of cold lithium-ion batteries. J. Electrochem. Soc. 166, A725–A739.
Petzl, M., Kasper, M., Danzer, M. A. (2015). Lithium plating in a commercial lithium-ion battery – A low-temperature aging study. J. Power Sources 275, 799–807.
Zhang, G. X., Wei, X. Z., Han, G. S., Dai, H. F., Zhu, J. G., Wang, X. Y., Tang, X., Ye, J. P. (2021). Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. J. Power Sources 484, 229312.
Li, J. N., Liu, B. H., Li, S. L., Hu, D. Y., Wang, L. B., Xu, J. (2022). Mechanistic modeling of Li plating in lithium-ion batteries. J. Power Sources 521, 230936.
Fear, C., Adhikary, T., Carter, R., Mistry, A. N., Love, C. T., Mukherjee, P. P. (2020). In operando detection of the onset and mapping of lithium plating regimes during fast charging of lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 30438–30448.
Fear, C., Parmananda, M., Kabra, V., Carter, R., Love, C. T., Mukherjee, P. P. (2021). Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating. Energy Storage Mater. 35, 500–511.
Belov, D., Yang, M. H. (2008). Failure mechanism of Li-ion battery at overcharge conditions. J. Solid State Electrochem. 12, 885–894.
Burns, J. C., Stevens, D. A., Dahn, J. R. (2015). In-situ detection of lithium plating using high precision coulometry. J. Electrochem. Soc. 162, A959–A964.
Waldmann, T., Quinn, J. B., Richter, K., Kasper, M., Tost, A., Klein, A., Wohlfahrt-Mehrens, M. (2017). Electrochemical, post-mortem, and ARC analysis of Li-Ion cell safety in second-life applications. J. Electrochem. Soc. 164, A3154–A3162.
Rosso, M., Brissot, C., Teyssot, A., Dollé, M., Sannier, L., Tarascon, J. M., Bouchet, R., Lascaud, S. (2006). Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 51, 5334–5340.
Huang, L. L., Liu, L. S., Lu, L. G., Feng, X. N., Han, X. B., Li, W. H., Zhang, M. X., Li, D. S., Liu, X. B., Sauer, D. U., et al. (2021). A review of the internal short circuit mechanism in lithium-ion batteries: inducement, detection and prevention. Int. J. Energy Res. 45, 15797–15831.
Lu, D. B., Lin, S. X., Cui, W., Hu, S. W., Zhang, Z., Peng, W. (2020). Swelling mechanism of 0%SOC lithium iron phosphate battery at high temperature storage. J. Energy Storage 32, 101791.
Liu, W., Liu, H. H., Wang, Q., Zhang, J., Xia, B. J., Min, G. Q. (2017). Gas swelling behaviour at different stages in Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 pouch cells. J. Power Sources 369, 103–110.
Wang, S., Ren, D. S., Xu, C. S., Han, X. B., Liu, X., Lu, L. G., Ouyang, M. G. (2024). Lithium plating induced volume expansion overshoot of lithium-ion batteries: experimental analysis and modeling. J. Power Sources 593, 233946.
Willenberg, L. K., Dechent, P., Fuchs, G., Sauer, D. U., Figgemeier, E. (2020). High-precision monitoring of volume change of commercial lithium-ion batteries by using strain gauges. Sustainability 12, 557.
Beaulieu, L. Y., Hatchard, T. D., Bonakdarpour, A., Fleischauer, M. D., Dahn, J. R. (2003). Reaction of li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150, A1457.
Garrick, T. R., Miao, Y., Macciomei, E., Fernandez, M., Weidner, J. W. (2023). Quantifying aging-induced irreversible volume change of porous electrodes. J. Electrochem. Soc. 170, 100513.
Mohtat, P., Lee, S., Siegel, J. B., Stefanopoulou, A. G. (2021). Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors. J. Electrochem. Soc. 168, 100520.
Geng, L. X., Wood, D. L., Lewis, S. A., Connatser, R. M., Li, M. Y., Jafta, C. J., Belharouak, I. (2020). High accuracy in-situ direct gas analysis of Li-ion batteries. J. Power Sources 466, 228211.
He, M. L., Castel, E., Laumann, A., Nuspl, G., Novák, P., Berg, E. J. (2015). In situ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures. J. Electrochem. Soc. 162, A870–A876.
Teng, X., Zhan, C., Bai, Y., Ma, L., Liu, Q., Wu, C., Wu, F., Yang, Y. S., Lu, J., Amine, K. (2015). In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes. ACS Appl. Mater. Interfaces 7, 22751–22755.
Lanz, P., Sommer, H., Schulz-Dobrick, M., Novák, P. (2013). Oxygen release from high-energy xLi2MnO3(1−x)LiMO2 (M=Mn, Ni, Co): Electrochemical, differential electrochemical mass spectrometric, in situ pressure, and in situ temperature characterization. Electrochim. Acta 93, 114–119.
Park, M. S., Lee, J. W., Choi, W., Im, D., Doo, S. G., Park, K. S. (2010). On the surface modifications of high-voltage oxide cathodes for lithium-ion batteries: new insight and significant safety improvement. J. Mater. Chem. 20, 7208–7213.
Schmitt, J., Kraft, B., Schmidt, J. P., Meir, B., Elian, K., Ensling, D., Keser, G., Jossen, A. (2020). Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging. J. Power Sources 478, 228661.
He, M. N., Zhang, X. J., Jiang, K. Y., Wang, J., Wang, Y. (2015). Pure inorganic separator for lithium ion batteries. ACS Appl. Mater. Interfaces 7, 738–742.
Jia, Y. K., Gao, X., Ma, L., Xu, J. (2023). Comprehensive battery safety risk evaluation: aged cells versus fresh cells upon mechanical abusive loadings. Adv. Energy Mater. 13, 2300368.
Leising, R. A., Palazzo, M. J., Takeuchi, E. S., Takeuchi, K. J. (2001). Abuse testing of lithium-ion batteries: characterization of the overcharge reaction of LiCoO2/graphite cells. J. Electrochem. Soc. 148, A838.
Feng, X. N., Fang, M., He, X. M., Ouyang, M. G., Lu, L. G., Wang, H., Zhang, M. X. (2014). Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 255, 294–301.
Feng, X. N., Ren, D. S., Zhang, S. C., He, X. M., Wang, L., Ouyang, M. G. (2019). Influence of aging paths on the thermal runaway features of lithium-ion batteries in accelerating rate calorimetry tests. Int. J. Electrochem. Sci. 14, 44–58.
Waldmann, T., Wohlfahrt-Mehrens, M. (2017). Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells. Electrochim. Acta 230, 454–460.
Börner, M., Friesen, A., Grützke, M., Stenzel, Y. P., Brunklaus, G., Haetge, J., Nowak, S., Schappacher, F. M., Winter, M. (2017). Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries. J. Power Sources 342, 382–392.
Pastor, J. V., García, A., Monsalve-Serrano, J., Golke, D. (2023). Analysis of the aging effects on the thermal runaway characteristics of Lithium-Ion cells through stepwise reactions. Appl. Therm. Eng. 230, 120685.
Zhang, J. B., Su, L. S., Li, Z., Sun, Y., Wu, N. N. (2016). The evolution of lithium-ion cell thermal safety with aging examined in a battery testing calorimeter. Batteries 2, 12.
Abada, S., Petit, M., Lecocq, A., Marlair, G., Sauvant-Moynot, V., Huet, F. (2018). Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries. J. Power Sources 399, 264–273.
Liu, J. L., Duan, Q. L., Feng, L., Ma, M. N., Sun, J. H., Wang, Q. S. (2020). Capacity fading and thermal stability of LiNi x Co y Mn z O2/graphite battery after overcharging. J. Energy Storage 29, 101397.
Friesen, A., Horsthemke, F., Mönnighoff, X., Brunklaus, G., Krafft, R., Börner, M., Risthaus, T., Winter, M., Schappacher, F. M. (2016). Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis. J. Power Sources 334, 1–11.
Liu, Y. J., Xia, Y., Zhou, Q. (2021). Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: a comprehensive experimental investigation. Energy Storage Mater. 40, 268–281.
Li, Y. L., Feng, X. N., Ren, D. S., Ouyang, M. G., Lu, L. G., Han, X. B. (2019). Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces 11, 46839–46850.
Wu, S. M., Wang, C., Luan, W. L., Zhang, Y. L., Chen, Y., Chen, H. F. (2023). Thermal runaway behaviors of Li-ion batteries after low temperature aging: experimental study and predictive modeling. J. Energy Storage 66, 107451.
Zhang, G. X., Wei, X. Z., Chen, S. Q., Wei, G., Zhu, J. G., Wang, X. Y., Han, G. S., Dai, H. F. (2023). Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries. J. Energy Chem. 87, 378–389.
Zhao, C. P., Sun, J. H., Wang, Q. S. (2020). Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter. J. Energy Storage 28, 101232.
Zhang, G. X., Wei, X. Z., Chen, S. Q., Zhu, J. G., Han, G. S., Wang, X. Y., Dai, H. F. (2022). Revealing the impact of fast charge cycling on the thermal safety of lithium-ion batteries. ACS Appl. Energy Mater. 5, 7056–7068.
Mao, N., Zhang, T., Wang, Z. R., Gadkari, S., Wang, J. L., He, T. F., Gao, T. F., Cai, Q. (2023). Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway. Energy 263, 125786.
Liu, Y. J., Xia, Y., Xing, B. B., Zhou, Q. (2022). Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: a comparative study between fresh cells and aged ones. Int. J. Impact Eng. 166, 104237.
Wu, Z. N., Cao, L., Hartig, J., Santhanagopalan, S. (2017). (Invited) Effect of aging on mechanical properties of lithium ion cell components. ECS Trans. 77, 199–208.
Sprenger, M., Dölle, N., Schauwecker, F., Raffler, M., Ellersdorfer, C., Sinz, W. (2022). Multiscale analysis and safety assessment of fresh and electrical aged lithium-ion pouch cells focusing on mechanical behavior. Energies 15, 847.
Ji, Y. P., Chen, X. P., Wang, T., Ji, H. B., Zhang, Y., Yuan, Q., Li, L. (2020). Coupled effects of charge–discharge cycles and rates on the mechanical behavior of electrodes in lithium-ion batteries. J. Energy Storage 30, 101577.
Fink, K., Santhanagopalan, S., Hartig, J., Cao, L. (2019). Characterization of aged Li-Ion battery components for direct recycling process design. J. Electrochem. Soc. 166, A3775–A3783.
Shi, L., Kunz, U. (2016). Mechanical behavior during electrochemical and mechanical deactivation of an aged electrode in a lithium-ion pouch cell. Energy Technol. 4, 1520–1530.
Ying, P. F., Wang, C., Xia, Y. (2023). Role of the temperature and aging in mechanical modeling of the active coating in Li-ion battery. eTransportation 18, 100273.
Sprenger, M., Kovachev, G., Dölle, N., Schauwecker, F., Sinz, W., Ellersdorfer, C. (2023). Changes in the mechanical behavior of electrically aged lithium-ion pouch cells: in-plane and out-of-plane indentation loads with varying testing velocity and state of charge. Batteries 9, 67.
Kovachev, G., Ellersdorfer, C., Gstrein, G., Hanzu, I., Wilkening, H. M. R., Werling, T., Schauwecker, F., Sinz, W. (2020). Safety assessment of electrically cycled cells at high temperatures under mechanical crush loads. eTransportation 6, 100087.
Doose, S., Hahn, A., Fischer, S., Müller, J., Haselrieder, W., Kwade, A. (2023). Comparison of the consequences of state of charge and state of health on the thermal runaway behavior of lithium ion batteries. J. Energy Storage 62, 106837.
Ren, D. S., Feng, X. N., Lu, L. G., Ouyang, M. G., Zheng, S. Q., Li, J. Q., He, X. M. (2017). An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J. Power Sources 364, 328–340.
Qian, L. Q., Yi, Y. H., Zhang, W. J., Fu, C. L., Xia, C. Y., Ma, T. C. (2023). Revealing the impact of high current overcharge/overdischarge on the thermal safety of degraded Li-Ion batteries. Int. J. Energy Res. 2023, 8571535.
Wang, C. J., Zhu, Y. L., Gao, F., Qi, C., Zhao, P. L., Meng, Q. F., Wang, J. Y., Wu, Q. B. (2020). Thermal runaway behavior and features of LiFePO4/graphite aged batteries under overcharge. Int. J. Energy Res. 44, 5477–5487.
Lin, C. K., Ren, Y., Amine, K., Qin, Y., Chen, Z. H. (2013). In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery. J. Power Sources 230, 32–37.
Golubkov, A. W., Scheikl, S., Planteu, R., Voitic, G., Wiltsche, H., Stangl, C., Fauler, G., Thaler, A., Hacker, V. (2015). Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge. RSC Adv. 5, 57171–57186.
Wang, Z. P., Yuan, J., Zhu, X. Q., Wang, H., Huang, L. W., Wang, Y. T., Xu, S. Q. (2021). Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: a comparison study. J. Energy Chem. 55, 484–498.
Yuan, W., Liang, D., Chu, Y. Y., Wang, Q. S. (2022). Aging effect delays overcharge-induced thermal runaway of lithium-ion batteries. J. Loss Prev. Process Ind. 79, 104830.
Feng, L., Jiang, L. H., Liu, J. L., Wang, Z. Y., Wei, Z. S., Wang, Q. S. (2021). Dynamic overcharge investigations of lithium ion batteries with different state of health. J. Power Sources 507, 230262.
Wu, M. S., Chiang, P. C. J., Lin, J. C., Jan, Y. S. (2004). Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests—short-circuit tests. Electrochim. Acta 49, 1803–1812.
Juarez-Robles, D., Azam, S., Jeevarajan, J. A., Mukherjee, P. P. (2021). Degradation-safety analytics in lithium-ion cells and modules Part II. Overcharge and external short circuit scenarios. J. Electrochem. Soc. 168, 050535.
Lopez, C. F., Jeevarajan, J. A., Mukherjee, P. P. (2015). Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J. Electrochem. Soc. 162, A1905–A1915.
Jin, C. Y., Sun, Y. D., Wang, H. B., Zheng, Y. J., Wang, S. Y., Rui, X. Y., Xu, C. S., Feng, X. N., Wang, H. W., Ouyang, M. G. (2022). Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Appl. Energy 312, 118760.
Huang, Z. H., Yu, Y., Duan, Q. L., Qin, P., Sun, J. H., Wang, Q. S. (2022). Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery. Appl. Energy 325, 119778.
Zhao, L. Y., Han, Z. X., Guo, W., Qiao, Z. R., Qiu, H. Y., Liu, H., Chen, M. Y. (2024). An experimental study on thermal runaway propagation over cyclic aging lithium-ion battery modules with different electrical connections. J. Energy Storage 89, 111823.
Wang, Q. S., Ping, P., Zhao, X. J., Chu, G. Q., Sun, J. H., Chen, C. H. (2012). Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224.
Essl, C., Golubkov, A. W., Fuchs, A. (2021). Influence of aging on the failing behavior of automotive lithium-ion batteries. Batteries 7, 23.
Larsson, F., Bertilsson, S., Furlani, M., Albinsson, I., Mellander, B. E. (2018). Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J. Power Sources 373, 220–231.
Lammer, M., Königseder, A., Gluschitz, P., Hacker, V. (2018). Influence of aging on the heat and gas emissions from commercial lithium ion cells in case of thermal failure. J. Electrochem. Sci. Eng. 8, 101–110.
Tran, M. K., Mevawalla, A., Aziz, A., Panchal, S., Xie, Y., Fowler, M. (2022). A review of lithium-ion battery thermal runaway modeling and diagnosis approaches. Processes 10, 1192.
Zhao, L. Y., Zheng, M. X., Zhang, J. M., Liu, H., Li, W., Chen, M. Y. (2023). Numerical modeling of thermal runaway for low temperature cycling lithium-ion batteries. J. Energy Storage 63, 107053.
Li, Y. L., Gao, X. L., Feng, X. N., Ren, D. S., Li, Y., Hou, J. X., Wu, Y., Du, J. Y., Lu, L. G., Ouyang, M. G. (2022). Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging. Energy 239, 122097.
Spotnitz, R., Franklin, J. (2003). Abuse behavior of high-power, lithium-ion cells. J. Power Sources 113, 81–100.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.