AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (28.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

“Water-in-montmorillonite” quasi-solid-state electrolyte for ultralow self-discharge aqueous zinc-ion batteries

Yongfeng Huang1,2,Rongsheng Guo1,Yunlin An3Wenbao Liu3( )Feiyu Kang1,2( )
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China

Yongfeng Huang and Rongsheng Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The practical application of aqueous zinc-ion batteries (AZIBs) is limited by zinc dendrites, parasitic reactions, and self-discharging. Quasi-solid-state electrolytes (QSSEs) are promising solutions but have high costs, low conductivity, and inadequate self-discharge-suppression capability. This study introduces a novel “water-in-montmorillonite (Mont)” (WiME) electrolyte to address these limitations. WiME leverages the layered structure of the inexpensive Mont to confine water, achieving a high ionic conductivity of 64.82 mS/cm and remarkable self-discharge suppression capability and maintaining 92.7% capacity after 720 h. The WiME architecture facilitates uniform Zn deposition and promotes cycling stability at high current densities. WiME-based symmetric cells show excellent long-term cycling, surpassing 1900 h, and full Zn||MnOOH cells display stable cycling for 500 cycles without capacity decay, demonstrating synergy among mitigated parasitic reactions, homogenous zinc deposition, and enhanced interfacial stability enabled by WiMEs. This study presents a low-cost and high-performance strategy for advancing the practical application of AZIBs for various fields.

Electronic Supplementary Material

Download File(s)
EMD20240047_ESM.pdf (3.8 MB)

References

[1]

Xu, C. J., Li, B. H., Du, H. D., Kang, F. Y. (2012). Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935.

[2]

Wu, X. W., Li, Y. H., Xiang, Y. H., Liu, Z. X., He, Z. Q., Wu, X. M., Li, Y. J., Xiong, L. Z., Li, C. C., Chen, J. (2016). The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J. Power Sources 336, 35–39.

[3]

Liu, T., Dong, X. S., Tang, B., Zhao, R. Z., Xu, J., Li, H. P., Gao, S. S., Fang, Y. Z., Chao, D. L., Zhou, Z. (2024). Engineering electrolyte additives for stable zinc-based aqueous batteries: Insights and prospects. J. Energy Chem. 98, 311–326.

[4]

Sun, R., Xia, P., Guo, X. C., Dong, S. Y., Xu, F., Zhang, Y. F., Lu, S. J., Zheng, Q., Fan, H. S. (2024). Ternary Zn3V3O8 superstructure and synergistic modification of separator promote high performance and stable zinc ion battery. Chem. Eng. J. 486, 150377.

[5]

Yang, J. L., Cao, J. M., Zhao, X. X., Zhang, K. Y., Zheng, S. H., Gu, Z. Y., Wu, X. L. (2022). Advanced aqueous proton batteries: working mechanism, key materials, challenges and prospects. EnergyChem 4, 100092.

[6]

Chen, S., Ji, D. L., Chen, Q. W., Ma, J. Z., Hou, S. Q., Zhang, J. T. (2023). Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat. Commun. 14, 3526.

[7]

Han, D. L., Cui, C. J., Zhang, K. Y., Wang, Z. X., Gao, J. C., Guo, Y., Zhang, Z. C., Wu, S. C., Yin, L. C., Weng, Z., et al. (2021). A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5, 205–213.

[8]

Xie, X. S., Liang, S. Q., Gao, J. W., Guo, S., Guo, J. B., Wang, C., Xu, G. Y., Wu, X. W., Chen, G., Zhou, J. (2020). Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510.

[9]

Zhao, X., Wang, Y., Huang, C., Gao, Y. F., Huang, M. F., Ding, Y. C., Wang, X., Si, Z. C., Zhou, D., Kang, F. Y. (2023). Tetraphenylporphyrin-based chelating ligand additive as a molecular sieving interfacial barrier toward durable aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202312193.

[10]

Liu, Y. N., Yang, J. L., Gu, Z. Y., Zhang, X. Y., Liu, Y., Su, M. Y., Zhang, X. L., Zatovsky, I. V., Li, K., Cao, J. M., et al. (2024). Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al-ion batteries. Angew. Chem. Int. Ed. 63, e202316925.

[11]

Zhao, R. Z., Dong, X. S., Liang, P., Li, H. P., Zhang, T. S., Zhou, W. H., Wang, B. Y., Yang, Z. D., Wang, X., Wang, L. P., et al. (2023). Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35, 2209288.

[12]

Heng, Y. L., Gu, Z. Y., Guo, J. Z., Wu, X. L. (2021). Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries. Acta Phys. Chim. Sin. 37, 2005013.

[13]

Huang, Y. F., Yan, H., Liu, W. B., Kang, F. Y. (2024). Transforming zinc-ion batteries with DTPA-Na: a synergistic SEI and CEI engineering approach for exceptional cycling stability and self-discharge inhibition. Angew. Chem. Int. Ed. 63, e202409642.

[14]

Sun, R., Dong, S. Y., Guo, X. C., Xia, P., Lu, S. J., Zhang, Y. F., Fan, H. S. (2024). Construction of 2D sandwich-like Na2V6O16·3H2O@MXene heterostructure for advanced aqueous zinc ion batteries. J. Colloid Interface Sci. 655, 226–233.

[15]

Huang, X. D., Huang, Y. F., Shao, F., Liu, W. B., Kang, F. Y. (2024). Dual-ion “rocking-chair” chemistry: a vanadium dioxide anode with pre-intercalated zinc ions and protons for zinc metal-free zinc-ion batteries. Chem. Eng. J. 498, 155373.

[16]

Ge, H. Y., Xie, X., Xie, X. S., Zhang, B. Y., Li, S. L., Liang, S. Q., Lu, B. G., Zhou, J. (2024). Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries. Energy Environ. Sci. 17, 3270–3306.

[17]

Guo, Y. F., Zhao, S., Zhang, N., Liu, Z. L., Wang, P. F., Zhang, J. H., Xie, Y., Yi, T. F. (2024). Advanced design strategies for Fe-based metal-organic framework-derived electrocatalysts toward high-performance Zn-air batteries. Energy Environ. Sci. 17, 1725–1755.

[18]

Qiu, H. Y., Du, X. F., Zhao, J. W., Wang, Y. T., Ju, J. W., Chen, Z., Hu, Z. L., Yan, D. P., Zhou, X. H., Cui, G. L. (2019). Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374.

[19]

Ilyas, F., Chen, J. H., Zhang, Y., Lu, H. C., Huang, Y. D., Ma, H. Y., Wang, J. L. (2023). Empowering Zn electrode current capability along interfacial stability by optimizing intrinsic safe organic electrolytes. Angew. Chem. Int. Ed. 62, e202215110.

[20]

Cui, J., Guo, Z. W., Yi, J., Liu, X. Y., Wu, K., Liang, P. C., Li, Q., Liu, Y. Y., Wang, Y. G., Xia, Y. Y., et al. (2020). Organic cathode materials for rechargeable zinc batteries: mechanisms, challenges, and perspectives. ChemSusChem 13, 2160–2185.

[21]

Sun, Y., Jian, Q. P., Wang, T. S., Liu, B., Wan, Y. H., Sun, J., Zhao, T. S. (2023). A janus separator towards dendrite-free and stable zinc anodes for long-duration aqueous zinc ion batteries. J. Energy Chem. 81, 583–592.

[22]

Hu, Z. Q., Zhang, F. L., Zhao, Y., Wang, H. R., Huang, Y. X., Wu, F., Chen, R. J., Li, L. (2022). A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 34, 2203104.

[23]

Lin, P. X., Cong, J. L., Li, J. Y., Zhang, M. H., Lai, P. B., Zeng, J., Yang, Y., Zhao, J. B. (2022). Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte. Energy Storage Mater. 49, 172–180.

[24]

Yuan, L. B., Hao, J. N., Kao, C. C., Wu, C., Liu, H. K., Dou, S. X., Qiao, S. Z. (2021). Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14, 5669–5689.

[25]

Gao, Y. N., Liu, L., Jiang, Y., Yu, D. X., Zheng, X. M., Wang, J. Y., Liu, J. W., Luo, D., Zhang, Y. G., Shi, Z. J., et al. (2024). Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc-air batteries. Nano-Micro Lett. 16, 162.

[26]

Wang, X. Y., Li, X. M., Fan, H. Q., Ma, L. T. (2022). Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14, 205.

[27]

Zhao, R. Z., Elzatahry, A., Chao, D. L., Zhao, D. Y. (2022). Making MXenes more energetic in aqueous battery. Materials 5, 8–10.

[28]

Huang, Y. F., Mou, J., Liu, W. B., Wang, X. L., Dong, L. B., Kang, F. Y., Xu, C. J. (2019). Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano-Micro Lett. 11, 49.

[29]

Liu, W. B., Hao, J. W., Xu, C. J., Mou, J., Dong, L. B., Jiang, F. Y., Kang, Z., Wu, J. L., Jiang, B. Z., Kang, F. Y. (2017). Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 53, 6872–6874.

[30]

Wang, D. D., Lv, D., Liu, H. X., Zhang, S. J., Wang, C., Wang, C. T., Yang, J., Qian, Y. T. (2022). In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew. Chem. Int. Ed. 61, e202212839.

[31]

Wang, D. D., Lv, D., Peng, H. L., Wang, C., Liu, H. X., Yang, J., Qian, Y. T. (2023). Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202310290.

[32]

Hao, Y., Feng, D. D., Hou, L., Li, T. Y., Jiao, Y. C., Wu, P. Y. (2022). Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9, 2104832.

[33]

Qiu, W. D., Li, Y., You, A., Zhang, Z. M., Li, G. F., Lu, X. H., Tong, Y. X. (2017). High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A 5, 14838–14846.

[34]

Huang, Y., Zhang, J. Y., Liu, J. W., Li, Z. X., Jin, S. Y., Li, Z. G., Zhang, S. D., Zhou, H. (2019). Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 14, 100349.

[35]

Yang, G. S., Huang, J. L., Wan, X. H., Zhu, Y. C., Liu, B. B., Wang, J. W., Hiralal, P., Fontaine, O., Guo, Y. Z., Zhou, H. (2021). A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy 90, 106500.

[36]

Tian, S. Y., Hwang, T., Malakpour Estalaki, S., Tian, Y. F., Zhou, L., Milazzo, T., Moon, S., Wu, S. W., Jian, R., Balkus, K. Jr., et al. (2023). A low-cost quasi-solid-state "water-in-swelling-clay" electrolyte enabling ultrastable aqueous zinc-ion batteries. Adv. Energy Mater. 13, 2300782.

[37]

Abakumov, A. M., Fedotov, S. S., Antipov, E. V., Tarascon, J. M. (2020). Solid state chemistry for developing better metal-ion batteries. Nat. Commun. 11, 4976.

[38]

Chao, D. L., Zhu, C. R., Song, M., Liang, P., Zhang, X., Tiep, N. H., Zhao, H. F., Wang, J., Wang, R. M., Zhang, H., et al. (2018). A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181.

[39]

Cong, J. L., Shen, X., Wen, Z. P., Wang, X., Peng, L. Q., Zeng, J., Zhao, J. B. (2021). Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Mater. 35, 586–594.

[40]

Han, Q., Chi, X. W., Liu, Y. Z., Wang, L., Du, Y. X., Ren, Y., Liu, Y. (2019). An inorganic salt reinforced Zn2+-conducting solid-state electrolyte for ultra-stable Zn metal batteries. J. Mater. Chem. A 7, 22287–22295.

[41]

Liu, C. Z., Xu, W. W., Mei, C. T., Li, M. M., Chen, W., Hong, S., Kim, W. Y., Lee, S. Y., Wu, Q. L. (2021). A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide-chitin nanofiber hydrogel electrolyte. Adv. Energy Mater. 11, 2003902.

[42]

Ma, L. T., Chen, S. M., Li, N., Liu, Z. X., Tang, Z. J., Zapien, J. A., Chen, S. M., Fan, J., Zhi, C. Y. (2020). Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, 1908121.

[43]

Ma, L. T., Chen, S. M., Li, X. L., Chen, A., Dong, B. B., Zhi, C. Y. (2020). Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte. Angew. Chem. Int. Ed. 59, 23836–23844.

[44]

Martinolich, A. J., Lee, C. W., Lu, I. T., Bevilacqua, S. C., Preefer, M. B., Bernardi, M., Schleife, A., See, K. A. (2019). Solid-state divalent ion conduction in ZnPS3. Chem. Mater. 31, 3652–3661.

[45]

Mo, F. N., Li, H. F., Pei, Z. X., Liang, G. J., Ma, L. T., Yang, Q., Wang, D. H., Huang, Y., Zhi, C. Y. (2018). A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci. Bull. 63, 1077–1086.

[46]

Mo, F. N., Liang, G. J., Meng, Q. Q., Liu, Z. X., Li, H. F., Fan, J., Zhi, C. Y. (2019). A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °c. Energy Environ. Sci. 12, 706–715.

[47]

Tang, Y., Liu, C. X., Zhu, H. R., Xie, X. S., Gao, J. W., Deng, C. B., Han, M. M., Liang, S. Q., Zhou, J. (2020). Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116.

[48]

Zhang, Y., Wang, Q. R., Bi, S. S., Yao, M. J., Wan, F., Niu, Z. Q. (2019). Flexible all-in-one zinc-ion batteries. Nanoscale 11, 17630–17636.

[49]

Huang, W. T., Huang, Y. F., Huang, X. D., Shao, F., Liu, W. B., Kang, F. Y. (2024). 3D leaf-like copper-zinc alloy enables dendrite-free zinc anode for ultra-long life aqueous zinc batteries. Small 20, 2404294.

[50]
Shen, Z. X., Liu, Y., Li, Z. H., Tang, Z. Q., Pu, J., Luo, L., Ji, Y., Xie, J. P., Shu, Z., Yao, Y. G., et al. (2024). Highly-entangled hydrogel electrolyte for fast charging/discharging properties in aqueous zinc ion batteries. Adv. Funct. Mater. 2406620.
[51]

Tian, Y. D., Chen, S., Ding, S. Y., Chen, Q. W., Zhang, J. T. (2023). A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc-iodine batteries. Chem. Sci. 14, 331–337.

[52]

Shang, W. S., Zhu, J. H., Liu, Y., Kang, L. T., Liu, S. Y., Huang, B. K., Song, J. S., Li, X. M., Jiang, F. Y., Du, W., et al. (2021). Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces 13, 24756–24764.

[53]

Liu, Y. Y., Li, F. J., Hao, J. N., Li, H. B., Zhang, S. L., Mao, J. F, Zhou, T. F., Wang, R., Zhang, L. H., Zhang, C. F. (2024). A polyanionic hydrogel electrolyte with ion selective permeability for building ultra-stable Zn/I2 batteries with 100 °C wide temperature range. Adv. Funct. Mater. 34, 2400517.

Energy Materials and Devices
Article number: 9370047
Cite this article:
Huang Y, Guo R, An Y, et al. “Water-in-montmorillonite” quasi-solid-state electrolyte for ultralow self-discharge aqueous zinc-ion batteries. Energy Materials and Devices, 2024, 2(4): 9370047. https://doi.org/10.26599/EMD.2024.9370047

665

Views

258

Downloads

0

Crossref

1

Scopus

Altmetrics

Received: 23 September 2024
Revised: 16 October 2024
Accepted: 22 October 2024
Published: 31 December 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return