Journal Home > Volume 2 , Issue 2

Owing to their high volumetric capacity, low cost and high safety, rechargeable aluminum batteries have become promising candidates for energy applications. However, the high charge density of Al3+ leads to strong coulombic interactions between anions and the cathode, resulting in sluggish diffusion kinetics and irreversible collapse of the cathode structure. Furthermore, AlCl3-based ionic liquids, which are commonly used as electrolytes in such batteries, corrode battery components and are prone to side reactions. The above problems lead to low capacity and poor cycling stability. Herein, we propose a reduced graphene oxide (rGO) cathode with a three-dimensional porous structure prepared using a simple and scalable method. The lamellar edges and oxygen-containing group defects of rGO synergistically provide abundant ion storage sites and enhance ion transfer kinetics. We matched the prepared rGO cathode with noncorrosive electrolyte 0.5 mol·L−1 Al(OTF)3/[BMIM]OTF and Al metal to construct a high-performance battery, Al||rGO-150, with good cycling stability for 2700 cycles. Quasi-in-situ physicochemical characterization results show that the ion storage mechanism is codominated by diffusion and capacitance. The capacity consists of the insertion of Al-based species cations as well as synergistic adsorption of Al(OTF)x(3−x)+ (x < 3) and [BMIM]+. The present study promotes the fundamental and applied research on rechargeable aluminum batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

3D porous reduced graphene cathode and non-corrosive electrolyte for long-life rechargeable aluminum batteries

Show Author's information Xueying ZhengYong XieFei TianDanni Lei( )Chengxin Wang( )
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China

Abstract

Owing to their high volumetric capacity, low cost and high safety, rechargeable aluminum batteries have become promising candidates for energy applications. However, the high charge density of Al3+ leads to strong coulombic interactions between anions and the cathode, resulting in sluggish diffusion kinetics and irreversible collapse of the cathode structure. Furthermore, AlCl3-based ionic liquids, which are commonly used as electrolytes in such batteries, corrode battery components and are prone to side reactions. The above problems lead to low capacity and poor cycling stability. Herein, we propose a reduced graphene oxide (rGO) cathode with a three-dimensional porous structure prepared using a simple and scalable method. The lamellar edges and oxygen-containing group defects of rGO synergistically provide abundant ion storage sites and enhance ion transfer kinetics. We matched the prepared rGO cathode with noncorrosive electrolyte 0.5 mol·L−1 Al(OTF)3/[BMIM]OTF and Al metal to construct a high-performance battery, Al||rGO-150, with good cycling stability for 2700 cycles. Quasi-in-situ physicochemical characterization results show that the ion storage mechanism is codominated by diffusion and capacitance. The capacity consists of the insertion of Al-based species cations as well as synergistic adsorption of Al(OTF)x(3−x)+ (x < 3) and [BMIM]+. The present study promotes the fundamental and applied research on rechargeable aluminum batteries.

Keywords: reduced graphene oxide, rechargeable aluminum batteries, noncorrosive electrolyte

References(49)

[1]

Shi, P. R., Ma, J. B., Liu, M., Guo, S. K., Huang, Y. F., Wang, S. W., Zhang, L. H., Chen, L. K., Yang, K., Liu, X. T., et al. (2023). A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18, 602–610.

[2]

Wang, Z. J., Zhang, B. (2023). Weakly solvating electrolytes for next-generation lithium batteries: design principles and recent advances. Energy Mater. Dev. 1, 9370003.

[3]

Dong, X. Z., Chen, H., Lai, H. W., Wang, L. Y., Wang, J. Q., Fang, W. Z., Gao, C. (2022). A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability. J. Energy Chem. 66, 38–44.

[4]

Meng, J. S., Yao, X. H., Hong, X. F., Zhu, L. J., Xiao, Z. T., Jia, Y. F., Liu, F., Song, H. M., Zhao, Y. L., Pang, Q. Q. (2023). A solution-to-solid conversion chemistry enables ultrafast-charging and long-lived molten salt aluminium batteries. Nat. Commun. 14, 3909.

[5]

Zhang, L. Y., Chen, L., Luo, H., Zhou, X. F., Liu, Z. P. (2017). Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv. Energy Mater. 7, 1700034.

[6]

Zhang, J. Y., Zhang, L., Zhao, Y. L., Meng, J. S., Wen, B. H., Muttaqi, K. M., Islam, M. R., Cai, Q., Zhang, S. J. (2022). High-performance rechargeable aluminum-ion batteries enabled by composite FeF3@expanded graphite cathode and carbon nanotube-modified separator. Adv. Energy Mater. 12, 2200959.

[7]

Ng, K. L., Amrithraj, B., Azimi, G. (2022). Nonaqueous rechargeable aluminum batteries. Joule 6, 134–170.

[8]

Yang, H. C., Li, H. C., Li, J., Sun, Z. H., He, K., Cheng, H. M., Li, F. (2019). The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58, 11978–11996.

[9]

Zhu, N., Zhang, K., Wu, F., Bai, Y., Wu, C. (2021). Ionic liquid-based electrolytes for aluminum/magnesium/sodium-Ion batteries. Energy Mater. Adv. 2021, 9204217.

[10]

Kim, J., Raj, M. R., Lee, G. (2021). High-defect-density graphite for superior-performance aluminum-ion batteries with ultra-fast charging and stable long life. Nano-Micro Lett. 13, 171.

[11]

Kong, Y. Q., Tang, C., Huang, X. D., Nanjundan, A. K., Zou, J., Du, A. J., Yu, C. Z. (2021). Thermal reductive perforation of graphene cathode for high-performance aluminum-ion batteries. Adv. Funct. Mater. 31, 2010569.

[12]

Gu, S. C., Haoyi, Y., Yuan, Y. X., Gao, Y. N., Zhu, N., Wu, F., Bai, Y., Wu, C. (2022). Solvent effects on kinetics and electrochemical performances of rechargeable aluminum batteries. Energy Mater. Adv. 2022, 9790472.

[13]

Ito, Y., Nohira, T. (2000). Non-conventional electrolytes for electrochemical applications. Electrochim. Acta 45, 2611–2622.

[14]

Wang, H. L., Bai, Y., Chen, S., Luo, X. Y., Wu, C., Wu, F., Lu, J., Amine, K. (2015). Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interfaces 7, 80–84.

[15]

Nayem, S. M. A., Ahmad, A., Shah, S. S., Alzahrani, A. S., Ahammad, A. J. S., Aziz, M. A. (2022). High performance and long-cycle life rechargeable aluminum ion battery: recent progress, perspectives and challenges. Chem. Rec. 22, e202200181.

[16]

Li, Z. Y., Niu, B. B., Liu, J., Li, J. L., Kang, F. Y. (2018). Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl. Mater. Interfaces 10, 9451–9459.

[17]

Guo, S. N., Yang, H. Y., Liu, M. Q., Feng, X., Xu, H. J., Bai, Y., Wu, C. (2021). Interlayer-expanded MoS2/N-doped carbon with three-dimensional hierarchical architecture as a cathode material for high-performance aluminum-ion batteries. ACS Appl. Energy Mater. 4, 7064–7072.

[18]

Gu, S. C., Wang, H. L., Wu, C., Bai, Y., Li, H., Wu, F. (2017). Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Stor. Mater. 6, 9–17.

[19]

Shi, J. Y., Tian, X. D., Song, Y., Yang, T., Hu, S. L., Liu, Z. J. (2023). Redox electrolyte-enhanced carbon-based supercapacitors: recent advances and future perspectives. Energy Mater. Dev. 1, 9370009.

[20]

Zheng, S. H., Ma, J. M., Wu, Z. S., Zhou, F., He, Y. B., Kang, F. Y., Cheng, H. M., Bao, X. H. (2018). All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 11, 2001–2009.

[21]

Yu, J. K., Li, X. J., Li, N., Wu, T. T., Liu, Y. R., Li, C. X., Liu, J., Wang, L. (2022). Pencil-drawing graphite nanosheets: a simple and effective cathode for high-capacity aluminum batteries. Small Methods 6, 2200026.

[22]

Morag, A., Yu, M. H. (2021). Layered electrode materials for non-aqueous multivalent metal batteries. J. Mater. Chem. A 9, 19317–19345.

[23]

Lin, M. C., Gong, M., Lu, B. A., Wu, Y. P., Wang, D. Y., Guan, M. Y., Angell, M., Chen, C. X., Yang, J., Hwang, B. J., et al. (2015). An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328.

[24]

Wang, H. L., Gu, S. C., Bai, Y., Chen, S., Wu, F., Wu, C. (2016). High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS Appl. Mater. Interfaces 8, 27444–27448.

[25]

Shi, R. Y., Han, C. P., Duan, H., Xu, L., Zhou, D., Li, H. F., Li, J. Q., Kang, F. Y., Li, B. H., Wang, G. X. (2018). Redox-active organic sodium anthraquinone-2-sulfonate (AQS) anchored on reduced graphene oxide for high-performance supercapacitors. Adv. Energy Mater. 8, 1802088.

[26]

Das, A. K., Srivastav, M., Layek, R. K., Uddin, M. E., Jung, D., Kim, N. H., Lee, J. H. (2014). Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst. J. Mater. Chem. A 2, 1332–1340.

[27]

Tamang, S., Rai, S., Bhujel, R., Bhattacharyya, N. K., Swain, B. P., Biswas, J. (2023). A concise review on GO, rGO and metal oxide/rGO composites: Fabrication and their supercapacitor and catalytic applications. J. Alloys Compd. 947, 169588.

[28]

Zong, H. Z., Gao, X. D., Liu, Q. E., Hao, Y. J., Hao, G. Z., Wang, S. W., Zhou, H., Xiao, L., Jiang, W. (2022). Preparation of rGO, Fe2O3, and Fe2O3/rGO for the catalytic thermal decomposition of microspherical TKX-50. J. Therm. Anal. Calorim. 147, 12779–12790.

[29]

Lv, A. J., Wang, M. Y., Shi, H. T., Lu, S. L., Zhang, J. T., Jiao, S. Q. (2023). A carbon aerogel lightweight Al battery for fast storage of fluctuating energy. Adv. Mater. 35, 2303943.

[30]

Guan, W., Huang, Z., Wang, W., Song, W. L., Tu, J. G., Luo, Y. W., Lei, H. P., Wang, M. Y., Jiao, S. Q. (2023). The negative-charge-triggered “dead zone” between electrode and current collector realizes ultralong cycle life of aluminum-ion batteries. Adv. Mater. 35, 2205489.

[31]

Tang, Z., Zhou, S. Y., Huang, Y. C., Wang, H., Zhang, R., Wang, Q., Sun, D., Tang, Y. G., Wang, H. Y. (2023). Improving the Initial coulombic efficiency of carbonaceous materials for Li/Na-Ion batteries: origins, solutions, and perspectives. Electrochem. Energy Rev. 6, 8.

[32]

Wang, W. Y., Zhao, X. W., Ye, L. (2023). Self-assembled construction of robust and super elastic graphene aerogel for high-efficient formaldehyde removal and multifunctional application. Small 19, 2300234.

[33]

Yang, Z. H., Huang, X. B., Meng, P. Y., Jiang, M., Wang, Y. B., Yao, Z. P., Zhang, J., Sun, B. D., Fu, C. P. (2023). Phenoxazine polymer-based p-type positive electrode for aluminum-ion batteries with ultra-long cycle life. Angew. Chem. Int. Ed. 62, e202216797.

[34]

Luo, P., Zheng, C., He, J. W., Tu, X., Sun, W. P., Pan, H. G., Zhou, Y. P., Rui, X. H., Zhang, B., Huang, K. M. (2022). Structural engineering in graphite-based metal-ion batteries. Adv. Funct. Mater. 32, 2107277.

[35]

Lindström, H., Södergren, S., Solbrand, A., Rensmo, H., Hjelm, J., Hagfeldt, A., Lindquist, S. E. (1997). Li+ Ion insertion in TiO2 (Anatase). 2. voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722.

[36]

Wang, J., Polleux, J., Lim, J., Dunn, B. (2007). Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931.

[37]

Rashad, M., Asif, M. (2021). Understanding the low temperature electrochemistry of magnesium-lithium hybrid ion battery in all-phenyl-complex solutions. J. Energy Chem. 56, 383–390.

[38]

Guo, R. Q., Lv, C. X., Xu, W. J., Sun, J. W., Zhu, Y. K., Yang, X. F., Li, J. Z., Sun, J., Zhang, L. X., Yang, D. J. (2020). Effect of Intrinsic defects of carbon materials on the sodium storage performance. Adv. Energy Mater. 10, 1903652.

[39]

Yao, X. H., Ke, Y. J., Ren, W. H., Wang, X. P., Xiong, F. Y., Yang, W., Qin, M. S., Li, Q., Mai, L. Q. (2019). Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 9, 1803260.

[40]

Liu, Z. X., Yang, Q., Wang, D. H., Liang, G. J., Zhu, Y. H., Mo, F. N., Huang, Z. D., Li, X. L., Ma, L. T., Tang, T. C., et al. (2019). A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv. Energy Mater. 9, 1902473.

[41]

Li, X. W., Sun, J. Y., Zhao, W. X., Lai, Y. J., Yu, X., Liu, Y. (2022). Intergrowth of graphite-like crystals in hard carbon for highly reversible Na-ion storage. Adv. Funct. Mater. 32, 2106980.

[42]

Li, B. H., Wang, C., Qin, Z. Y., Luan, C. H., Zhan, C. Z., Li, L. L., Lv, R. T., Shen, W. C., Huang, Z. H. (2023). ZnS/CuS nanoparticles encapsulated in multichannel carbon fibers as high-performance anode materials for flexible Li-ion capacitors. Energy Mater. Dev. 1, 9370012.

[43]

Tang, W., Goh, B. M., Hu, M. Y., Wan, C., Tian, B. B., Deng, X. C., Peng, C. X., Lin, M., Hu, J. Z., Loh, K. P. (2016). In situ raman and nuclear magnetic resonance study of trapped lithium in the solid electrolyte interface of reduced graphene oxide. J. Phys. Chem. C 120, 2600–2608.

[44]

Guo, S. N., Yang, H. Y., Liu, M. Q., Feng, X., Gao, Y. N., Bai, Y., Wu, C. (2021). Al-storage behaviors of expanded graphite as high-rate and long-life cathode materials for rechargeable aluminum batteries. ACS Appl. Mater. Interfaces 13, 22549–22558.

[45]

Chen, J. Z., Zhou, W. J., Quan, Y. H., Liu, B., Yang, M., Chen, M. F., Han, X., Xu, X. W., Zhang, P. X., Shi, S. Q. (2022). Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Stor. Mater. 53, 629–637.

[46]

Cheng, X., Ran, F. M., Huang, Y. F., Zheng, R. T., Yu, H. X., Shu, J., Xie, Y., He, Y. B. (2021). Insight into the synergistic effect of N, S Co-doping for carbon coating layer on niobium oxide anodes with ultra-long life. Adv. Funct. Mater. 31, 2100311.

[47]

Kumar, S., Rama, P., Yang, G. L., Lieu, W. Y., Chinnadurai, D., Seh, Z. W. (2022). Additive-driven interfacial engineering of aluminum metal anode for ultralong cycling life. Nano-Micro Lett. 15, 21.

[48]

Friedman, A. K., Shi, W. Q., Losovyj, Y., Siedle, A. R., Baker, L. A. (2018). Mapping microscale chemical heterogeneity in nafion membranes with X-ray photoelectron spectroscopy. J. Electrochem. Soc. 165, H733–H741.

[49]

Bai, R. F., Yang, J., Li, G. J., Luo, J. Y., Tang, W. J. (2021). Rechargeable aqueous aluminum-FeFe(CN)6 battery with artificial interphase through deep eutectic solution. Energy Stor. Mater. 41, 41–50.

File
EMD20240032_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 January 2024
Revised: 01 March 2024
Accepted: 13 March 2024
Published: 06 June 2024
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors thank the National Natural Science Foundation of China and the Fundamental Research Funds for the Central Universities of China for their supporting to this work.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return