AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Interface engineering of inverted wide-bandgap perovskite solar cells for tandem photovoltaics

Yang YangFengyuan LiRuihao Chen( )Hongqiang Wang( )
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Labortary of Graphene, Xi’an 710072, China

Yang Yang and Fengyuan Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Wide-bandgap perovskite solar cells (WBG PSCs) have garnered significant research attention for their potential in tandem solar cells. However, they face challenges such as high open-circuit voltage losses and severe phase instability. These issues are primarily owing to the formation of defects, ion migration, and energy level mismatches at the interface of WBG perovskite devices. Meanwhile, inverted PSCs demonstrate superior stability potential and compatibility with tandem devices, making them the most promising application for WBG perovskite materials. Consequently, interface modulation for such devices has become imperative. In this review, from the perspective of applicability in tandem devices, we first provided a concise overview of WBG perovskite research and its efficiency progress in inverted devices. We further discussed interface carrier dynamics and the potential impact of interfaces on such device performance. Afterward, we presented a comprehensive summary of interface engineering in inverted WBG perovskite (1.60 eV–1.80 eV) solar cells. The research particularly explored both the upper and buried interfaces of WBG absorbers in the inverted PSCs, thoroughly investigating interface design strategies and outlining promising research directions. Finally, this review provides insight into the future development of interface engineering for high-performance and large-area WBG PSCs.

References

[1]

Soonmin, H., Hardani; Nandi, P., Mwankemwa, B. S., Malevu, T. D., Malik, M. I. (2023). Overview on different types of solar cells: an update. Appl. Sci. 13, 2051.

[2]
Interactive best research-cell efficiency chart. (2024). https://www.nrel.gov/pv/interactive-cell-efficiency.html. (accessed 14 March 2024).
[3]

Efaz, E. T., Rhaman, M. M., Al Imam, S., Bashar, K. L., Kabir, F., Mourtaza, M. D. E., Sakib, S. N., Mozahid, F. A. (2021). A review of primary technologies of thin-film solar cells. Eng. Res. Express 3, 032001.

[4]

Kokkonen, M., Talebi, P., Zhou, J., Asgari, S., Soomro, S. A., Elsehrawy, F., Halme, J., Ahmad, S., Hagfeldt, A., Hashmi, S. G. (2021). Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A 9, 10527–10545.

[5]

Raj, V., Haggren, T., Wong, W. W., Tan, H. H., Jagadish, C. (2022). Topical review: pathways toward cost-effective single-junction III-V solar cells. J. Phys. D Appl. Phys. 55, 143002.

[6]

Ehrler, B., Alarcón-Lladó, E., Tabernig, S. W., Veeken, T., Garnett, E. C., Polman, A. (2020). Photovoltaics reaching for the shockley-queisser limit. ACS Energy Lett. 5, 3029–3033.

[7]

Polman, A., Knight, M., Garnett, E. C., Ehrler, B., Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science 352, aad4424.

[8]

Hörantner, M. T., Leijtens, T., Ziffer, M. E., Eperon, G. E., Christoforo, M. G., McGehee, M. D., Snaith, H. J. (2017). The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513.

[9]

Vos, A. D. (1980). Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D: Appl. Phys. 13, 839–846.

[10]

Rühle, S. (2016). Tabulated values of the Shockley-Queisser limit for single junction solar cells. Solar Energy 130, 139–147.

[11]

Ramadan, A. J., Oliver, R. D. J., Johnston, M. B., Snaith, H. J. (2023). Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8, 822–838.

[12]

Tong, J. H., Song, Z. N., Kim, D. H., Chen, X. H., Chen, C., Palmstrom, A. F., Ndione, P. F., Reese, M. O., Dunfield, S. P., Reid, O. G., et al. (2019). Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479.

[13]

Hu, S. F., Otsuka, K., Murdey, R., Nakamura, T., Truong, M. A., Yamada, T., Handa, T., Matsuda, K., Nakano, K., Sato, A., et al. (2022). Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107.

[14]

Slotcavage, D. J., Karunadasa, H. I., McGehee, M. D. (2016). Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205.

[15]

Koopmans, M., Koster, L. J. A. (2022). Voltage deficit in wide bandgap perovskite solar cells: the role of traps, band energies, and effective density of states. Solar RRL 6, 2200560.

[16]

Mahesh, S., Ball, J. M., Oliver, R. D. J., McMeekin, D. P., Nayak, P. K., Johnston, M. B., Snaith, H. J. (2020). Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267.

[17]

Chen, B., Rudd, P. N., Yang, S., Yuan, Y. B., Huang, J. S. (2019). Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867.

[18]

Liu, S. W., Biju, V. P., Qi, Y. B., Chen, W., Liu, Z. H. (2023). Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater. 15, 27.

[19]

Ašmontas, S., Mujahid, M. (2023). Recent progress in perovskite tandem solar cells. Nanomaterrials 13, 1886.

[20]

Saliba, M., Correa-Baena, J. P., Grätzel, M., Hagfeldt, A., Abate, A. (2018). Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569.

[21]

Duong, T., Wu, Y. L., Shen, H. P., Peng, J., Fu, X., Jacobs, D., Wang, E. C., Kho, T. C., Fong, K. C., Stocks, M., et al. (2017). Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228.

[22]

Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988.

[23]

Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769.

[24]
Mitzi, D. B. (1999). Synthesis, structure, and properties of organic-inorganic perovskites and related materials. In Progress in Inorganic Chemistry. Karlin, K. D., Ed. New York: John Wiley & Sons, Inc.
[25]

Zhang, X., Yu, Z. H., Zhang, D., Tai, Q. D., Zhao, X. Z. (2023). Recent progress of carbon-based inorganic perovskite solar cells: from efficiency to stability. Adv. Energy Mater. 13, 2201320.

[26]

Dastidar, S., Egger, D. A., Tan, L. Z., Cromer, S. B., Dillon, A. D., Liu, S., Kronik, L., Rappe, A. M., Fafarman, A. T. (2016). High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16, 3563–3570.

[27]

Wang, K., Tong, Y., Cao, L., Yue, S. H., Li, Y. F., Li, C. X., Wu, M. Y., Wang, H. Q. (2023). Progress of inverted inorganic cesium lead halide perovskite solar cells. Cell Rep. Phys. Sci. 4, 101726.

[28]

Marronnier, A., Roma, G., Boyer-Richard, S., Pedesseau, L., Jancu, J. M., Bonnassieux, Y., Katan, C., Stoumpos, C. C., Kanatzidis, M. G., Even, J. (2018). Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12, 3477–3486.

[29]

Nie, T., Fang, Z. M., Ren, X. D., Duan, Y. W., Liu, S. Z. (2023). Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15, 70.

[30]

Tong, Y., Najar, A., Wang, L., Liu, L., Du, M. Y., Yang, J., Li, J. X., Wang, K., Liu, S. Z. (2022). Wide-bandgap organic-inorganic lead halide perovskite solar cells. Adv. Sci. 9, 2105085.

[31]

Bhattarai, S., Mhamdi, A., Hossain, I., Raoui, Y., Pandey, R., Madan, J., Bouazizi, A., Maiti, M., Gogoi, D., Sharma, A. (2022). A detailed review of perovskite solar cells: Introduction, working principle, modelling, fabrication techniques, future challenges. Micro Nanostruct. 172, 207450.

[32]

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647.

[33]

Kim, M., Choi, I. W., Choi, S. J., Song, J. W., Mo, S. I., An, J. H., Jo, Y., Ahn, S., Ahn, S. K., Kim, G. H., et al. (2021). Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 5, 659–672.

[34]

Ren, G. H., Han, W. B., Deng, Y. Y., Wu, W., Li, Z. W., Guo, J. X., Bao, H. C., Liu, C. Y., Guo, W. B. (2021). Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9, 4589–4625.

[35]

Liu, J., De Bastiani, M., Aydin, E., Harrison, G. T., Gao, Y. J., Pradhan, R. R., Eswaran, M. K., Mandal, M., Yan, W. B., Seitkhan, A., et al. (2022). Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306.

[36]

Li, T. T., Xu, J., Lin, R. X., Teale, S., Li, H. J., Liu, Z., Duan, C. Y., Zhao, Q., Xiao, K., Wu, P., et al. (2023). Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620.

[37]

Mariotti, S., Köhnen, E., Scheler, F., Sveinbjörnsson, K., Zimmermann, L., Piot, M., Yang, F. J., Li, B. R., Warby, J., Musiienko, A., et al. (2023). Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381, 63–69.

[38]

Bi, C., Yuan, Y. B., Fang, Y. J., Huang, J. S. (2015). Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 5, 1401616.

[39]

Eperon, G. E., Paternò, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., Snaith, H. J. (2015). Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695.

[40]

Wang, Q., Zheng, X. P., Deng, Y. H., Zhao, J. J., Chen, Z. L., Huang, J. S. (2017). Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382.

[41]

Ji, R., Zhang, Z. B., Hofstetter, Y. J., Buschbeck, R., Hänisch, C., Paulus, F., Vaynzof, Y. (2022). Perovskite phase heterojunction solar cells. Nat. Energy 7, 1170–1179.

[42]

Li, S., Zheng, Z., Ju, J. Q., Cheng, S. Y., Chen, F. Y., Xue, Z. X., Ma, L., Wang, Z. P. (2024). A generic strategy to stabilize wide bandgap perovskites for efficient tandem solar cells. Adv. Mater. 36, 2307701.

[43]

Zhou, Y. Y., Zhao, Y. X. (2019). Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511.

[44]

Zhang, Y., Kirs, A., Ambroz, F., Lin, C. T., Bati, A. S. R., Parkin, I. P., Shapter, J. G., Batmunkh, M., Macdonald, T. J. (2021). Ambient fabrication of organic-inorganic hybrid perovskite solar cells. Small Methods 5, 2000744.

[45]

Hu, M., Bi, C., Yuan, Y. B., Bai, Y., Huang, J. S. (2016). Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3, 1500301.

[46]

Azmi, R., Ugur, E., Seitkhan, A., Aljamaan, F., Subbiah, A. S., Liu, J., Harrison, G. T., Nugraha, M. I., Eswaran, M. K., Babics, M., et al. (2022). Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77.

[47]

Guo, Z. L., Jena, A. K., Kim, G. M., Miyasaka, T. (2022). The high open-circuit voltage of perovskite solar cells: a review. Energy Environ. Sci. 15, 3171–3222.

[48]

Ho-Baillie, A. W. Y., Zheng, J. H., Mahmud, M. A., Ma, F. J., McKenzie, D. R., Green, M. A. (2021). Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 8, 041307.

[49]

Caprioglio, P., Stolterfoht, M., Wolff, C. M., Unold, T., Rech, B., Albrecht, S., Neher, D. (2019). On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9, 1901631.

[50]

Yu, Y., Xu, P., Du, H. T., Zhou, Q., Wu, Y. K., Hao, Y. Y., Ren, J. F., Pang, Z. Y., Chen, Z. L., Han, S. H. (2023). Surface modification of NiOx layer with versatile coupling agent enables enhanced performance and stability of inverted perovskite solar cells. Solar RRL 7, 2201047.

[51]

Chen, W., Zhou, Y. C., Chen, G. C., Wu, Y. H., Tu, B., Liu, F. Z., Huang, L., Ng, A. M. C., Djurišić, A. B., He, Z. B. (2019). Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv. Energy Mater. 9, 1803872.

[52]

Zhang, H., Cheng, J. Q., Lin, F., He, H. X., Mao, J., Wong, K. S., Jen, A. K. Y., Choy, W. C. H. (2016). Pinhole-free and surface-nanostructured NiOx film by room-Temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10, 1503–1511.

[53]

Park, H., Kye, H., Jeong, B. H., Heo, J., Hwang, S., Kim, B. G., Park, H. J. (2022). Enhanced interfacial characteristics of perovskite solar cell with multi-functional organic hole-selective interlayer. Dyes Pigm. 197, 109837.

[54]

Choi, J., Kamaraj, E., Park, H., Jeong, B. H., Baac, H. W., Park, S., Park, H. J. (2021). Defect-passivation of organometal trihalide perovskite with functionalized organic small molecule for enhanced device performance and stability. Dyes Pigm. 189, 109255.

[55]

Shen, G. B., Dong, H. Y., Yang, F., Ng, X. G., Li, X., Lin, F., Mu, C. (2023). Application of an amphipathic molecule at the NiOx/perovskite interface for improving the efficiency and long-term stability of the inverted perovskite solar cells. J. Energy Chem. 78, 454–462.

[56]

Boyd, C. C., Shallcross, R. C., Moot, T., Kerner, R., Bertoluzzi, L., Onno, A., Kavadiya, S., Chosy, C., Wolf, E. J., Werner, J., et al. (2020). Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775.

[57]

Mann, D. S., Patil, P., Kwon, S. N., Na, S. I. (2021). Enhanced performance of p-i-n perovskite solar cell via defect passivation of nickel oxide/perovskite interface with self-assembled monolayer. Appl. Surf. Sci. 560, 149973.

[58]

Zhumagali, S., Isikgor, F. H., Maity, P., Yin, J., Ugur, E., De Bastiani, M., Subbiah, A. S., Mirabelli, A. J., Azmi, R., Harrison, G. T., et al. (2021). Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 11, 2101662.

[59]

Sutanto, A. A., Igci, C., Kim, H., Kanda, H., Shibayama, N., Mensi, M., Queloz, V. I. E., Momblona, C., Yun, H. J., Bolink, H. J., et al. (2021). Phosphine oxide derivative as a passivating agent to enhance the performance of perovskite solar cells. ACS Appl. Energy Mater. 4, 1259–1268.

[60]

Liu, J., Wu, Y. Z., Qin, C. J., Yang, X. D., Yasuda, T., Islam, A., Zhang, K., Peng, W. Q., Chen, W., Han, L. Y. (2014). A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7, 2963–2967.

[61]

Caprioglio, P., Cruz, D. S., Caicedo-Dávila, S., Zu, F. S., Sutanto, A. A., Peña-Camargo, F., Kegelmann, L., Meggiolaro, D., Gregori, L., Wolff, C. M., et al. (2021). Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy Environ. Sci. 14, 4508–4522.

[62]

McGettrick, J. D., Hooper, K., Pockett, A., Baker, J., Troughton, J., Carnie, M., Watson, T. (2019). Sources of Pb(0) artefacts during XPS analysis of lead halide perovskites. Mater. Lett. 251, 98–101.

[63]

Krishna, A., Zhang, H., Zhou, Z. W., Gallet, T., Dankl, M., Ouellette, O., Eickemeyer, F. T., Fu, F., Sanchez, S., Mensi, M., et al. (2021). Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy Environ. Sci. 14, 5552–5562.

[64]

Liang, J. W., Hu, X. Z., Wang, C., Liang, C., Chen, C., Xiao, M., Li, J. S., Tao, C., Xing, G. C., Yu, R., et al. (2022). Origins and influences of metallic lead in perovskite solar cells. Joule 6, 816–833.

[65]

Wu, T. H., Wang, Y. B., Li, X., Wu, Y. Z., Meng, X. Y., Cui, D. Y., Yang, X. D., Han, L. Y. (2019). Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy. Mater. 9, 1803766.

[66]

Fischer, M., Tvingstedt, K., Baumann, A., Dyakonov, V. (2018). Doping Profile in Planar Hybrid Perovskite Solar Cells Identifying Mobile Ions. ACS Appl. Energy Mater. 1, 5129–5134.

[67]

Bi, C., Wang, Q., Shao, Y. C., Yuan, Y. B., Xiao, Z. G., Huang, J. S. (2015). Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747.

[68]

Heo, J., Lee, S. W., Yong, J., Park, H., Lee, Y. K., Shin, J., Whang, D. R., Chang, D. W., Park, H. J. (2023). Interfacial modification of wide-bandgap perovskite solar cell approaching 20% with organic hole transport material. Chem. Eng. J. 474, 145632.

[69]

Shao, Y. C., Xiao, Z. G., Bi, C., Yuan, Y. B., Huang, J. S. (2014). Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784.

[70]

Rajagopal, A., Yao, K., Jen, A. K. Y. (2018). Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 30, 1800455.

[71]

Lin, Z. Q., Lian, H. J., Ge, B., Zhou, Z. R., Yuan, H. Y., Hou, Y., Yang, S., Yang, H. G. (2021). Mediating the local oxygen-bridge interactions of oxysalt/perovskite interface for defect passivation of perovskite photovoltaics. Nano-Micro Lett. 13, 177.

[72]

Jiang, C. F., Zhou, J. J., Li, H., Tan, L. G., Li, M. H., Tress, W., Ding, L. M., Grätzel, M., Yi, C.Y. (2023). Double layer composite electrode strategy for efficient perovskite solar cells with excellent reverse-bias stability. Nano Micro Lett. 15, 12.

[73]

Dong, W., Qiao, W. C., Xiong, S. B., Yang, J. M., Wang, X. L., Ding, L. M., Yao, Y. F., Bao, Q. Y. (2022). Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108.

[74]

Stranks, S. D. (2017). Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2, 1515–1525.

[75]

Gharibzadeh, S., Fassl, P., Hossain, I. M., Rohrbeck, P., Frericks, M., Schmidt, M., Duong, T., Khan, M. R., Abzieher, T., Nejand, B. A., et al. (2021). Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 14, 5875–5893.

[76]

Cacovich, S., Vidon, G., Degani, M., Legrand, M., Gouda, L., Puel, J. B., Vaynzof, Y., Guillemoles, J. F., Ory, D., Grancini, G. (2022). Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868.

[77]

Fang, Z. M., Jia, L. B., Yan, N., Jiang, X. F., Ren, X. D., Yang, S. F., Liu, S. Z. (2022). Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells. InfoMat 4, e12307.

[78]

Chen, C., Song, Z. N., Xiao, C. X., Zhao, D. W., Shrestha, N., Li, C. W., Yang, G., Yao, F., Zheng, X. L., Ellingson, R. J., et al. (2019). Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147.

[79]

He, R., Yi, Z. J., Luo, Y., Luo, J. C., Wei, Q., Lai, H. G., Huang, H., Zou, B. S., Cui, G. Y., Wang, W. W., et al. (2022). Pure 2D perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 V for 1.77-eV wide-bandgap perovskite solar cells. Adv. Sci. 9, 2203210.

[80]

Bu, T. L., Li, J., Lin, Q. D., McMeekin, D. P., Sun, J. S., Wang, M. C., Chen, W. J., Wen, X. M., Mao, W. X., McNeill, C. R., et al. (2020). Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 75, 104917.

[81]

Wang, Z. P., Lin, Q. Q., Chmiel, F. P., Sakai, N., Herz, L. M., Snaith, H. J. (2017). Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135.

[82]

Song, Z. L., Yang, J., Dong, X. Y., Wang, R., Dong, Y. X., Liu, D. X., Liu, Y. S. (2023). Inverted wide-bandgap 2D/3D perovskite solar cells with >22% efficiency and low voltage loss. Nano Lett. 23, 6705–6712.

[83]

Yang, F. J., Tockhorn, P., Musiienko, A., Lang, F., Menzel, D., Macqueen, R., Köhnen, E., Xu, K., Mariotti, S., Mantione, D., et al. (2024). Minimizing interfacial recombination in 1.8 eV triple-halide perovskites for 27.5% efficient all-perovskite tandems. Adv. Mater. 36, 2307743.

[84]

Yang, Y., Chang, Q., Yang, Y. Y., Jiang, Y. H., Dai, Z. Y., Huang, X. F., Huo, J. W., Guo, P. F., Shen, H., Liu, Z., et al. (2023). Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules. J. Mater. Chem. A 11, 16871–16877.

[85]

Li, Z., Zhang, J., Wu, S. F., Deng, X., Li, F. Z., Liu, D. J., Lee, C. C., Lin, F., Lei, D., C. Chueh, C. C., et al. (2020). Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy 78, 105377.

[86]

Li, X., Ying, Z. Q., Zheng, J. M., Wang, X. L., Chen, Y., Wu, M., Xiao, C. X., Sun, J. S., Shou, C. H., Yang, Z. H., et al. (2023). Surface reconstruction for efficient and stable monolithic perovskite/silicon tandem solar cells with greatly suppressed residual strain. Adv. Mater. 35, 2211962.

[87]

Wang, J., Wu, X., Liu, Y. Z., Xue, Q. F., Yip, H. L., Jen, A. K. Y., Zhu, Z. L. (2021). Interface engineering for all-inorganic CsPbIBr2 perovskite solar cells with enhanced power conversion efficiency over 11%. Energy Technol. 9, 2100562.

[88]

Yang, X. Y., Luo, D. Y., Xiang, Y. R., Zhao, L. C., Anaya, M., Shen, Y. L., Wu, J., Yang, W. Q., Chiang, Y. H., Tu, Y. G., et al. (2021). Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435.

[89]

Liu, T. H., Chen, K., Hu, Q., Zhu, R., Gong, Q. H. (2016). Inverted perovskite solar cells: progresses and perspectives. Adv. Energy. Mater. 6, 1600457.

[90]

Gao, Z. W., Wang, Y., Liu, H., Sun, J. Y., Kim, J., Li, Y., Xu, B. M., Choy, W. C. H. (2021). Tailoring the interface in FAPbI3 planar perovskite solar cells by imidazole-graphene-quantum-dots. Adv. Funct. Mater. 31, 2101438.

[91]

Wang, Y. H., Duan, L. P., Zhang, M., Hameiri, Z., Liu, X., Bai, Y., Hao, X. J. (2022). PTAA as efficient hole transport materials in perovskite solar cells: a review. Solar RRL 6, 2200234.

[92]
Yan, N., Fang, Z. M., Dai, Z. H., Feng, J. S., Liu, S. Z. (2024). Buried interface-the key issues for high performance inverted perovskite solar cells. Adv. Funct. Mater. in press. https://doi.org/10.1002/adfm.202314039
[93]

Mali, S. S., Kim, H., Shim, S. E., Hong, C. K. (2016). A solution processed nanostructured p-type NiO electrode for efficient inverted perovskite solar cells. Nanoscale 8, 19189–19194.

[94]

Bai, Y., Xiao, S., Hu, C., Zhang, T., Meng, X. Y., Li, Q., Yang, Y. L., Wong, K. S., Chen, H. N., Yang, S. H. (2017). A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy 34, 58–68.

[95]

Hu, Z. J., Chen, D., Yang, P., Yang, L. J., Qin, L. S., Huang, Y. X., Zhao, X. C. (2018). Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Appl. Surf. Sci. 441, 258–264.

[96]

Zhu, Z. L., Bai, Y., Zhang, T., Liu, Z. K., Long, X., Wei, Z. H., Wang, Z. L., Zhang, L. X., Wang, J. N., Yan, F., et al. (2014). High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571–12575.

[97]

Tang, J., Jiao, D., Zhang, L., Zhang, X. Z., Xu, X. X., Yao, C., Wu, J. H., Lan, Z. (2018). High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals. Solar Energy 161, 100–108.

[98]

Al-Ashouri, A., Magomedov, A., Roß, M., Jošt, M., Talaikis, M., Chistiakova, G., Bertram, T., Márquez, J. A., Köhnen, E., Kasparavičius, E., et al. (2019). Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369.

[99]

Al-Ashouri, A., Köhnen, E., Li, B. R., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J. A., Vilches, A. B. M., Kasparavicius, E., Smith, J. A., et al. (2020). Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309.

[100]

Yi, Z. J., Wang, W. H., He, R., Zhu, J. W., Jiao, W. B., Luo, Y., Xu, Y. L., Wang, Y. F., Zeng, Z. X., Wei, K., et al. (2024). Achieving a high open-circuit voltage of 1.339 V in 1.77 eV wide-bandgap perovskite solar cells via self-assembled monolayers. Energy Environ. Sci. 17, 202–209.

[101]

Li, L. D., Wang, Y. R., Wang, X. Y., Lin, R. X., Luo, X., Liu, Z., Zhou, K., Xiong, S. B., Bao, Q. Y., Chen, G., et al. (2022). Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717.

[102]

Vidyasagar, D., Yun, Y., Cho, J. Y., Lee, H., Kim, K. W., Kim, Y. T., Yang, S. W., Jung, J., Choi, W. C., Kim, S., et al. (2024). Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells. J. Energy Chem. 88, 317–326.

[103]

Wang, G. L., Zheng, J. H., Duan, W. Y., Yang, J., Mahmud, M. A., Lian, Q., Tang, S., Liao, C., Bing, J. M., Yi, J. P., et al. (2023). Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells. Joule 7, 2583–2594.

[104]

Kim, S. Y., Cho, S. J., Byeon, S. E., He, X., Yoon, H. J. (2020). Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy. Mater. 10, 2002606.

[105]
Yong, J., Lee, Y. K., Park, H., Muthu, S., Shin, J., Whang, D. R., Kim, B. G., Chang, D. W., Park, H. J. (2023). Enhancement of interfacial properties by indoloquinoxaline-based small molecules for highly efficient wide-bandgap perovskite solar cells. Adv. Funct. Mater. in press. https://doi.org/10.1002/adfm.202312505
[106]

Wang, R. Y., Li, M. H., Ma, Z. W., He, Z. W., Dong, Y. M., Zhang, Y. L., Xu, Z. Y., Su, G. F., Tan, Z. A. (2023). Hexachlorotriphosphazene-assisted buried interface passivation for stable and efficient wide-bandgap perovskite solar cells. Chem. Commun. 59, 6255–6258.

[107]

Wang, D., Guo, H. L., Wu, X., Deng, X., Li, F. Z., Li, Z., Lin, F., Zhu, Z. L., Zhang, Y., Xu, B. M., et al. (2022). Interfacial engineering of wide-bandgap perovskites for efficient perovskite/CZTSSe tandem solar cells. Adv. Funct. Mater. 32, 2107359.

[108]

Chen, B., Chen, H., Hou, Y., Xu, J., Teale, S., Bertens, K., Chen, H. J., Proppe, A., Zhou, Q. L., Yu, D. N., et al. (2021). Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33, 2103394.

Energy Materials and Devices
Article number: 9370031
Cite this article:
Yang Y, Li F, Chen R, et al. Interface engineering of inverted wide-bandgap perovskite solar cells for tandem photovoltaics. Energy Materials and Devices, 2024, 2(1): 9370031. https://doi.org/10.26599/EMD.2024.9370031

1881

Views

595

Downloads

0

Crossref

Altmetrics

Received: 20 February 2024
Revised: 06 March 2024
Accepted: 08 March 2024
Published: 28 March 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return